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VASSILIEV INVARIANTS OF
DOODLES, ORNAMENTS, ETC.

ALEXANDER B. MERKOV

ABSTRACT. In 1990 V. Vassiliev introduced the notion of finite order invari-
ants of knots. These invariants may be thought about as polynomials in the
functional space of all invariants. The order of invariants is defined by certain
filtration of a resolution of the discriminant set, i.e. of the space of ‘quasiknots’
(smooth non-embeddings of the circle to the 3-space): the invariants of order
n are 0-cohomologies of the space of knots, dual in some sense to homology
of the n-th term of the filtration. But after the works of Vassiliev [V90] and
Kontsevich [K93] the study of the finite order invariants was reduced to the
study of chord diagrams, which represent, in fact, transversal selfintersections
of the discriminant, and the homological origins of the theory were nearly
forgotten.

I’d like to remind the general construction of finite order invariants and
the combinatorial objects appearing in the calculation of such invariants. In-
stead of classification of knots, several variants of classification of plane curves
without triple points will be considered. These problems are, in a sense, more
generic, because not only transversal selfintersections, but also more compli-
cated singularities of the discriminant, should necessarily be considered.

On the other hand, diagrams other than the chord diagrams, relevant to
classification of knots and plane curves will be constructed, and some recent
results by M. Goussarov, M. Polyak, O. Viro, V. Vassiliev and myself will be
formulated.

1. INTRODUCTION

This paper is a very extended version of my talk at the conference ” Geometric
Combinatorics” (Kotor, Yugoslavia, 1998). Nearly the first half of the paper intro-
duces the necessary definitions and constructions, and the second half is devoted to
the content of the talk itself. Since the talk was scheduled shorter than expected,
only the last quarter of the paper was actually exposed.
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Let us start from a generic problem: given compact manifolds My, ..., M} de-
scribe the topology of the space of smooth maps of their disjoint union M; U- - -LI M},
to R™ (or another manifold) with no non-generic intersections of the images of
the components (either including, or excluding self-intersections). Vassiliev theory
[V90, V94] gives us a tool for calculation the cohomology of this space. We restrict
ourselves with 0-cohomology group (i.e. the group of invariants) only.

Even if all M; are 1-dimensional (i.e. circles), this problem is highly non-trivial.
For n > 3 the image of a generic map has no (self-)intersections at all, and the
problem splits into three classical problems:

e classification of knots (k = 1);

e isotopy classification of links (k > 1, selfintersections are forbidden);

e homotopy classification of links (k > 1, selfintersections are allowed).

For n = 2 the image of a generic map has necessarily (self-)intersections, but it
has no triple points. Such objects are less classical. They were introduced in
[FT77, Kh94] as doodles (no triple points at all) and in [V93] as ornaments (no
intersections of > 3 components). Again, the classification splits into the following
three problems:

e classification of single-component doodles (k = 1);
e classification of multi-component doodles (k > 1);
o classification of ornaments (k > 3).

A general Vassiliev theory of finite order invariants can be applied in each case:
see [V90] for knots, [V98] for single-component doodles and [V93] for ornaments. It
gives an algorithm producing all finite order invariants, but two questions remain:

e how to describe finite order invariants more explicitly;
e whether finite order invariants classify everything.

The second question was answered positively for n > 3 [V90], for a special case of
links — braids and string links [B-N95] —, and for doodles [M98]. A satisfactory
answer to the first question for knots is given by Polyak-Viro construction [PV94]
and Goussarov theorem [GPV98]. In the other cases the questions remain still
open.

It appears surprisingly, that the calculation of finite order invariants of doodles
and ornaments is more complicated than that for knots and links. The reason can
be explained informally as follows. Since the codimension of a knot or link in R3 is
equal to 2, one can suppose not only themselves, but also homotopy films between
them, being generic enough. On the contrary, the homotopy films between doodles
or ornaments sweep the whole areas in the plane. So there exist rich combinatorial
structures, nearly hidden in Vassiliev theory for knots and links, and revealed for
doodles and ornaments.

The goal of this paper is to compare briefly the theories of Vassiliev invariants
for the six classification problems above, and to describe the known answers to the
two questions above.

The structure of the paper is as follows. In sections 2 and 3 the elementary
and homological theory of invariants of ornaments is introduced in details and the
main results of papers [V93] and [M95] are summarized. These long definitions
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FIGURE 2.
FIGURE 1. The simplest non-trivial 3-orna-
Trivial 3-ornament(s). All eight ment(s). All eight oriented
oriented ornaments, obtained ornaments, obtained from this
from this picture, are equivalent. picture, are pairwise non-equi-

valent.

and bulky constructions are supposed to be sufficient for not to repeat them for
knots, links and doodles. In section 4 the differences between the case of ornaments
and the cases of doodles, knots and links are outlined. In section 5 the Polyak-Viro
construction [PV94, P94] of finite order invariants, its generalizations for ornaments
and doodles [M96, M98], and some new results [GPV98, M98] are described. No
proofs are given along the whole paper.

2. ELEMENTARY THEORY OF FINITE ORDER INVARIANTS OF ORNAMENTS

2.1. Ornaments and quasiornaments. Denote by C} the disjoint union ¢; U
--- ey of k circles.

Definition 1 (See [V93]). A k-ornament (or simply ornament) is a C'*-smooth
map Cr, — R2 such that the images of no three different circles intersect at the same
point in R2. Two ornaments are equivalent, if the corresponding maps C — R?
can be connected by a homotopy Cy, x [0,1] — R? such that for any t € [0,1] the
corresponding map of Cy X t is an ornament.

See fig. 1 for example of a trivial 3-ornament, and figs. 2,3,4 for examples of
non-trivial ones; all these ornaments are pairwise nonequivalent.

Definition 2 (See [V93]). A k-quasiornament (or simply quasiornament) is any
C>®-smooth map Cy, — R2. The space of all k-quasiornaments is denoted by K.
The discriminant ¥ C &y is the space of all quasiornaments which are not orna-
ments, i.e., have forbidden triple points.

Definition 3 (See [V93]). A k-ornament is regular if it is an immersion of Cy,
and all the multiple points of the image of Cy, in R? are simple transversal inter-
section points only. A k-quasiornament is regular if it is an immersion of Cy, and
at any multiple point of the image all local components meet transversally.
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FIGURE 4.

Non-trivial 3-ornament(s),
FIGURE 3. trivial in S2

Non-trivial 3-ornament(s)

FIGURE 5. Brunnean 4-ornament(s) (the right picture)

Regular ornaments form a dense open set in the space of quasiornaments. Usually
we consider regular ornaments only.

