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NORMAL FLOWS AND HARMONIC MANIFOLDS
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Communicated by Mileva Prvanovié

Abstract. We prove that a 2-stein space equipped with a non-vanishing
vector field £ such that the £-sectional curvature is pointwise constant is a space
of constant sectional curvature. From this it then follows that a harmonic space
equipped with a unit Killing vector field such that its flow is normal, has constant
sectional curvature.

Introduction

A Riemannian manifold (M,g) such that every small geodesic sphere is a
constant mean curvature hypersurface is called a harmonic space [2], [3], [10],
[14]. Riemannian manifolds which are locally isometric to a two-point homogeneous
space are trivial examples and the fundamental conjecture of Lichnerowicz stated
that the converse holds. As shown by Z. I. Szabé [11], [12], this conjecture holds
for compact (M, g) with finite fundamental group and for complete (M,g) with
non-negative scalar curvature. However the conjecture fails to be true in general,
even for complete (M, g). This was shown in [4] where the authors provided an
infinite number of non-symmetric solvable Lie groups equipped with a harmonic
metric. Such spaces are now called Damek-Ricci spaces. We refer to [1] for a
detailed study of the rich geometry of these DR-spaces and for further references.

This remarkable result makes the study of harmonic spaces much more in-
teresting. The global and local classification of harmonic spaces is far for being
achieved and since the only known examples are all locally homogeneous, it is an
intriguing question whether each harmonic space has to be locally homogeneous
or not. We note that this question is still open, even inside the class of Kahler or
quaternionic Kahler manifolds. On the other hand, and as is shown in [5], Sasakian
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harmonic manifolds are spaces of constant curvature 1. (See also [5] for some ex-
tensions of this result to more general classes of almost contact metric manifolds.)

Sasakian manifolds are endowed with a unit Killing vector field. In a series
of papers, M. C. Gonzalez-Davila and the authors have studied the geometry of
Riemannian manifolds equipped with such a vector field, generalizing in this way
many aspects of Sasakian geometry to what they called flow geometry. See for
example [6], [7]. In this paper we continue this work and prove that any harmonic
(M, g) equipped with a unit Killing vector field whose flow is normal (see Section 3
for the definition) is a space of non-negative constant sectional curvature. To derive
this result we will first prove the more or less immediate result which states that a
2-stein Riemannian manifold (see Section 2) of dimension > 2 and equipped with
a non-vanishing vector field £ such that the sectional curvature of all two-planes
containing £ is pointwise constant, must have constant sectional curvature.

2-stein spaces and harmonicity

Let (M, g) be an n-dimensional, connected, smooth Riemannian manifold and
denote by V its Levi Civita connection. Further, let R, p and 7 be its associated
curvature tensor, Ricci tensor and scalar curvature, respectively.

An Einstein manifold, that is, p = Ag, A = Z, is said to be a 2-stein space if
n

(21) Z Riawb = /J/g(.’L',.'E)Z)

a,b=1

for any tangent vector z at m and all m € M. Here, Ryazp = g(Rzex,b) and
{eq,a =1,...,n} is an arbitrary orthonormal basis of the tangent space T, M. In
this case we have

1

(2.2) b= m

3 2 2
(SIEIE +lI0112)
(see for example [2], [3]).

As mentioned in the Introduction, an (M, g) is said to be a harmonic mani-
fold if all geodesic spheres of sufficiently small radius are constant mean curvature
hypersurfaces. Any harmonic manifold is a 2-stein space [2], [3].

Now, we prove

THEOREM 2.1. Let (M,g), dim M > 3, be a 2-stein space equipped with
a non-vanishing vector field & such that the sectional curvature of the two-planes
containing & is pointwise constant. Then (M, g) is a space of constant curvature.

Proof. Since (M, g) is Einsteinian, we have

pE&) = 9(6,:6) = Y Reaga = (n — (€, &)

a=1
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where c is the pointwise and hence, globally constant £-sectional curvature. So, we
get

2
-
(2.3) llpll* = - =n(n- 1)%c.

