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ABSTRACT. An ultradistribution version of the edge of the wedge theorem will be
given in a simpler and easier form than Martineau’s theorem, but its proof is given u-
niquely using quite a different method from others ever known so far. As applications,
we give an ultradistribution version of the reflection principle to the unit polydisk
for analytic functions and to the unit ball for harmonic functions respectively.

1. Introduction

The edge of the wedge theorem was discovered by theoretical physicists in 1950’s
[V]. This theorem deals with a question about analytic continuation of holomorphic
functions of several complex variables, which arose in physics, in connection with
quantum field theory and dispersion relations.

The edge of the wedge theorem concerns the boundary values of holomorphic
functions. Bogoliubov’s version of this theorem can state roughly as follows:

Suppose T' is an open convex cone (with vertex at the origin) of R™, V is the
intersection of I' with some bounded open ball with center at zero, E is a nonempty
open set in R* and Wt = E +4iV, W~ = E —iV. Suppose further that f; and
f2 are holomorphic functions in W+ and W~ respectively and they have the same
boundary values:

(1.1) lim fi(z +iy) = lm fo(z +iy).
y—0 y—0
yev ye(—V)

Then f; and fs can be extended holomorphically to a complex neighborhood Q) of
W+ U EUW-™. (For precise statement see Theorem 3.1.)
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The limits in (1.1) were given the sense of uniform convergence at the earlier
stage, but it was recognized that the theorem is still valid if one takes the limits in
(1.1) in the sense of Schwartz distributions.

The purpose of this paper is to prove the case where the limits in (1.1) is given in
the sense of ultradistributions and give some applications to the complex function
theory. Actually, this result, so called the ultradistribution version, is a special
case of Martineau’s theorem [M], in which the limit in (1.1) is given in the sense of
hyperfunctions of Sato. But the hyperfunctional limit is not so easy to handle with
than the distributional limit or the ultradistributional limit. So we expect that the
ultradistribution version will be more convenient even if the sense of the limit was
somewhat weakened.

As for the proof of the ultradistribution version we use quite a different method
ever known so far. In fact, we use, so called, “the parametrix method”, which was
motivated by Komatsu [K1-K3].

In the final section, as an applications to the complex function theory we give
a reflection theorem for analytic functions in the polydisk with three equivalent
conditions. Besides, a parallel result for the harmonic functions is also given here.

2. Notations and preliminaries

We introduce briefly here the Gevrey class which is an intermediate space lying
between the set of infinitely differentiable functions and the set of real analytic
functions. See [K1] and [K2] for more details.

DEFINITION 2.1. Let s > 1, h > 0 and K be a compact subset of R”. Then we
denote by D}h the set of all infinitely differentiable functions ¢ in R™ with support
K satisfying that

aa
(2.1) sup 10%6 ()| < 0

zeK h‘a|a!3
a€eNy

where Ny is the set of nonnegative integers and |a| = a1+ - -+ay, 0% = ot --- 9%,
0; = % (j=1,2,...,n) for a = (a1,... ,ay).

Then Df{’h is a Banach space under the norm defined by

_ |0%¢()|
waoh = S STt
a€ENg

(2.2) ll¢|

and is naturally imbedded into D" for k > 0.

We denote by Dg) the set of all functions in D" for every h > 0. For an
open subset Q of R” we denote by D(*)(Q2) the set of all functions in Dg) for some
compact subset K of 2 and we call this Gevrey class. Topologies on these spaces
will not be considered here. In fact, s > 1 make it possible to construct cut off
functions and partitions of unity.
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A partial differential operator P(9) of infinite order is called a partial differential
operator of Gevrey order s if

P(0) =) aad* |aal <CL®/a¥, aeN

for some L > 0 and C > 0. Then it is easy to see that P(8)¢ € D{*)(Q) for every
¢ € D) (Q) and P(9)¢(2) is analytic in Q if ¢(z) is analytic there.

The following proposition is a bit variation of Lemma 2.3 in [K3], which is a key
to the proof of the main theorem later on.

