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ON THE NON-COMMUTATIVE
NEUTRIX PRODUCT OF z} AND z "

Brian Fisher and Fatma Al-Sirehy

Communicated by Michael Oberguggenberger

Abstract. The non-commutative neutrix product of the distributions mf‘i_
and a:_T_A_T is evaluated for A # 0,+1,42....

In the following, we let p(z) be an infinitely differentiable function having the
following properties:
(i) p(z)=0for |z| > 1, (iii) p(z) = p(—2x),
1
(i) pla) >0, ) [ pla)de=1.

—1

Putting d,(xz) = np(nz) for n = 1,2,..., it follows that {0,(z)} is a regular se-
quence of infinitely differentiable functions converging to the Dirac delta-function
4(z).

Now let D be the space of infinitely differentiable functions with compact
support and let D' be the space of distributions defined on D. Then if f is an
arbitrary distribution in D', we define

fn(w) = (f * 6n)($) = <f(t)76n(m - t))

forn=1,2,.... It follows that {f,(z)} is a regular sequence of infinitely differen-
tiable functions converging to the distribution f(z).

A first extension of the product of a distribution and an infinitely differen-
tiable function is the following, see for example [2].

Definition 1. Let f and g be distributions in D’ for which on the interval
(a,b), f is the k-th derivative of a locally summable function F in L?(a,b) and g(*)
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is a locally summable function in L?(a,b) with 1/p 4+ 1/¢ = 1. Then the product
fg=gf of f and g is defined on the interval (a,b) by

k

fo= 3 (§) corge.

i=0
The following definition for the neutrix product of two distributions was given
in [4] and generalizes Definition 1.

Definition 2. Let f and g be distributions in D’ and let g,,(z) = (g%6,)(x). We
say that the neutrix product fog of f and g exists and is equal to the distribution
h on the interval (a,b) if

N-lim(f(z)gn(z), p(z)) = (h(z), p(z))

n—o0

for all functions ¢ in D with support contained in the interval (a, b), where N is the
neutrix, see van der Corput [1], having domain N' = {1,2,...,n,...} and range
the real numbers, with negligible functions finite linear sums of the functions

)\l r—1 T

n*ln"""n, In"n: A>0, r=1,2,...

and all functions which converge to zero in the normal sense as n tends to infinity.

It was proved in [4] that if the product fg exists by Definition 1, then the
product f o g exists by Definition 2 and the two are equal.

The following theorem was proved in [5].
THEOREM 1. The neutriz product xi o w;’\fl ezists and
wyox M =at — [y + 5 9(=A) + (A + 1) + 2¢(p))6(x)

for A #0,£1,+2, ..., where v denotes FEuler’s constant and

Before proving our main result we need the following definition of the Beta
function given in [6].

Definition 3. The Beta function B(A, ) is defined for all A, u by
1-1/n

B(\, ) = N-lim A1 — )P dt.

n—o0 l/n
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It was proved that if A\, # 0,—1,—2,..., then the above definition is in
agreement with the standard definition of the Beta function.

In particular, it was proved in [6] that

(=D"T)

B(-r,A) = rIl(A —r)

[¢(r) =7 = (A —7)]

forr=0,1,2,... and A\, up # 0,—1,—2,..., where

¢(T):{i§11/i, r=12,.... "
0, r=0.

We now generalize theorem 1 in which the distribution " is defined by

-7 (_1)7‘71 T
z," = =1 (Inzy)
for r =1,2,... and not as in Gel’fand and Shilov [7].
THEOREM 2. The neutriz product wi o x;’\_’ exists and
@} oz M = 2" + a (NS (@), 2)
where
(=)"[y +2c(p) + A+ 1) + 59(-A —r+1) = §(r —1)]
ar(A) = — +
(r—1)!
MRACER) S A+r—1\ (-1)f
2T(A + 1) 4 J r—j—1
j=0
forr=1,2,... and A #0,£1,+2,....
Proof. We first of all suppose that —1 < A < 0 and put
(xl)‘_r)n = 3:_?‘_’“ * 0 (1)
(=17 'TA+1) /1/" A1)
—t STV dt, 1/n,
Tewnonl INCED ) 2> 1/n
= (—l)T—ll“()\ + 1) /w a1 s(r—1)
— n , —1/n<x<1/n,
Tt r) _l/n(a: t) ) (t)dt /n<z<1l/n