2.2. Examples of invariants. Let us fix an orientation of R2. Let x be a point
of R?, and ¢; be (the image of) the I-th component of a regular k-quasiornament.
Recall that the index of a point € R? with respect to a closed oriented curve
¢ : S' — R? not containing z is the rotation number of the vector c(t) — z when
t runs along S!. Denote by ind;(z) the index of z with respect to ¢; if ¢ ¢;, and
the smallest value of the index in a small neighborhood of z, if = € ¢.

If z is a simple intersection of the i-th component ¢; and j-th component c;
of a regular k-quasiornament (k-ornament in particular), let o;;(z) be 1 or —1
depending on whether the orientation given by the tangent frame (¢,(c;),tz(c;))
coincides with the orientation of R? or not.

To any regular k-ornament ¢ and 1 <14 < j < k there corresponds the following

integer-valued function I; j (b1, ..., bx) of integer arguments:
Lij(by, .-, b)(@) = > 0i,j(T)-
z€cjNe;

ind; (z)=b;,1<I<k



VASSILIEV INVARIANTS OF DOODLES, ORNAMENTS, ETC. 105

FIGURE 6. An ornament and its halves

Theorem 1 (See [V93, Theorem 4]). Fach function I; ;(bi,...,bx) is an invariant
of ornaments.

For any k integer non-negative exponents 3 = (31,...,3) we can define func-
tions V; ;(8) of k-ornaments:

Vii(B) = i (gﬁ) """ (ZIZ) I j(bay oo, k),

bl,...,bszoo

where 1 <i < j <kand

(bz> by =1) - (b =B +1)

Bi Bi! ’

no matter if b; is positive or negative. Obviously, V; ;(8) are integer-valued invari-
ants. These index momenta invariants are the simplest finite order invariants (see
theorem 3).

The integer-valued polynomials of invariants (e.g. the product of two invariants)
are also invariants. A kind of antisymmetric product of invariants, which yields
other invariants, is defined below.

Let z be a selfintersection point of the [-th component ¢; of a regular ornament
¢. x splits the image ¢(c;) into two closed curves having one non-smooth point
each (namely, x itself). Provided both ¢; and the plane R? are oriented (as we
always suppose), the pair of tangent vectors to ¢(¢;) at x allows us to call one of
the two half-curves positive, and the other negative (see fig. 6). Let ¢} and ¢, be
the ornaments obtained from ¢ by substitution of the image of ¢; by its positive and
negative halves respectively. These ornaments are not regular, because they are not
smooth at the point z, but they can be replaced by equivalent regular ornaments.

We define a binary operation of wedge product A; on invariants of k-ornaments,
where [ < k indicates the component of the ornament. Let I; and I> be invariants,
¢ a regular ornament, and z1, ..., %, all selfintersections of ¢(¢;). Then

n

(LAL@) = > (L(e) - L)) L2(4) — L(¢5,))
l =1
—(I(¢) = ILi(93,))I2(0) — Iz(%t-))-
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Theorem 2 (See [M95, Theorem 6]). I; A, I is an invariant of ornaments (and
can be defined for non-regular ornaments too).

Example. Let us consider the ornament ¢ from fig. 4: the first of the three compo-
nents has two selfintersections with two little inner loops, the other two components
are just circles with two mutual intersections each of which lies within one of the
loops. It is easy to see that (V2,3(1,0,0) A; V2,3(2,0,0))(¢) = £2, where the sign de-
pends on the orientations of the curves. So the invariant V5 3(1,0,0) A, V2,3(2,0,0)
does not belong to the subring generated by the invariants V; ;(3) above, since all
I; j(b1, b2, b3) and hence all V; ;(3) vanish on this ornament.

2.3. Singular points and degeneration modes.

Definition 4 (See [V93]). A standard singularity of complexity j is a pair of the
form (a quasiornament ¢ : Cp — R2; a point © € R?) such that ¢~ '(z) con-
sists of exactly j + 1 points z1,... ,2j4+1, at least three of which belong to different
components of C, the map ¢ close to all these points is an immersion, and the cor-
responding j+ 1 local branches of ¢(C},) are pairwise non-tangent at . The integer
vector (a1(x), ..., ar(x)) where a;(x) is the number of points of the i-th component
of Cy, in ¢~L(z) is called signature of the singularity x. A regular quasiornament is
called a quasiornament of complexity i, if all its forbidden points (i.e., the points,
at which at least three different components meet) are standard singular points, and
the sum of the complezities of these singularities is equal 1.

Definition 5 (See [V93]). Suppose that a regular quasiornament ¢ has m singular
pPoiInts T1,...,%Tm and 211,--. ,Zm, ., ore their pre-images. A degeneration mode
of ¢ is some arbitrary order of marking all these points z; ; satisfying the following
conditions: on any step we mark either some three points of ¢~ (x;) for some (z;),
belonging to some three different components of Cy, (if none point of ¢~1(x;) is
already marked) or one point (if some three or more other points with the same
image are already marked).

2.4. Characteristic numbers. The characteristic numbers, assigned by invari-
ants to regular quasiornaments and their degeneration modes, are defined induc-
tively by complexity of the quasiornaments.

The characteristic number assigned to an ornament is the value the invariant
takes on it. The last step of the degeneration mode of the k-quasiornament is ei-
ther marking of a triple of points on different components ¢;, ¢; and ¢;, or marking
a single point on ¢;. The marked point(s) are pre-images of some point € R?2
of intersection of three or more components. Consider a local transversal pertur-
bation of the I-th component of the k-quasiornament in a small neighborhood of
one of the marked points, i.e. a shift of a small piece of component ¢; through
the intersection point z. The perturbed quasiornaments are of smaller complexity
than the initial one, and belong to two different equivalence classes. One of them
can be called ‘positive’ and the other ‘negative’. Namely, if x is a simple inter-
section of ¢; and c;, then the ‘positive’ k-quasiornaments are those with greater
value of (I —4)(I — j)o;,;(x)ind;(z), and if x is a more complex intersection, the
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‘positive’ k-quasiornaments are those with greater value of ind;(z). The difference
of the characteristic numbers of the ‘positive’ and ‘negative’ k-quasiornaments for
the degeneration modes obtained from the given one by removing the last step
becomes the characteristic numbers of the given k-quasiornament and the degen-
eration mode.

2.5. Finite order invariants.

Definition 6 (See [V93]). An invariant of ornaments is an invariant of order i if
all characteristic numbers of any regular quasiornament of complexity > i, assigned
by this invariant, vanish.

Theorem 3 (See [V93, Theorem 5]). V; ;(8) are invariants of order |3|+1, where
1Bl =B+ -+ By

Theorem 4 (See [M95, Theorem 5]). The product of invariants of orders i1 and
i2, s an invariant of order i1 + i2. Integer-valued polynomials in finite order in-
variants are finite order invariants.