PROPOSITION 2.2. For any L > 0, d; > dy > 0 and s > 1 there exist functions
v(z) € DL (Cy,), w(z) € D) (Cy,\Cy,), and a partial differential operator P(d)
of infinite order satisfying that

(2.4) PO)v(z) = 6(z) + w(z), z€R"
(2.5) P(0) = Z a0, lao| < CM*/al®, o eNZ,
a€NG

for some constants C > 0 and M, where Cq = {x € R" | 0 < z; < d, j =
1,2,...,n} for d > 0 and 6(z) is the Dirac measure in R™.

In the above, the function v(z) plays a role of parametrix of the partial differ-
ential operator P(9) of infinite order in some sense. This fact will give an idea to
the proof of the main theorem.

3. The edge of the wedge theorems

If T is an open cone in R", let V be the intersection of I" with some bounded
open ball with center at the origin of R”. Let E be a nonempty open set in R".
Define

Wt=E+iV, W~ =E—iV.

In fact, W is the set of all z = z + iy in C" such that z € E, y € V, where as
x+iy € W~ if and only if x € E and —y € V. Here the sets W1 and W~ are
“wedges” whose “edge” is E. (We identify E with E+ 0, this agrees with the usual
identification of a real number with a complex number whose imaginary part is 0.)

The “continuous version” of the edge of the wedge theorem can now be stated.

THEOREM 3.1. If E, W+, W~ are as above, then there is an open set Q in
C™ which contains W+ U E U W~ and which has the following property: Every
continuous complex function f on W+ UEUW ~ which is holomorphic in W+UW —
extends to a holomorphic function F' in ).

The continuity assumption above on f amounts to saying that lim f(z + iy)
exists, as y — 0, uniformly on each compact subset of E, i.e., f has continuous
boundary values on the edge E when E is approached from W+ and W—.
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It is interesting to weaken this assumption of uniform convergence, and in fact, it
turns out that the same conclusion still holds if it is only assumed that lim f(z +iy)
exists as y — 0 in the sense of distributions. That is to say

lim | f(z+iy)é(z)dx
E

Yy—0o0

exists for every infinitely differentiable function ¢ with compact support in E (see
[R)).

Here we are going to show that the same result can be obtained merely if the
limit exists only for much restricted class of test functions, so called Gevrey class
of some order.

Of course this result is also a special case of Martineau’s generalization saying
that it is true only if the hyperfunctional boundary values exist on E. But, it is not
so easy to use and apply the hyperfunctional boundary values. Thus the following
“ultradistribution version” will be more convenient. The proof will be done using
so called the parametrix, which was constructed in the previous section.

THEOREM 3.2. Let W+, W~ and E be as in Theorem 3.1. Then there exists
an open set Q) in C* which contains W U W™ and satisfies the following:
If f is holomorphic in W+ U W™ and there is a number s > 1 such that

(3.1) Jim i f(z +iy)p(z) dz

exists (as a complex number) for every ¢ € D) (E), then f has a holomorphic
extension F' in Q (Of course, y — 0 within V U (=V) in (3.1)).

Proof. Let Q and K be compact subsets in R” with Q C F and K so small that
Q + K C E. We first choose t > 0 with 1 < ¢t < s so that D»*(E) ¢ D®)(E) for
every h > 0. For each y € V U (=V) the equation

(3.2) Ay(¥) = /E F(E+in)p(e) de

defines a continuous linear functional on a Banach space D*"(Q + K). Since
supycvu(-v) [Ay(¥)] is finite, the uniform boundedness principle implies that there
exists a constant, not depending on y such that

Ay ()| < ClIY e+ Kon
For a fixed ¢o € DH"/2(K) C DH" we let 7,6 be a translation given by

(To¢0)(€) = do(§ — ), €Q.
Then the map T : Q — D**(Q + K) defined by T'(z) = 7,(¢) is continuous since

sup |0g'[#0(§ — ) — ¢o (€ — @o)]| 10¢' ¢o (§)]

<Clz— SUp —————
o hlalalt < Clo = aol sup o o aTary
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for every x and x¢ € @) and for some constant C' > 0. Since @ is compact it is clear
that

T(Q) = {760 € D*"(Q + K) |z € Q} = {¢o(- — 2) | z € Q}

is a compact subset of D" (Q+K). Then for every & > 0 there exist 1, z2,... , T, €
@ such that for every z € @
(3.4) lgo(- — @) = do(- — zj)|lt.Q+x,n <€/C

for at least one j depending on z, where C is the constant in (3.3).
On the other hand, by (3.1) the integral