0, z < —1/n.
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Then

- )T(_AIF)H)/ o

l/n
/ / — =161 (¢) dt da
l/n

l/n
/ / AL () di da
/n l/n

"zt de

+/ 5r- 1>()/ P — 1) do dt 3)
0
0 ! 1 )
+ / 81 (¢) / 2 i —t) A dedt
—1/n 0

1 n
— nrfifl / p(rfl)(,u) / ’U,)‘_H('U/ _ U)7A71 du dv
0 v
1 n
— (=1)rprt / p(’_l)(v)/ uMi(u +v)"A dudo,
0 0

where the substitutions nt = v and nz = u have been made in the first integral
and nt = —v and nz = u in the second integral.

We have
/ uMi(u —v) A du — (—1)7 / uMi(u+0v) A du =
v 0

n v

= / uMi(u— )™ — (=D (w4 v) " du — (—l)r/ uMi(u +v) A du
v 0

and it follows for the cases i = 0,1,...,r — 2 that

N —lim p"~*! [/ M —v) A du — (-1)7 / uM iy 4 v) ™A du] =
v 0

n—oo
=N-lim n" %1 / uM(u—v) A = (=1)"(u 4+ v) A1 du

n—oo
=N-lim n" ! z Al [(—1)! — (=)’ nu"*jfl du
n—oo —0 J v
— 2(_1)T -A-1 ,Ur—l _ 2F()‘ + T) ,Ur—l
Cr—i—1\r-1  (r—i—1D(r-1)ITA+1)
It follows that
1 ' 1

N-lim 2 (2 A MV prtde = —————
n—oo J_ 4 +(+ )n r—i—1
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fori=0,1,...,r — 2, since it is easily proved by induction that
1
/ v M (v) dv = L(=1)r.
0
When i = r — 1, we have on making the substitution u = v/y

n 1
/ u)\—',-r—l(u _ ,U)—)\—l du = ,Ur—l / y—r(l _ y)—)\—l dy
v v

e S [
s a8 (ol
- (—:_—11) (~v)" (Inv — Inn),

It follows that

" A1
N-lim [ v Y u—v)* tdu=v"'B(-r+1,-)) — ( re1 )(—v)T1 Inwv

n—oo v

and so
—lim ' (r=1) (4 nu)"""_l u—v) * Vdudy =
Ntim [ ()/U (u— )" dud 5)
=30 = B+ 1= = ()= DB - ) + <l

(=1)'T(A+r)

(=)™ r = DIB(—r+1,-X) + F'(A+1)

[5 ¢(r —1) + c(p)]

N|=

since it is easily proved by induction that
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1

Further, making the substitution v = v(y~*+ — 1), we have

n 1
/ u/\—',-r—l(u + ,U)—/\—l du = ,Ur—l/ y—r(l _ y)k—i-r—l dy
0 v/(n+v)
r—1

ot | L yrfam g > (M0 o] v

/(n+v) j= J

A+r— 1> / .
v 1 Jj—r
Yy dy
Z ( v/(n+v)
! D a+r—1 ,
= vr‘l/ y~" [(1 —yMrt -y ( . )(—y)ﬂ] dy+

/(n+v) =0 J

)\—l-r—l 1—(nj/v+1)r=i-1
o' 1
Z ( ) J—r+l i

It follows that

n
N-lim [ «*" Y u+o)  Tdu=v"'B(=r+ L,A+7)+

n—oo Jq
A+r—1\ (-1) Adr—1 _
1‘1 _17'7'11
G G

7=0

and so

N-lim [ p" Y )/ M u 4+ v) A dudo
0 0

n—oo

=D r = D)IB(=r + 1L,A+7)