Theorem 5 (See [M95, Theorem 7]). If Iy and Iy are invariants of orders iy and
1o respectively, then I /\l I, 1 <1<k, are invariants of order iy +ix + 1.

To formulate more theorems about finite order invariants of ornaments we need
more definitions.

2.6. Configurations. Let A be a matrix of non-negative integer numbers a!, where
1<i<kand1l<I<m (k> 3isthe number of components of the k-ornaments,
and m is arbitrary). Denote by a! the sum a! + --- + a}. We will consider only
such matrices A, each row of which contains at least three nonzero elements. We
will consider these matrices up to transposition of their rows, so we may assert that
a' >a?>...>a™ > 3. Denote by —A— the number a' +... 4+ a™, and by #A4
the number of rows a' of the matrix, i.e. #4 =m.

Definition 7 (See [V93]). An A-configuration is a collection of |A| pairwise dif-
ferent points in Cy divided into groups of cardinalities a', ... a#*, such that the
number of points of the l-th group on the i-th component is equal to al (and hence
any group contains the points of at least three different components of Cy). A is
called the signature of the A-configuration. Two A-configurations are equivalent if
they can be transformed one into the other by a diffeomorphism Cj — Cj which
preserves ordering and orientations of all components of Cy. A quasiornament
¢ : Cr, — R? respects an A-configuration if it sends any of corresponding #A
groups of points into one point in R2. ¢ strictly respects the A-configuration if,
moreover, all these #A points in R? are distinct, have no extra pre-images than
these |A| points, and ¢ has mo extra points in R? where three of more different
components meet. A degeneration mode of an A-configuration is a degeneration
mode of arbitrary quasiornament strictly respecting it.

We call compl(A) = |A| — #A the complexity of the A-configuration; it equals
to the complexity compl(@) of any regular quasiornament ¢ strictly respecting it.
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We call deg(¢) = deg(A) = |A| — 2#A the degree of the regular quasiornament ¢
or of the A-configuration strictly respected by it; the degree is equal to the number
of degeneration steps in any degeneration mode of ¢.

2.7. Uniform invariants. A subgroup (in fact, subring) of finite order invariants
of ornaments is described below. These invariants have a simple explicit combina-
torial representation. Only these invariants have analogues for maps of collections
of multi-dimensional manifolds.

Definition 8. An invariant I of order i is a

single-group invariant, if the characteristic numbers of I vanish for all regular k-
quasiornaments with more than one singular point and all their degeneration modes;
single-group invariant of signature @ = (aq,... k), ol = a1+ -+ ap =i (all
a; are non-negative integers), if it is a single-group invariant and the characteris-
tic numbers of I vanish for all regqular k-quasiornaments of complexity i and their
degeneration modes except quasiornaments with exactly one singular point of sig-
nature .

m-group invariant, if the characteristic numbers of I wvanish for all regular k-
quasiornaments with more than m singular points and all their degeneration modes;
m-group invariant of signature A = {a',...,a™}, where each o' = (af,...,al)
is a signature of a singularity, and |A| = ||+ --+|a™| = i, if it is a m-group in-
variant and the characteristic numbers of I vanish for all regular k-quasiornaments
of complexity i and their degeneration modes except quasiornaments with exactly
m singular points of signatures a',...,a™

The existence and non-uniqueness (in general case) of m-group invariants of any
given signature and some bounds for the number of them are shown below (see
theorem 7).

Definition 9. An invariant I of order i is a uniform invariant if the characteristic
number assigned by I a k-quasiornaments ¢ of complexity i and its degeneration
mode ' depends on the signature A of the configuration J strictly respected by ¢
and on T, but not on J and ¢ themselves.

Independence of the characteristic numbers of the highest possible complexity
of the quasiornament strictly respecting the same configuration (or equivalent con-
figurations) is a general fact (see [V93, Theorem 6]). This definition requires the
characteristic numbers of (the quasiornaments strictly respecting) nonequivalent
configurations of the same signature A to be equal to each other. Since all single-
group configurations of the same signature are equivalent, all single-group invariants
are uniform.

The following proposition gives the way to construct other uniform invariants.

Proposition 1 (See [M95, Proposition 1]). If I1 is a uniform m,-group invariant
of order i1, and I is a uniform meo-group invariant of order iz, then the product
I, - I is a uniform my + ma-group invariant of order i1 + is.
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Both the parameters g of the invariants V; ;(3) and the signatures « of singular
points are k-dimensional integer vectors. Let €; denote the i-th vector of the stan-
dard base of this space, @ <  means a; < 3; for each 4, and so on. Denote by n(f3)
and [(8) the number of positive components 3; and the index of the last positive
component respectively.

Theorem 6 (See [M95, Theorem 3]).
(i) Each V;;(B) is a uniform single-group invariant of signature 5 + €; + €;.
(ii) For eachi, 1 <1i <k and each S,

Y ViB-e)= Y Vii(B—e)).
1<j<i<k 1<i<j<k
3;>0 B;>0

There are no more non-trivial linear relations between the invariants V; ;(3).

Denote by v? the invariant Via jo (89 — €1 — €j2) where ¢ = 1,...,p, i? < j9,
and all the triples (89,7, j¢ are different for different g; let m? be positive inte-
gers. Denote (i%,...,i") by I, (j,...,47) by J, (m',...,m") by M, |M| by m,

r q
{8 By, 7o, B} by B, and [T°_, (%) by VM(B).

ml m”

Theorem 7 (See [M95, Theorem 4]).

(i) VIIKII (B) is a uniform m-group invariant of signature B.

(ii) Fach uniform m-group invariant of signature B is an integer linear combination
of VI%(B) for different (I,J) and uniform m-group invariants of orders < |B|.
Each uniform m-group invariant of order n is an integer linear combination of
VII}’IJ(B) for different (B, I,J, M) with |M| < m and |B| = n, and uniform m-group
invariants of orders < n.

(iii) Polynomials of Vi ;(B) are uniform finite order invariants of ornaments and
there are no other uniform finite order invariants.

On the other hand, invariants of shape I; A, I> (see theorem 2) are non-uniform.

3. HOMOLOGICAL THEORY OF FINITE ORDER INVARIANTS OF ORNAMENTS

The skeleton of the homological theory of invariants of ornaments is as follows.
Classes of equivalent ornaments are connected components of the set of ornaments.
Numerical invariants of ornaments, i.e. functions, constant on the equivalency
classes, form the zero-dimensional cohomology group of this set. This group can be
expressed in terms of homology of one-point compactification of the discriminant
by a sort of Alexander duality, so the study of invariants is dual to the study of the
highest closed (Borel-Moore) homology group of the discriminant.

We work here with the infinite-dimensional space of all quasiornaments as if it
were a finite-dimensional space of a very large dimension. A technique of finite-
dimensional approximations which justifies this approach is developed in [V93].

