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ABSTRACT. In the context of P.J. Ryan’s problem on the equivalence of the
conditions R- R = 0 and R-S = 0 for hypersurfaces, we prove that there is in-
deed equivalence for hypersurfaces of semi-Euclidean spaces in any dimension,
under an additional curvature condition of semisymmetric type.

1. Introduction

A semi-Riemannian manifold (M, g), dim M > 3, is called semisymmetric [13]
if
(1) R-R=0,

holds on M. It is well known that the class of semisymmetric manifolds includes
the set of locally symmetric manifolds (VR = 0) as a proper subset.

A semi-Riemannian manifold (M, g), dim M > 3, is said to be Ricci-semisymmetric,
if the following condition is satisfied

2) R-S=0.

Again, the class of Ricci-semisymmetric manifolds includes the set of Ricci-sym-
metric manifolds (VS = 0) as a proper subset. It is clear that every semisymmetric
manifold is Ricci-semisymmetric. The converse statement is however not true, as
can be seen for instance from the material in [6].

Although the conditions (1) and (2) do not coincide for manifolds in general,
it is a long standing question whether the conditions R- R =0 and R-S = 0 are
equivalent for hypersurfaces of Euclidean spaces; cf. Problem P808 of Ryan [11]
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and references therein. Whereas for n = 3 this equivalence follows immediately,
for n > 3 we have the following results. It had been proved in [12] that (1)
and (2) are equivalent for hypersurfaces which have positive scalar curvature in a
Euclidean space E"*' n > 3. In [10] this result was generalized to hypersurfaces
of a Euclidean space E**1, n > 3, which have nonnegative scalar curvature and
also to hypersurfaces of constant scalar curvature. [10] also proves that (1) and
(2) coincide for hypersurfaces of Riemannian space forms with nonzero constant
sectional curvature. Further, in [9] it was proved that (1) and (2) are equivalent
for hypersurfaces of a Euclidean space E**!, n > 3, under the additional global
condition of completeness. In [2], it has been shown that the conditions (1) and
(2) are equivalent for hypersurfaces of the Euclidean space E°. In [1] a negative
answer to the above mentioned question was given for hypersurfaces of a Euclidean
space E"*! n > 5. Indeed, [1] gives an example of a hypersurface M® of E® which
satisfies R - S = 0, but which is not semisymmetric; this proves that both concepts
are not equivalent for hypersurfaces of Euclidean spaces in general.

Although the fundamental question has now been solved, a number of new
questions can be raised. Indeed, one may e.g. ask for a classification of the Ricci-
semisymmetric hypersurfaces of the Euclidean spaces which are not semisymmetric.
One can also consider the more general problem, whether (1) and (2) are equivalent
for hypersurfaces of a semi-Riemannian space form N"*!(c). For example, [3]
proves that there is indeed equivalence for all hypersurfaces of a 5-dimensional
semi-Riemannian space form, thus generalizing the result of [2]; in [4] it was shown
that (1) and (2) are equivalent for Lorentzian hypersurfaces of a Minkowski space
EPt!', n > 4. [4] also proves that (1) and (2) are equivalent for para-Kihler
hypersurfaces of a semi-Euclidean space E2™+1 m > 2.

In order to tackle such questions, it is necessary to pursue more insight into the
differences and look for an improved description and characterisation of the simi-
larities of such hypersurfaces; one possibility for doing so is searching for sufficient
conditions on hypersurfaces for both concepts (1) and (2) to be equivalent; at the
same time, this narrows down the set of hypersurfaces where differences can occur.
In this respect, [5] proved that (1) and (2) are equivalent for hypersurfaces of a
semi-Euclidean space E?! which satisfy the curvature condition of pseudosymmet-
ric type C' - C = LQ(g,C). In the present paper, we prove a similar result w.r.t. a
supplementary condition of semisymmetric type; more precisely:

THEOREM 1.1. For hypersurfaces of a semi-Euclidean space E?*1, n > 4, which
satisfy the curvature condition C'-R = 0, the conditions of semisymmetry and Ricci-
semisymmetry are equivalent.