Then it follows at once from (2.1), (2.2) and (2.3), by putting z = &, that
|R||> = —25pl|* and, as is well-known, this yields that (M, g) is a space of constant
curvature. This curvature is equal to c.

Since a 2-dimensional harmonic space has constant curvature (see, for exam-
ple, [2], [3], [15]), we get at once

THEOREM 2.1. A harmonic space equipped with a non-vanishing vector field
& such that the &-sectional curvature is pointwise constant, is a space of constant
curvature.

Normal flows and harmonicity

Now we turn to the consideration of Riemannian manifolds equipped with a
normal flow and prove our main result. We first collect some basic material and
refer to [6], [7], [8] for more details.

Let (M, g) be as in Section 2 and note that we take R with the sign convention
Ryv = Vv — [Vu,Vv]

for all U,V € X(M), the Lie algebra of smooth vector fields on M. Further, let
(M, g) be equipped with an isometric flow [13] §¢ generated by a unit Killing
vector field £. Vectors orthogonal to £ are called horizontal vectors.

Next, put HU = —Vyé and h(U,V) = g(HU, V) for all U,V € X(M). Since £
is a Killing vector field, it follows that h is skew-symmetric and moreover, h = —dn
where 7 is the metric dual one-form of £. Further, we have

This implies that the £-sectional curvature K (X, £) is non-negative and since HE =
0, K(X,&) = 0 for all horizontal X if and only if h = 0, that is, the horizontal
distribution is integrable. In that case, (M, g) is locally a Riemannian product of
an (n — 1)-dimensional space and a line. Moreover, K (X, ) > 0 for all horizontal
X if and only if H is of maximal rank n — 1 or equivalently, 7 is a contact form.

An isometric flow §¢ determines locally a Riemannian submersion. In fact,
for each point m in M, let U be a small open neighborhood of m such that £ is
regular on U. Then the mapping 7 : U - U =U /& is a submersion. Further, let §
denote the induced metric on I given by

(X, Y))" = g(X*,77)
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for X,V € %(if) and where X*,Y* denote the horizontal lifts of X,V with respect
to the distribution on & determined by n = 0. Then 7 : (U, gy) — (U, ) is a

Riemannian submersion. The Levi Civita connections V, V of g, §, respectively,
are related by

(3.2) Vi V= (ViV)* +h(X*YV*)E

for all X,V € %(Z:() and the Riemannian curvature tensor R of V is given by

(Rgv2)* = Rg.5.2* + 20(X*,Y*)HZ*
(3.3) +{(Vg.h)(F*, 2%) = (V5. h)(X*, 2 ¢
+h(X*, Z*)HY* — h(Y*,Z*)HX*

for all X, Y, Z € X(U). From this we then get

(34) (A(X, V)" = p(X*,Y™) + 2g(HX", HY™),
(3.5) 7 =14 p((, ).

Now, the flow §¢ is said to be normal if for all horizontal X,Y, the transforma-
tions Rxvy leave the horizontal subspaces of the flow §; invariant or equivalently,
R(X,Y, X,¢) =0. Then, from (3.1), we get

(3.6) (VuH)V = g(HU,HV )¢ +0(V)H*U
for all U,V € X(M) and in this case R satisfies

Ryvé =n(V)H?U —q(U)H?V,

(3.7) o :
veV =g(HU,HV){ +n(V)H"U.

This yields p(X,€£) = 0 for each horizontal X and moreover, (3.1) and (3.6)
yield that p(&, &) is a non-negative constant.

Next, for a normal flow §¢, (3.3) reduces to

(R3¢ 2)* = Rgu5. 2" —g(HY*, Z*)HX*
+g(HX*, Z*)HY* +29(HX* Y*)HZ*

=<

for X,Y,Z € %(U) and from (3.4) we get

(3.9) ((V2h)(¥.2)) = (V.)(T*, 2°).
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Finally, let H be the (1, 1)-tensor field on ¢/ defined by
HX =, HX".