In [V93, section 7] a resolution ¢ of the discriminant ¥ was constructed. One-
point compactification of the resolution is homotopy equivalent to one-point com-
pactification of the discriminant itself. It has the natural filtration ) = o7 C
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o2 C 03 C ... (main filtration), corresponding to complexity of quasiornaments
(which is the same as the complexity |A| — #A of A-configurations strictly re-
spected by the quasiornaments). Each quotient space o;/0;—1 of the main filtration
has the auziliary filtration corresponding to the total number of points |A| of the
A-configuration. The auxiliary filtrations are finite and the corresponding spectral
sequence calculates the homology of ¢;/0;—1. The main filtration is infinite, so the
problem of convergence arises. Still, the corresponding spectral sequence calculates
a subgroup of homology group of o. The invariants dual to this subgroup are finite
order invariants in the sense of section 2 (see theorem 8).

The exact definitions and theorems of the homological theory of invariants of
ornaments are given below. The elementary definitions and results stated above
are just translations of the homological ones (see propositions 2 and 3). Some
auxiliary constructions are introduced first.

3.1. Order complexes of configurations. Given an A-configuration J, two
triples consisting each of a simplicial complex, its subcomplex and quotient complex
are associated with J. They can be defined as well for an abstract |A|-element set
0O subdivided into two families of subsets: circles of different colors 64, ...,0; and
groups 0, ..., 0%4 such that #67 = o’ and each group intersects at least 3 circles.
We will call such sets abstract A-configurations and denote |A| and #A by |©| and
#0 respectively.

Recall general definition of order complex: given a partially ordered set P, its
order complex is the simplicial complex generated by all simplices (p1,p2,--.,Pn)
where p; € P and p1 <ps < -+ < pp.-

For each A-configuration J the space x(J) of all quasiornaments respecting J
is obviously an affine subspace of codimension 2(|A| — #A) in the space of all
quasiornaments. Let Ji,...,Jn be all (3)-subconfigurations (i.e. triples of points
of different colors) of J. Then the spaces x(J;) and their intersections form a
partially ordered set (with traditionally ‘reverse’ order: V < W iff W C V).

Definition 10 (Cf. [V93, section 7.1-7.3]). The order complez of this partially or-
dered set is called the order complex of A-configuration J and is denoted by A(J).
Denote by A(J) the subcomplex in A(J) generated by all simplices, not containing
the mazimal element x(J1) N x(J2) N --- N x(Jn), and by =(J) the correspond-
ing quotient complex A(J)/A(J). This complez is called the quotient complex of
A-configuration J.

3.2. Resolution space.

Definition 11 (Cf. [V93, section 7.2, 7.4 and proposition 13]). The resolution o of
the discriminant ¥ is the naturally topologized space of the pairs (¢,8;(4)), where
¢ € X is a quasiornament, J(¢) is the A-configuration strictly respected by it, and

dy(¢) € A(J(9)).

Obviously, o allows also a representation as the space of the triples (J, &, )
where J is an A-configuration, £; € A(J)\ A(J), and a quasiornament ¢ respects J
[V93, section 7.4]. The complexity and the total number of points of J determine
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the main and the auxiliary filtrations of the resolution of the discriminant. Denote
the i-th term of the main filtration of ¢ by o;.

3.3. Spectral sequences. A homological spectral sequence corresponds to each
of the filtrations above. For some reasons they were turned to cohomological spec-
tral sequences in [V93] and we preserve this tradition here. Namely, if E]  is a
homological spectral sequence of the main filtration, then rename the term E7  to
E;P>~1=4 50 —1 here is the dimension of ¥; more accurately, co — ¢ means codi-
mension ¢ in any sufficiently large finite-dimensional approximating space. This
cohomological spectral sequence is called the main spectral sequence.

Similarly, if G7. . is the homological spectral sequence of an auxiliary filtration

5iP,4
converging to E its terms are renamed to G, % P°°~17% and converge to

1
$,p+q—s>
ESo—l—q—pts
1 .

Theorem 8 (See [V93, Theorem 8]). The main diagonal {E, %'} of the main spec-
tral sequence EP'? converges to the subgroup of finite order invariants in H* (k;\X);
the group E b is naturally isomorphic to the quotient group of the group of invari-
ants of order < i modulo the invariants of order <i —1.

3.4. Blown configuration space. To simplify the calculation of the spectral se-
quences we go from the infinite-dimensional resolution space to a homotopy equiv-
alent locally finite-dimensional cellular complex.

Let us define the blown configuration space o(°) as the space of the pairs (J, &)
where J is a configuration and &y € Z(J). This space splits into finite-dimensional
subspaces, each of which corresponds to a class of configurations equivalent to
some A-configuration J ( J-block). Each J-block has a structure of fiber bundle
whose base is the class of A-configurations equivalent to J and fiber is E(J); its
dimension is |A|+ (|A| —2#A—1) = 2(]A| —#A) — 1. On the other hand, the blown
configuration space has naturally main and auxiliary filtrations mentioned on page
110. Namely, the s-th term agc) of the main filtration is the union of J-blocks of
A-configurations of complexity |A| — #A < s, and p-th term agfg of the auxiliary
filtration of agc)/aii)l is the union of J-blocks of A-configurations of complexity
|A| —#A = s consisting of |A| < p points. So main and aeuziliary spectral sequences
may be constructed.

Omitting the component ¢ of the triples (J, £y, ¢) we define the natural projec-
tion of the resolution o to the blown configuration space o(®). To each J-block
in o(©) there corresponds the cellular subcomplex in ¢ which is the direct product
of the J-block by an affine subspace of codimension 2compl(J) in the space of
quasiornaments. So, o and ¢(¢) are homotopy equivalent (moreover, the projection
providing the homotopy equivalence is a proper map and preserves the filtrations),
and the results formulated in terms of the resolution ¢ in [V93] are rewritten in
terms of the blown configuration space o(¢) below.

3.5. Homology of the blown configuration space and finite order invari-
ants. Denote by H,(...) the closed homology groups (also known as Borel-Moore
homology, or homology of one-point compactification) of the given space. Denote
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by oo the dimension of the space of k-ornaments, or more accurately, a large enough
generic subspace of it (see [V93]). Then o contains no cells of bigger dimensions.

Proposition 2 (See [V93, section 7.4]). The group of invariants of order i is iso-
morphic by Alezander duality to the group Hu,_1(0;). This isomorphism maps an
inwvariant of order i to a linear combination of cycles of the maximal dimension of
one-point compactification of o;.

In other words, the group of invariants of order 4 is isomorphic to the high-
est closed homology group of g;, or equally the highest closed homology group
Hai_1(0$) of 0! Since () is a finite-dimensional cellular complex, the calcula-
tion of invariants of any given order becomes just a (rather complicated) technical
problem.