Py (M)

= J r—j-1
(Ajfl D -0 o= 1)+ c(o)

=1 r=D)!B(-r+1,A+7)
1 r—1 — (A+r—1\ (=1
+5(-1) (r—1)!§0( ; )7T_j_1
FPA+7)
TTorn2 D Fel) (6)

It follows from equation (1) that
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Bl-r+LA+n) = Sl - 1) - g - w0+ )
Bl—r +1,-X) = = — o = 1) =y = (== r + )]
INO
= %W(T—U—V—w(—)\—ﬂrl)]

and so
B(—r+1,-A) —(-1)"B(-r+1L,A+7r) =
2R D= 2y = ) - wA -+ D) ()
It now follows from equations (3), (5), (6) and (7) that

: F(/\ + T) ! A= A—T r—1 —
=1 -DI[B(-r+1,-X) — (-1)"B(-r + 1, A+ )]

" 2 A+r—1\ (=1)"F T\ +r
—§<r_1>!j§:%( A P et PR )

®)

by = T 20+ 3¥O+ D) 5 9(A -7+ 1)

(r=1)!
TA+1) o (A+r—1) (-1)
2'(A + 1) :0< J )r—j—l'

+

<

It was proved in [3] that

(@7 p(x) =
o) r—2 (i) (r—1) —
. P00 , g0 o =1) oy
_ T _ T H 1_ _ T
/0 v [ot@) ;0 7t oy e H )] da+ SR
for all ¢ in D. In particular, if the support of ¢ is contained in the interval [—1, 1],
we have
(zy", p(x)) = 9)
1 =1 @ r=2 () oo _

_ —r ¢ (0) ; ¢ (0) / —r4i ¢(r—1) (r—1)
_/Osc [go(m) ; al ]d:c ; a ) x dx ] ¥ (0)

1 =2 =2 L -
_ —r ©(0) '"(0) o(r 1
_/0 z [gp(x)— :E]d.’L’— E BT - 80( )(0)-

)
] —i— —1)!
par A —al(r—i 1) (r=1)!
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Now let ¢ be an arbitrary function in D with support contained in the interval
[-1,1]. By the mean value theorem

r! ’

(%) . (r)
i=0 '
where 0 < £ < 1 and so
1
<xi<x;k Ne@) = [ @ )agl@) da

— (0 ) 1 rt
/ )""’(w;)‘#)n dr + F/o xx[xr(x;)‘fr)n]cp(r) (éx) dx

M

=0

Since the sequence of continuous functions {z" (x;*"’)n} converges uniformly to the

continuous function z~* on the closed interval [0, 1], it follows on using equations
(4), (8) and (9) that

N- hm(w+(a:+)‘ "ns (@) =

_ . go(")(O) ! Atif,—A—T 1t Ao (e AT (r)
_Nb;léomZT _1;1:+ (Y pdr+ lim — a:+[a: (Y ale' (E2) da

n—oo 7!
=0
1 r—2 (%)
1 _, r—1 (%) 0 . r—2 (4) 0 -1 .
:/0 v [‘p(‘”) _Z(P i!( )m]dm—zi!(f_f_)l) - cz(Sﬁr_ 1)!)(p( (0)
=0 =0
o(r

A0+ () (e 0

= (277, p()) + (=1)" a, (N1 (0),

giving equation (1) on the interval [—1,1] when —1 < A < 0. However, since
xi.x;*‘r = 2" on any closed interval not containing the origin, equation (1)

holds on the real line when —1 < A < 0.
Now suppose that equation (2) holds for some r and A # 0,+1,+2,.... This
is true for » = 1. It is also true for r +1 when —1 < XA < 0. Assume it is also true

for r +1 when —k < A < —k + 1. Then if —k < A < —k + 1, equation (2) holds by
our assumption and differentiating this equation, we get