Then H is skew-symmetric and it follows that S is normal if and only VH = 0.
Further, on & we have in that case [8]:

(3.10) Rgzy =Ravx-
Now, we state and prove our main results. We always suppose dim M > 3.

THEOREM 3.1 Let (M, g) be a Riemannian manifold equipped with a normal
flow. If (M,g) is a 2-stein space, then it is a space of (non-negative) constant
sectional curvature.

From this result we then get at once

COROLLARY 3.1. A harmonic manifold which is equipped with a normal flow
is a space of (non-negative) constant sectional curvature.

To prove Theorem t3.1 we first consider

LEMMA 3.1. Let (M, g) be an Einstein manifold equipped with a normal flow
Se andlet m : U — U= U/E be a local Riemannian submersion determined by
Se. If U is locally irreducible, then U is an Einstein manifold and the &-sectional
curvature is constant on U.

Proof. Since p is parallel, it follows from (3.9) that I/ has parallel Ricci tensor
and because of the local irreducibility, it is an Einstein space. Hence, (3.4) yields

ok V7 T T ok V7
29(H*X",77) = (L - —5)g(X*,7")

for all XY € X(U). So H?> = (- +7®¢&) on U and from (3.5) we get ¢ =
7/n(n — 1) = const. Hence, the {-sectional curvature is constant and equal to c.
O

Now, we proceed with the

Proof of Theorem 3.1. We shall prove that the 2-stein space (M, g), equipped
with a normal flow §¢, has pointwise constant {-sectional curvature. Then the
result follows at once from Theorem 2.1.

So, assume the contrary, that is, suppose that the £-sectional curvature is not
pointwise constant. Then there exists a point m in M such that the £-sectional
curvature at m is not constant. In this case it follows from Lemma, 13.1 that there
exists a small open neighborhood U of m such that U = U /€ is reducible and we
may write i = Uy X --- x U, where U; is an Einstein space for each i = 1,...,r.
Put dim; = n; and denote by 7, i = 1,...,r, the scalar curvature of ;. Then
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T T . .

> n;=n—1and ) 7; = 7. Moreover, we may assume that % # :;—J for i # j.
=1 =1 7 ]
Applying (3.4) again, we get

20(° X", 77) = 3 (7 = Yo7, 1)

i=1
for all X = Zf(,- and Y = Zf’, of X(U). Hence, H2Xf = -2 X} fori=1,...,r
i=1 i=1

and where ¢? is the &-sectional curvature K (X}, ) given by

Ti T
@11 =Lt
and, because of our assumption, we have ¢} # ¢3, i # j.
Next, we note that (3.1) implies

(3.12) tr H2 = —_
n

and with (2.1), (2.2) we also obtain

1

1 trH=p= ——
(3-13) ' a n(n +2)

{URIP + 11017}

Further, let u be an arbitrary unit horizontal vector at m € U and denote its
projection on U also by u. Let {e;,i = 1,...,n} be an orthonormal basis of T, M
such that e, = £. From (3.8) we get

Ruaub = Ruaub + 3g(HU, ea)g(Hu, eb)

for a,b € {1,...,n — 1}. Hence, we have

n—1

(3.14) p= Y Riguw = OB, fryuir, + 1011 Hull"
a,b=1
Now, let 1 = w(m) = (1, - ..,1m,) €Uy X -+ x Uy, and let v = v; + v; € T, Ui @
Ts,;Uj, ||v|| = 1 and where 4,j € {1,...,r}, i # j. Then we have
il + llogl* =1, [1H)I> = Glloill* + &l
V; _ Uj
‘ U T o
in (3.14) and take into account that Hv; is tangent to U for [ = 4,j. Summing up
the obtained expressions, we get

Since the expression in (3.14) is independent of u, we take u = and u

n—1
a(llod +10511*) = 37 Reaup = R, irpurr, + 10(IFvEI + (1511

a,b=1

= 11— 20262 o] ;2.
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Hence, we obtain
(3.15) = 10c;c;

From this it follows, since the ¢-sectional curvature is not constant at m, that &/
has exactly two factors.