Given a quasiornament ¢, each cell of maximal dimension in Z(J(¢)) corresponds
to the simplex of maximal dimension in A(J(¢)); the latter corresponds obviously

to the degeneration mode of ¢. This correspondence is a bijection.

Proposition 3 (See [V93, proposition 17]). Let the pair (¢,£;(4)) belong to a cell
of mazimal dimension in o; \ 0;_1 (or, equivalently, £;(4) belong to a cell of max-
imal dimension in agc) \ ogi)l , and the quasiornament ¢ be reqular. Let I be an
invariant of order i. Then the characteristic number, corresponding to I, ¢ and a
degeneration mode of ¢ is equal to the multiplicity with which the cell corresponding

to the degeneration mode participates in the cycle corresponding to I.

3.6. Auxiliary spectral sequences and homology of J-blocks.

Proposition 4 (See [V93, section 6]). The auziliary spectral sequences of the blown
configuration space are exactly the same as the auziliary spectral sequences defined

on page 111 for the resolution of the discriminant. Gy %P9 =Hy,_1 (0%, ag‘;),_l).

G %P1 is identically zero if p< 3,8 <2, p<s+1,p<3(p—s) (all these are
simple relations between |A| and #A), or —p+q < 0 or —p+q > 25 — 1 (the
minimal and mazimal possible codimensions in ag,cz)) . E;P? is identically zero if

p<2o0r—p+q<0. See fig. 7.

The boundary of a J-block in o(¢) consists of the blocks obtained by merging
together several (collections of) adjacent in Cj points of the A-configurations. For
instance, if J-block belongs to some term of the main and auxiliary filtrations
but not to previous terms, then the part of its boundary, belonging to the same
term of the main filtration and the previous term of the auxiliary one, consists of
blocks, obtained by merging together pairs of points, lying adjacently on the same
component of C}, but belonging to different groups of the A-configuration. Such a
pair-merging map induces the map of homology groups of the blocks (also called
pair-merging map).

Proposition 5 (See [V93, section 6.4]). The differential

dl—S;—p,q . Gl—ss—p,q N GI_S;_”'H"]
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F1GURE 7. Main and auxiliary spectral sequences.
Only framed cells can be non-trivial.

is the direct sum of all possible pair-merging maps

His_14p—q (Ugf;)n 0—:5?]))—1) = Hys—24p—q (Ua(f,))_l ) Ug,cg))—z )s

or, equally,
g2s—1+p—q(‘7§,cz)/ag,cg);71) - EIQS—?-HJ—Q(O—.g,cz)J—l/o—g,cz)J—2)‘
The most interesting case for calculation of invariants is when p = ¢: in this case

the highest closed homology group Has—1(ot%)/ Jgfl))_Q) maps to the next-to-highest

group ﬁzs_z(a(c) /a(c) ).

s,p—1 s,p—2

3.7. Calculation of finite order invariants. The results of the previous sub-
sections suggest the following way of calculation of finite order invariants.

1. To calculate homology of the quotient complexes of configurations.

2. To calculate closed homology of J-blocks. Each J-block is a fiber bundle, its
base is a rather simple manifold, and the fiber is a quotient complex. Hence
the first terms G; * '7 of the auxiliary spectral sequences will be calculated.

3. To calculate the auxiliary spectral sequences, i.e. to calculate closed homology
of agc)/agc_)l. Hence the first terms E; 777 of the main spectral sequence
will be calculated.

4. To calculate the main spectral sequence, i.e. to calculate closed homology of

9.
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In fact, at each step one need to calculate more or less explicitly the generators
of the groups for subsequent use. On the other hand, only the highest and next-
to-highest homology groups participate in calculation of the diagonal cells of the
spectral sequences, and only the latter give invariants.

In [M95] the first of these steps was performed thoroughly, the second one — for
the highest dimension, the third one — for certain cases and for 3-ornaments only,
and the forth step was not performed at all. A careful study of the first term of the
main spectral sequence sometimes allowed one to guess a subgroup of invariants
of the same order and the same dimension and avoid the honest calculation of the
main spectral sequence. For instance, this was the way, how the uniform invariants
and their correspondence to the configurations (theorems 6 and 7) were discovered.

3.7.1. Calculation of homology of quotient complexes. Homology groups of order
complexes of partition lattices generalizing complexes A(O) (remind that Z(0) is
the suspension of A(©)) were investigated in [BW92]. It was shown that they are
free Abelian groups and a recurrent formula for their dimensions was obtained. The
combinatorial meaning of these dimensions and the generators of homology groups
are shown in propositions 6 and 7.

The simplest is the case, corresponding to 3-ornaments, where the abstract A-
configuration © is split into exactly three subsets 61, 62, and 3 of points of different
colors. We will call such A-configurations A3-configurations.

The most interesting is the case of the homology groups of the highest possible
dimension. In fact, only highest and next-to-highest homology groups are used in
further calculations.

Proposition 6 (See [M95, Propositions 11, 21 and 22]).
(i) If © is an A3-configuration then the highest homology group of its quotient com-
plex Hig|_240-1(2(0)) is one-dimensional.
(ii) If © is an A-configuration of one group of m = |0©| points of k > 3 colors, then
dim H,,,_3(2(©)) = (*71).
(iii) If © is any A-configuration, 8, ... 0%® are its groups, and k* > 3 is the number
of colors of the points of 6%, then

2 ki1
dim H,,,_3(E(0)) = H ( 5 )
i=1
The explicit formulas for the generators of these groups are omitted here. Given
an A’-configuration ©, denote the generator of H g|_s46_1(2(0)) by £(0).

Proposition 7 (See [M95, Propositions 12 and 24]).

(i) The dimension of any homology group of the quotient complex of an A3-configura-
tion © Hjg|_sxe—p(E(0)), p > 1 is equal to the number of partitions of © into p
subconfigurations ©1,...,0,. To each such partition the generator P~! ®j:1§(®j)
corresponds.

(ii) The dimension of any homology group H g _sxe-p(2(0©)), p > 1, of an A-
configuration © is equal to the sum over all partitions of © into p subconfigurations
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0O1,...,0, of dimensions of their highest homology groups:

P
dim Hio| ap0 p(E(0) = Y Y dimHe, 240, 1(E(0;))
©1,...,0, j=1
To each such partition the generators P! ®%_, &;(©;) correspond, where &;;(0;)
are the generators of Hg,|_age,-1(2(0;)).

3" stands for n-fold suspension here.
3.7.2. Calculation of the highest homology groups of J-blocks.