/ F(@+ €+ iy)o(€) de = / F(E+ iy)do(€ — o) dE = Ay (7o)
FE E

converges to a complex number A(z) for each z € @, as y — 0.
Therefore, in view of (3.4) we have

2@~ [ fa+s+iman(e ds

< [A(z) — Ay(Trj¢0)| + |Ay(sz $o) — Ay(Tz¢0)|
< JA(®@) = Ay(70,;00)| + Cll¢o (- — 25) — do(- — 2)|[t,0+K,n
< |A(z) = Ay(1o,00)| + €

This implies that

(33) mas|A@w) — [ 1o+ e+ (e dg »0

asy — 0.

Now we choose, as in Proposition 2.2, functions v(z) € DH"2(Cy,), w(z) €
D (Cy,\Cy,) and a partial differential operator P(d) of infinite order satisfying
that

(3.6) PO)v(z) =6(z) + w(z), zeR"
(3.7) P@) = ) aad®, las <CM*/al, aeNy
aeNg

for some constants C > 0 and M > 0. Here we should choose the real number d
so that Cg, C K.
Define two functions g(z) and h(z) on (@ +¢V)U (Q — V) by

o() = /E fl@+ €+ iy)o(e) de
h(z) = L F(@ + € +iy)w(e) de
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Then these two functions are holomorphic in Q° + iV and Q° + i(—V) where Q°
denotes the interior of ). Also, (3.5) and the continuous version imply that there
exists an open set {0g in C" which contains Q°, which is independent of v and w,
and to which g(z) and h(z) extend holomorphically.

On the other hand, by (3.6) we have

(3-8) f(2) = P(8)g(2) — h(2)

Since the partial differential operator P(9) with (3.7) maps holomorphic functions
into holomorphic functions f(z) also extends holomorphically to €g. Then the

open set 2 = J Qg, Q compact cube, is the required one so that this completes
QEE
the proof.

As a corollary of Theorem 3.2 we obtain directly the following uniqueness theo-
rem:

COROLLARY 3.3. Suppose W = E + iV is as above, f(z) is holomorphic in
W and there exists s > 1 such that

(3.9 /E flz +iy)p(xz)dx — 0

as y — 0 within V, for every ¢ € D) (E). Then f = 0.

The reflection principle also can be stated in the sense of ultradistribution, in
which the main hypothesis is put only on the imaginary part of f.

THEOREM 3.4. Let E, W+, W~ and (0 be as in Theorem 3.2. Suppose that
f(2) = u(2) + iv(2) is holomorphic in W+, where u and v are real, and there is
s > 0 such that

lim [ v(z +iy)o(z) dx
y—=0 /g

for every ¢ € D¥)(E) (here y — 0 within V). Then f(z) has a holomorphic
extension F' in Q by the relation F(z) = f(z) in W~

4. Applications in the polydisk

We denote by U™ the unit polydisk in C"* which consists of all z = (21, 22, - - -, 2n)
€ C" with |z;] < 1for j =1,2,...,n, and by T™ the unit torus. To every f defined
on U™ we associate a function f(z) in R” + iR} where R} = {y € R" | y; > 0,
j=1,2,...,n}. This can be often written in the form

(@) = fr(w) or f(z +iy) = f(rw)

where z = (x17$27"' an) € Rn: Yy = (y17y27"' 7yn) € Rna r = (7‘1,7‘2,... ) Irn)
eR with0 <r; <1,j=12,...,n w= (w,ws,...,wy) with |w;| = 1,
i=12,...,nand rw = (riwy, rawa, . . . ,TrWy)-
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It is well known that the change of variables z — e?* maps all of C* into C* and
is locally one to one. Hence any extension of f will give rise to a corresponding
extension of f and vice versa.

Let E C T™ and 0 < § < 1. Then we denote by [E, §] the set of all rw such that
we€Fandd <r; <1,j=1,2,...,n. Under the change of variables given above,
[E, 8] corresponds to a set E 4 iV where V is an open cube in R? .