+

)\wi 10.,1:1)\ r ()\+’I‘)£I}+O.'E+A r—1 —T‘JI;T_I +aT()\)6(T‘)(x)

It follows from our assumptions that

Ay ol = da T [N+ r)arn () + 4, (V]8T (2).
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We have
A+ 1)ar(N) +ar(A) = —(_l)r_:!@ D04 J0(-A =)+ 39O+ 1)+ 2e(p)]
TOA+1) & (A+7) (=17 (=1)" (A +7r)g(r)
+—2F()\+r)j§< j )r—j+ r!
N (fj_”fﬂh+ Ly(=A—r+1) + (A + 1) + 2¢(p)]
T(A+1) =3 <A+r—1> (=) (=D =1
(N +7) 4 i Jr—j—1 r—nr

Il
<

J
Noting that

A+r)Y(-A=r)=1+A+nr)Y(-A—r+1),
AP(A+1) =14 Mp(N),

)OO

; r— :
7=0 ‘] j=

.

it follows that
A+7)ari(A) + ar(X) = Aarp (A - 1)
and we see that equation (2) holds when —k — 1 < A < —k.

Equation (2) therefore holds by induction for negative A\ # —1,—2,... and
r=1,2,.... A similar argument shows that equation (2) holds for positive A #
1,2.... This completes the proof of the theorem.

A—r

COROLLARY 2.1 The neutriz product 2 oz~ exists and

2 or™ T =27 — (=1)"a, (N6 (z) (10)

for A#0,£1,£2,....
Proof. Equation (10) follows immediately on replacing z by —z in equation (2).

In the next corollary, the distribution (z + 0)* is defined by
(z +1i0)* =z} + ezt
for A\#0,£1,+2,... and

(=D)"im

AR ) (11)

(x+30)"=2""+

forr=1,2,..., see [7].
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COROLLARY 2.2 The neutriz product (z + i0)* o (z +40) """ erists and
(& +i0)* o (¢ +40) " = (z +i0) " (12)

for A\#0,£1,£2, ... andr=1,2,....

Proof . The neutrix product is distributive with respect to addition and so

(x4 i0)* o (z +1i0)™*" = (13)
— ‘r-)i‘- O$+—)\—r + (_1)71‘,”); o:[;:’\_r + (_l)refz')nrm_k‘r o.z':’\_r + ei’\”a:’l ox;x—r‘
Further, it was proved in [4] that
SL'A ° w—)\—r _ (_1)7'71:6)\ om—/\—r _ —Md(ril)(m) (14)
s -t T 2(r=1)!

for A #0,£1,+2,.... It follows from equations (2), (10), (11), (13) and (14) that

(@ +i0)* o (z +i0)">" = 2~ + ((;l_)rl";a“—” () = (2 +i0)~",

proving equation (12).

We finally note that the following results can be proved similarly.

|—)\—2r+1) $_2T+1,

|z|* o (sgn x|z
m cosec(mA)

@2r —1)! ]5(%1)(9”)’

|z|* o (sgnz|z| 22" = sgnz|z| 2 + [ZagT(z\) +

|—/\—27'+1 —2r+1
b

(sgnala[*) o |z =z
T cosec(mA) | c(ar_1)

@2r —1)! ] @),
m cosec(mA)

(2r — 2)!

(sgnz|z|*) o |z| 272" = sgnz|z| % + [Zagr(/\) -

|$|)\ ° |$|7)\72r+1 — |m|72r+1 + [20‘2r71(/\) _ ]5(27'72) ($)7

|$|)\ ° |.’L‘|_’\_2T — m—2r’

™ cosec(7r/\)] (2r-2) ().

(sgnx|$|>‘) o (Sgnm|m|—)\—2r+1) — |£L‘|_2T+1 + [2a2r,1(/\) + (27_ — 2)!

(sgnalz|*) o (sgnafa| %) = 27"

for A\ #£0,+1,+2,... andr =1,2,....
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