Proposition 8 (See [M95, Proposition 14]). The dimension of the highest closed
homology group of a J-block of an A-configuration J is equal to the dimension of
the highest homology group of Z(J). The dimension of the highest closed homology
group of the J-block of a one-group A-configuration J of n colors is equal to (”;1)
The dimension of the highest closed homology group of the J-block of an m-group

A-configuration Jwith groups of n',...,n™ colors is equal to H;nzl ("12_1). For
instance, the highest closed homology groups of J-blocks of A®-configurations are

one-dimensional.

Remark. The numbers k’ of colors in the proposition above might be less than
the total number & of colors of the ornament: 3 < k7 < k.

3.7.3. Calculation of the auziliary spectral sequences.

Proposition 9 (See [M95, Proposition 15]). For each two-group A3-configuration
J of complexity s the algebraic boundary of J-block E’ in agc)/ogcjl is zero; or
equally the differential di ¥ PP of the auxiliary spectral sequence (see proposition
5) vanishes on them.

The same is obvious for one-group J-blocks. The examples in [M95] show that
this is not true for J-blocks of ‘generic’ configurations with more than two groups.

On the other hand, the simplest three-group configurations (9 points split into
three groups three points each, the complexity equals to 6) form four different J-
blocks, and d, %99 = 0 for any r [M95, Appendix B]. Hence these J-blocks give
four-dimensional subgroup of E| 66 This is the only subgroup of E; PP, p < 6, for
which not enough base invariants of order p (namely, 1 instead of 4) are found yet.

4. FINITE ORDER INVARIANTS OF DOODLES, KNOTS AND LINKS VERSUS
INVARIANTS OF ORNAMENTS

This section is much less formal than the previous sections: otherwise it would
have been too long.



MERKOV

A 2%
=N
AN

FI1GURE 8. When the small loops are contracted, the quasidoodles
tend to doodles.

4.1. Invariants of doodles.

4.1.1. Elementary theory. The only refinement, needed to apply the elementary
theory of finite order invariants of ornaments to doodles, is the extension of the
definition of the characteristic numbers to selfintersection points. Namely, it should
be defined, which of the perturbations of a triple point, belonging to only one or
two components of the doodle, are positive, and which are negative. If = is a
selfintersection of the j-th component and the image of the I-th component passes
through z, then the positive quasidoodle is the one with greater value of ind; (z). If x
is a triple selfintersection of one component, the routing along the component in its
positive direction induces cyclic order of the edges of the little ‘vanishing’ triangle.
Routing the triangle in this order induces the direction of each edge, which may
coincide or not with its native direction (as a part of the oriented curve). Positive
quasidoodles are those with even number of edges, for which the two directions
coincide (see [A93]).

Of course, each invariant of ornaments is an invariant of doodles of the same
order. Many new finite order invariants of doodles are introduced in [M98] and
shown in section 5.2. They are enough to classify doodles.

4.1.2. Homological theory. The homological theory of doodles is more complicated
than the corresponding theory for ornaments. The discriminant is not closed in
the space of doodles (see fig. 8), so the Alexander duality cannot be applied. The
closure of the discriminant should be considered instead of the discriminant itself.
This means, that not only triple points, but also their degenerations — intersec-
tion points with vanishing first derivative of at least one component and points
with vanishing both first and second derivatives — are forbidden. The complexity
of each of these singularities is equal to 2, and the complexity of more complicated
singularities can be defined inductively. In terms of configurations this means, that
each point is marked as either simple, double or triple point, when there is no
restriction on the derivative at this point, the first derivative vanishes, or the first
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FIGURE 9. The configuration, generating the invariants of single-
component doodles of order 4: two interlaced groups of three points
each.

two derivatives vanish, respectively. As for ornaments, the complexity of a con-
figuration is one-half the codimension of the subspace of quasidoodles, respecting
this configuration. The resolution of the closure of the discriminant is defined ex-
actly like for ornaments. Again, the complexity defines the main filtration of the
resolution, and the number of geometrically distinct points of the configuration de-
fines the auxiliary filtration of each stratum. Then the main and auxiliary spectral
sequences can be written, and so on.

Only very first steps has been undertaken in this theory. In [V98] the invariants
of single-component doodles of orders < 4 are calculated. There are no invariants of
orders < 4, and the group of invariants of order 4 is one-dimensional and generated
by the configuration, shown in fig. 9. More interesting results are obtained in [V98§]
for triple point free immersions.

4.2. Invariants of knots and links. In this section ‘link’ means ‘link or knot’
unless knots are mentioned explicitly. The sense of prefix ‘quasi’, verb ‘respect’, the
regularity assumption and so on are the same as that for ornaments and doodles.

4.2.1. Elementary theory. Homotopy classification of links is similar to the classi-
fication of ornaments, and isotopy classification of knots and links is similar to the
classification of single- and multi-component doodles, respectively. The definitions
of configurations, their complexity, degeneration modes, characteristic numbers and
the order of invariants can be transferred to knots and links as follows. The defi-
nition of configurations, their signatures and degeneration modes is repeated word
by word with the number 3 (triple points are forbidden for ornaments and doo-
dles) changed to 2 (double points are forbidden). The complexity compl(A) of an
A-configuration is equal to one-third of the codimension of the space of quasilinks
respecting the configuration and remains equal to |A| — #A. The degree deg(A),
equal to the number of degeneration steps, becomes also equal to |A| — #A. The
characteristic numbers are defined by the same inductive procedure, but the rules,
which perturbation of a quasilink is positive, and which is negative, differ.
A-configurations with a! = a? = --- = a™ = 2 are called chord diagrams and
depicted traditionally by the set of chords, connecting the points within each of m
groups of the configuration. For chord diagrams and quasilinks respecting them the
positive and negative perturbations are defined in fig. 10. Then the characteristic
numbers are obviously independent of the order of marking the intersection points,
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FiGURE 10. Positive and negative local perturbations of a quasi-
knot (quasilink).

and may be thought about as the single characteristic number. The choice of pos-
itive and negative perturbations for quasiornaments with triple and other multiple
points is complicated. The tradition is to ignore the corresponding complicated con-
figurations at all, and define the order of invariants via their characteristic numbers
on chord diagrams only. This tradition is justified by the following theorem.

Theorem 9. The characteristic numbers, assigned by o finite order invariant of
links to reqular quasilinks with no triple points, determine the invariant.

It follows from the algorithm of calculation of the value of a finite order invariant,
given in [V90], and a simple fact, that for any generic homotopy in the space of
quasilinks, strictly respecting a chord diagram, no other singularities, than one
additional intersection point, appear at any instant.

Example. Very few finite order invariants of links can be presented as explicitly,
as invariants V; ;(3) of ornaments. Single-group and uniform invariants can be
defined for links by definitions 8 and 9. All single-group invariants are spanned
by linking numbers of pairs of components of the link. All uniform invariants are
polynomials in these linking numbers.