When E C T™ is open and f is defined in some [E, §] we say that f(z) has an
(s)-ultradistribution limit on E if

(4.1) lim / fr(w)p(w) dm, (w)

exists, for every ¢ € D)(E), asr; = 1 (1 < j < n). Here m,, denotes the Haar
measure (normalized Lebesgue measure) of 7.
Now for a ¢ € D*)(T™), we consider the Fourier series expansion:

(4.2) o(w) = z c(Yw?, weT"

YEZ™

where Z is the set of all integers and
(43) o) = [ w(w) dma(w).

If we denote w; = €', 6, € [0,27], j = 1,2,... ,n then for every h > 0 there is a
constant C' > 0 such that

el = || (@5 ")p(e?) dmo(e?)
< /T 105 9(e™) dma ()

<Chl¥al®, aeN, yezZ

Hence it follows that for every z > 0
(4.4) le()] < Ce exp(—eln|'/*), v eZ™

where |y| = |y1| + |72| + -+ - + || for r € Z™. Conversely, it is easy to see that if
C(v) satisfies (4.4) the function given by (4.2) belongs to D) (T™).

THEOREM 4.1 The following properties of a holomorphic function f(z) = Y aaz®
in U™ are equivalent: a€Ng
(i) There are constant h > 0 and C > 0 such that |a,| < Cexp[h|a|'/?], a € Np.
(ii) f has an (s)-ultradistribution limit on T™.
(iii) There is some sequence of r’s tending to (1,1,...,1) for which the integral

lim / Fr(w)p(w) dimy, (w)

converges for every ¢ € D) (E)
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Proof. For a function ¢ € D) (T™) let ¢(c) be Fourier coefficients of ¢ for each
a € Z™. If (i) is true then

/ fr(w)d(w) dmy (w Z anr® / @) dmy, (w Z aor®

a€eNG a€eNG
Thus if (i) holds then taking ¢ = 2h in (4.4) and p > s(n + 1) we have

!
[ Frwd@) dmaw) <€ 3 vl espl-hla ] <0 3 e

vlal
aeNG a€eNy

laf

converges as 7; — 1 (1 < j < n). Thus, (i) implies (ii) and (ii) trivially implies
(ii).

Now suppose that (i) is false. There are multi-indices (k) € Ny with |a(k)| >
k, k = 1,2,..., such that |ans)| > explkla(k)['/*], k € N. Taking Aj with
Araor) = lagm| (k € N) and putting

= w @ exp[—kla(k)|'/*]

k=1
then ¢(w) is an analytic function on T™, so that it belongs to D) (T™). But,

o o
Fr(w)$(w) dmp (w) =" aa(r | exp[—kla(k)[/*Jre®) > 3 pa®)
r k=1 k=1
which tends to oo as 7 — (1,1,...,1) through any sequence. This completes the
proof.

Now we are in a position to state the ultradistribution version of the Schwartz
reflection principle for the polydisk.
We let W™ be the set of all z = (21,22,...,2,) in C* such that |z;| > 1 for
1<j<n.
THEOREM 4.2. For every open E C T" there exists an open set ) in C* with
the following properties:
(i) Q contains UnUEUV™,
(i) if f(z) = u(z) +iv(z) is holomorphic in U™ and there exists s > 0 such that
v(z) has an (s)-ultradistribution limit 0 in E, then f(z) extends holomor-
phically to §Q.

Proof. Since the change of variables z — e?*, which is given at the beginning of
this section, maps C" into C™ and is locally one to one the proof of this theorem is
immediately obtained from Theorem 3.4.

Remark. In view of Theorem 4.1 the hypothesis about v(z) can be changed by
one of three equivalent conditions.

We now give parallel results for the harmonic functions. Actually, if we replace
U™ and T™ in the above argument by the unit ball B(0;1) = {z € R"||z| < 1}
and the sphere S"~! we obtain the parallel results, since we have also the change
of variables which maps B(0,1) onto the upper half space and which is conformal.
So, we state them without proof.
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THEOREM 4.3. Let E be an open subset of S®~!. If u(z) is harmonic in B(0;1)
and there exists s > 0 such that

lim [ u(|z|w)p(w)dw =0,

lz|=1JE

for every ¢ € D) (S™~1) then u(x) extends harmonically to B(0; 1)UEUR™\B(0;1).
Here we denote z = |z|w, w € S 1.

(B]
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