So, put U = Uy xUs and let Ry, respectively Rz, denote the Riemann curvature
tensor of Uy, respectively Us. At 7 = w(m) € U we choose an orthonormal basis
{el,z = 1,...,n — 1} such that ey, .. ;€ny Span Tl and €ni4ly---,€n_1 Span
Tilho. Now let u; be a unit vector of T '»U1. Then we have [3], [9]

Criit (35 1y 72
E R du) = —m—t (2 L
/5"1 1), turau o = +2)(2”R1|| +n1)’

>, Cn1 1 o
/5"1—1(1) Ry Frusus Fro, B0 = ni(ny + 2) bzl ( afiabfio T RaHbaHb + RabeHa)

)

n1
_FI 4d n1 —1 H H _E[ _E[
[ W = et ;3 {atie, Fegti, fe

+ 2§(Heq, Hey)j(He,, ﬂeb)}

where C,,,_; denotes the volume of the unit sphere S™~!(1) in R*'. Using the
first Bianchi identity and (3.10) we then get

~ 4:CYTLl—:l 2~
/5%1—1(1) RIUIgUInguI dU1 - 1 (nl + 2) an

and further, we have

s Cny—1 . .
Fu||*duy = — "= (e A2)? + 2460 L} = i Cny 1.
Jos g s = e P 20} = el

So, the integration of (3.14) over S™~1(1), taking u = u;, gives
3im 2, Tt 2~ 1
ni(ny +2)p = §||R1|| + - 24c37 + 10¢ina(ny + 2)
1
and, doing the same for a unit vector us € TmZ/?Q, we obtain
na(na + 2)p —||R 1> + -2 — 24c57 + 10c3na (ns + 2).
Now, summing up these last two relations gives, using (3.12) and (3.15),

3~ 7272 T\2
SURIP + L+ 2 4 10(5) —2U(EF + A7) = (0 — 21
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Further, from (3.5) and (3.11), we get

~2 ~2 2
i T3 2~ 2~ T
— 4+ = =2(ciT1 +c +(n+1 (—)
-~ + - (ciT1 + c372) + ( ) ”

and so,

3 A2 7\? 2~ 2~ 2
(3.16) IR +(n+11)(ﬁ) —22(2F, + &) = (n? — 21)p.

Finally, we express || R||? in terms of || R||?. First, note that

n—1

IR|I” = Z Rimd +4p.
a,B,y,0=1
Using (3.8) we obtain
n—1 B n—1 B ~
> R =IRP+6 B +60H -4 Y (Rupgans + Rarapins)
a,B,7,6=1 a,B,7,6=1
which, by applying the first Bianchi identity and (3.10), becomes
n—1 n—1
> Rl =lRIP+6(tr H?)? +6tr H* =12 g,
a,B,7,0=1 a=1

So, taking into account (3.12) and (3.13), we have

~ . 0. 5 T\ 2
I|R|1? = |RI|? + 12(371 + &72) — 6(5) — 10p.

Form this we see that (3.16) may be written as

(n+3) (1)2—22~ 27) = 0
/J/ + n (ClTl + 027-2) —

or, using (3.12), (3.13), as

(3.17) (n 4 3)(n1ct 4+ nach) + (N1 4+ nacd)? = 2(37 + c27) =0

Further, (3.11) and (3.12) yield
L (n1 + 2)c? 4 naci, ;—2 =n1c? + (ng + 2)c2
2

ni
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and with this, (3.17) yields

nina(c? —c2)? = 0.

Hence, it follows that ¢? = ¢ which contradicts the hypothesis that the £-sectional
curvature is not constant at m.

10.
11.

12.

13.

14.

15.

This completes the proof of the theorem. O
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