4.2.2. Homological theory. The resolution of the discriminant and its main and
auxiliary filtrations can be constructed for links exactly like for ornaments®. Like
in the case of doodles, in the problem of isotopic classification of links the discrim-
inant is not closed, and its closure should be considered instead. The boundary of
the discriminant is formed by non-immersions. The configurations, describing the
filtrations of the closure of the discriminant, besides groups of two or more points
may contain ‘double’ points (within or out of the groups), where the first derivative
vanishes.

Almost all necessary calculations of finite order invariants — much more than for
ornaments — were performed for (long) knots in [V90] and could be easily modified
for links. Avoiding technical details, exact formulas, numbers and theorems, and

n the original paper [V93] and in the consequent editions (e.g. [V94]) another resolution
of the discriminant is used, but both the resolutions are homotopy equivalent and the homotopy
equivalence preserves the filtrations. Moreover, for the sake of simplicity, finite order invariants
of long knots (embeddings R! — R3, coinciding with the identical embedding of a fixed line near
infinity), are considered in [V93] instead of knot invariants. It is easy to see, that the spaces of
invariants of knots, long knots, and knots in S3 are naturally isomorphic, but neither for higher
cohomology groups, nor for invariants of links this trick works.
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F1GURE 11. The support of an auxiliary spectral sequence for
knots or links.

‘rewriting the history’ — imagining the classical work [V90] written in more modern
technique — we describe the skeleton of these calculations.

Calculation of homology groups H,(Z(0)) of the quotient order complexes
of configurations. The exact answer was obtained in [V90] in equivalent terms
of homology of complexes of connected graphs. The follows features of the answer
matter:

e all reduced homology groups are trivial except the highest Hyege)—1(Z(0));
e it © is a chord diagram, then Hyeg0)—1(2(0)) = Z.

Calculation of closed homology groups of J-blocks and of the first term
G{ % P17 of the auxiliary spectral sequences. The support of the first term
of each auxiliary spectral sequence is ‘cut from below’ as shown in fig. 112. Only
its left-down cell G; ¥72%%¢ of G * P lies on the main diagonal, and only it can
give candidates to be invariants. This cell is the direct sum of the highest closed
homology groups of all J-blocks, generated by chord diagrams of complexity s (i.e.
diagrams of s chords). Each of the summands is isomorphic to Hs_1(E(J)) = Z,
and the generator of this subgroup can be identified with the chord diagram.

Calculation of the main diagonal G_* PP of the auxiliary spectral se-
quences, and of the main diagonal E; *° of the main spectral sequence.
Only the first differential d; *~***® can be non-trivial. It was calculated in [V90].
A chord diagram can degenerate in two ways: either two ends of two chords merge

2For long knots it consists of its bottom row only.
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FiGUuRE 12. A diagram of the ‘figure eight’ knot and its Gauss diagram.

together and a group of three point is formed, or (in the isotopy theory only) two
ends of the same chord merge together and a double point appears. The boundary
of the J-block, generated by a chord diagram with s chords, consists of J-blocks,
generated by diagrams with either s — 2 chords and one three-point group, or s — 1
chords and one double point, respectively. Each of these boundary blocks produce a
well-known 4-term or 1-term relation on the generators of G; *~>**%. The quotient
group is E; ©*.

Calculation of the main diagonal E__**® of the main spectral sequence.
All differentials are trivial and EZ** = E *° [K93].

This is the way, how the study of finite order invariants of links and knots was
reduced to the study of chord diagrams modulo 4-term or 1-term relations. An
alternative way, based on reverse auxiliary filtrations and leading to another for-
malism, is described in [V97].

5. DIAGRAM INVARIANTS

5.1. Gauss diagram formulas for knots and links (after [PV94]). Knots are
usually depicted by regular projections onto planes — diagrams — with over- and
underpasses marked. Each of the over- and underpasses can be marked with ‘+’
or ‘—’ sign according to fig. 10. A diagram is a generic immersion of a circle to a
plane with finitely many transversal selfintersections. Such an immersion is charac-
terized by its Gauss diagram: the circle with two pre-images of each selfintersection
connected with a chord. Each chord may be oriented from the upper branch to the
lower one and supplied with the sign defined above (see fig. 12 for an example).
An arrow diagram is an oriented circle with several arrows, connecting its points.
It is not necessarily a Gauss diagram of any curve. A representation p of an
arrow diagram X in another arrow diagram Y is a homotopy class of embeddings
X — Y, mapping the circle onto the circle, arrows to arrows, and preserving all
the orientations. For a representation p : X — G(¢) in a Gauss diagram of a knot
¢ we define its sign o(p) =[], o(u(z)) as the product over all arrows of X of the
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signs of their images. Denote by (X, G(¢)) the sum
(1) (X,Ge) = > ol

wX—G(¢)

A knot have many non-isomorphic Gauss diagrams, but sometimes the sum (1) or a
linear combination a; (X1, G(¢)) + - - -+ am{Xm, G(¢)) of such sums is an invariant
of knots. Then it is denoted by (a1 X1 + -+ + @ X, ¢).

Example. Let vs be the Vassiliev invariant of order 3, which takes values 0 on
the unknot, +1 on the right trefoil and —1 on the left trefoil. then

w0 = (YD + o).

The definitions of representations, their signs and (X,Y’) can be naturally trans-
ferred to based arrow diagrams (diagrams with a point marked on the circle, which
must be respected by representations, but does not affect their signs) and to multi-
component arrow diagrams (Gauss diagrams of links). Again, sometimes formula
(1) gives an invariant of links or of knots with marked point, independent on this
point.

Example. Let vy be the Vassiliev invariant of order 2, which takes values 0 on
the unknot 1 on the trefoil. then

0:(8) = (). 9).

Example. The linking number v; of a two-component oriented link ¢ (the unusual
notation should remind, that the linking number is a Vassiliev invariant of order 1)

satisfies the equality.
1= (OO

Remark. Based knots, based Gauss diagrams and based arrow diagrams may
be thought about as long knots and the relevant diagrams. Since classifications of
long knots and of usual compact knots are equivalent, marking a point on a knot
is harmless. On the contrary, based diagrams for links look suspicious.

The general relations between these diagram-generated invariants and finite or-
der invariants are given by the following theorems.

Theorem 10. If (a1 X1 + -+ + @mXm,-) s an invariant and each of the arrow
diagrams X1,. .., X, has no more than n arrows, then {1 X1 + -+ + @mXm,-) is
an invariant of order m.

Theorem 11 (See [GPV98]). Each finite order invariant of knots is generated by
(based) arrow diagrams (i.e. can be represented as (a1 X1 + -+ + amXm,))-

Remark. There is no analogue of theorem 11 for links yet.
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FI1GURE 13. A non-trivial 1-doodle and its arrow diagram

5.2. Gauss diagram formulas for doodles and ornaments. Arrow diagrams
and Gauss diagrams are applicable to curves, doodles and ornaments in the plane;
formula (1) can be written and sometimes it gives invariants. But, preserving the
general scheme, one needs to refine the definition of the orientations of the arrows,
since there are no overpasses and underpasses in the plane.

In [P94] based plane curves, their Gauss diagrams and based arrow diagrams are
considered. The complement of the oriented circle to the base point is an oriented
line, all the arrows are directed forward and then can be thought about as chords.
The sign of an arrow (chord) is defined like in fig. 10. It is +1 if the frame formed
by the two tangent vectors in the intersection point, first of which corresponds to
the arrowtail, is oriented positively, and —1 if negatively.

An alternative possibility is used in [M96, M98]. Each arrow of a Gauss diagram
is directed that way, which provides its sign to be +1 (see fig. 13 for an example). So
all the signs become +1 and can be ignored, and there is no more difference between
Gauss diagrams and arrow diagrams. But the representations are now allowed to
reverse the directions of arrows. The sign of a representation y is defined as the
product o(u) =[], o(u,x), where o(u,z) = +1 if p preserves the direction of
and —1 if reverts it. Such a diagram of the ornament or doodle ¢ will be denoted
by ADiag(¢).

Series of new finite order invariants of ornaments, which are hybridization of
Vassiliev invariants V; ;(3) and Polyak-Viro invariants (1), are found in [M96] for
ornaments and in [M98] for doodles. For instance, they prove nontriviality of
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FIGURE 14. Allowed local moves for ornaments. The upper index
indicates the number of the participating components, the lower
index indicates the number of participating intersection points or
its jump. Moves O%, are allowed for doodles, but moves O} are
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FicUurRE 15. Allowed moves of arrow diagrams. Unchanged ar-
rows and circles are not shown. The orientations of the circles are
arbitrary.
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I

ornaments shown in fig. 3 and fig. 5. For the sake of brevity we describe only the
invariants of doodles, which are simpler and give more results.

5.2.1. Reidemeister moves and minimal diagrams. Given a generic path in the
space of ornaments or doodles, almost all them along this path remain regular.
At a finite number of singular instants one of the local moves shown in fig. 14 (left
and middle pictures) occurs. Below we consider regular (quasi-) doodles only.

Let us define equivalence of arrow diagrams in a way, guaranteeing that the
diagrams of equivalent doodles are equivalent. The equivalence is defined by the
following allowed mowves, corresponding to allowed local moves of doodles, shown
in fig. 15 and 14 respectively.

A |: Deletion of an arrow of some of the circles, whose ends are neighboring

(i.e. are not separated by the ends of other arrows).

Al ;: The move opposite to AL ;.

Al ,: Annihilation of two arrows of some of the circles, if the beginning of each

arrow is a neighbor of the end of the other one.
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Al ,: The move opposite to AL,.

A?,: Annihilation of two arrows connecting two circles, if the beginning of each
arrow is a neighbor of the end of the other one.

A2 ,: The move opposite to A2 ,.

Like in fig. 14, the upper index of a move denotes the number of participating cir-
cles, and the lower one denotes the jump of the number of arrows. The equivalence
class of its arrow diagram is obviously an invariant of the doodle.

Definition 12. An arrow diagram is minimal, if no moves of types A* , are ap-
plicable to it.

5.2.2. Diagram-generated invariants. A family of invariants of doodles, produced
by formula (1), can be shown explicitly.

Theorem 12. If X is a minimal arrow diagram, then (X,-) is an invariant of
doodles.

Theorem 10 remains true for doodles without any change.

Example. (@, -} is an invariant of order 4. If ¢ is the 1-doodle shown in fig. 13
(oriented arbitrarily), then (@, ¢) = 8. Cf. the very end of section 4.1.2.

5.2.3. Generalized diagram-generated invariants. The idea is as follows. The arrow
diagram of a doodle may be also thought of as a 1-dimensional cell complex with
each 1-cell oriented and k oriented circles marked and numbered. There is a well-
known coupling between 1-cycles and 0-chains in the plane, generated by the index
indg(z) of a point with respect to a closed oriented curve. The doodle maps this
complex to the plane and allows to pull this coupling back to the diagram and use
it in formulas like (1).

To implement this idea we need to change the definition of ind, (-), given on page
104 to a more traditional one and extend it to piecewise-smooth curves and points
on them.

Definition 13. Let ¢ be a regular doodle, £ be a closed piecewise smooth curve,
£(S') C ¢(Ck). Then the index ind¢(z) of a point x € R? is the same as defined
on page 104 if x ¢ £(S'), and is the arithmetical mean of the indices of the points
of two or four adjacent areas of R?\ ¢(Cy) if z € £(S?).

The value of ind¢ (z) is quarter-integer in general.

Theorem 13. Let X be a minimal arrow diagram with arrows {z',...,z"}, and
E={&,...,&n} a set of 1-cycles in X. If F is a function of m x n variables v},
i=1,...,n, l=1,...,m, actually depending only on those v}, for which the cycle
& does not pass along the arrow x*, then the sum

(2)

(XEF),0)= Y o(@F(indgue) @), indgue,.) ($u(="))))

p: X —ADiag(¢)

over all representations X — ADiag(¢) is an invariant of doodles.
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The assertion of minimalness of the diagram X can be relaxed.

Theorem 14. Let X = {z',..., 2"} be an arrow diagram, = = {&;,...,&n} a set
of 1-cycles in X, and F' a function of m xn variablesv;, i =1,...,n,1=1,...,m,
such that

o F depends only on those v}, for which the cycle & does not pass along the
arrow z¥, and

e for any doodle ¢ and representation p : X — ADiag(¢) if ¢ o u maps some
arrow(s) to the vertex (both vertices) of a loop or segment, vanishing at a

move O* , then F(ind¢(u(§1))(¢(u(ml))), .. ,indd,(u(gm))(qﬁ(u(a:")))) =0.
Then the sum (2) is an invariant of doodles.

The proofs of theorems 12, 13 and 14 consist of direct check, that the proposed
sums are invariant with respect to Reidemeister moves of doodles (fig. 14).
The analogue of theorem 10 looks like this.

—

Theorem 15. If X is an arrow diagram with n arrows, = is a set of 1-cycles in
X, and F is a polynomial, then ((X,Z, F),-) in theorems 13 and 14 is an invariant
of order deg(F) + n.

5.2.4. Finite order invariants classify doodles. Theorems 14 and 15 give enough
finite order invariants to prove the following theorem.

Theorem 16. Non-equivalent k-doodles with < n intersection points in each can
be distinguished by invariants of order 6n(n + 1) + 2k(n +2) — 2+ n.

Remark. There is no analogue of theorem 16 for ornaments yet.
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