2. Preliminaries

Let (M, g), n = dim M > 3, be a connected semi-Riemannian manifold of class
C® and let V be its Levi-Civita connection. We define on M the endomorphisms
XAaY,R(X,Y) and C(X,Y) by

(XA Y)Z =AY, 2)X — A(X, Z)Y,
R(X,Y)Z =VxVyZ-VyVxZ—-Vixv|Z,
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1
C(X,Y) = R(X,Y) — m(X Ay SY +SX A, Y — %X A, Y) :

where the Ricci operator S is defined by S(X,Y) = ¢(X,8Y), S is the Ricci
tensor, k the scalar curvature, A a symmetric (0,2)-tensor and X,Y,Z € E(M),
E(M) being the Lie algebra of vector fields of M. Next, we define the tensor G, the

Riemann-Christoffel curvature tensor R and the Weyl conformal curvature tensor
C of (M, g) by

G(X1, X2, X3, X4) = g((X1 Ag X2) X3, Xy),
R(X17X27X37X4) = g(R(X17X2)X37X4) )
C(X1, X, X3, Xy4) = g(C(X1, X2) X3, Xy) .

For a (0, k)-tensor T, k > 1, and a symmetric (0, 2)-tensor A, we define the (0, k+2)-
tensors R -T and Q(A,T) by

(R-T)(X1,..., X1 X,Y) = (R(X,Y) - T)(X1,... , Xx)

=-TRX,Y)X1,Xo,... ,Xp)— - —T(X1,..., Xp—1, R(X,Y)X}),
Q(AaT)(Xla 7Xk7X7Y) = ((X Aa Y) T)(X17 7Xk)
= _T((X Aa Y)X13X27-" 7Xk) - _T(X17 7Xk—17(X Aa Y)Xk) .

Putting in the above formulas T = R, T =S, T =C orT = G and A = g or
A = S, we obtain the tensors R- R, R-S, R-C, Q(g,R), Q(g,C), Q(S,R), and
Q(S, C) respectively. The tensors C'- R and C - C we define in the same way as the
tensor R - R; the tensor C' - S is defined in the same way as the tensor R -S. The
(0,2)-tensor S? is defined by S?(X,Y) = S(SX,Y), X,Y € E(M).

A semi-Riemannian manifold (M, g), n > 3, is said to be semisymmetric [13]
if R- R =0 holds on M. Curvature conditions involving tensors of the form R -T
only are called curvature conditions of semisymmetric type; other examples are e.g.
the Ricci-semisymmetric space (R - S = 0).

Manifolds satisfying curvature conditions involving tensors of both the form
R-T and Q(A,T) are called manifolds of pseudosymmetric type.

For example, we have semi-Riemannian manifolds (M, g), n > 4, satisfying at
every point the following condition

(%) the tensors C - R and Q(g, C) are linearly dependent;
the condition () is satisfied on a manifold (M, g) if and only if

3) C-R=LQ(y,C)

holds on Uc = {x € M | C # 0 at z}, where L is a function on Ug. Other
examples are the manifolds with pseudosymmetric Weyl tensor (C-C = LQ(g,C)),
and the Ricci-generalized pseudosymmetric manifolds (R- R = Q(S, R)). For more
information on the geometric motivation for the introduction of the concept of
pseudosymmetry and a survey of various properties, including also applications to
the general theory of relativity, we refer to the papers [6] and [14].
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3. Proof of the results

The proof of Theorem 3.1 follows from results established in Proposition 3.1
and Proposition 3.2 which we prove first. Whereas Theorem 3.1 applies to hyper-
surfaces of a semi-Euclidean space E**!, Proposition 3.1 and Proposition 3.2 are
more generally valid for semi-Riemannian manifolds subjected to suitable additional
conditions.

PROPOSITION 3.1. Let (M, g), n > 4, is a semi-Riemannian manifold satisfying
C-R=LQ(g,C) on Ug, then the following relation is satisfied on Ug:

(4) C-C=LQ(g,0).
Moreover, on the set Uc, we also have that
(5) c-5=0,
1

(6) R'S—mQ(QaD)a
where
(7) pD=g2-_"

a n—1

PRrROOF. The local components of the (0, 6)-tensor C - R are given by

(8) (C- R)nijkim = 9" (Rpijk Conim + Rnpjk Cqitm + RhipkCqjtm + RhijpCokim) -

Contracting (8) with g% we get

(9) 97(C - R)nijkim = (C - S)hhim -

Recall now that the local components of the (0, 6)-tensor Q(g, C) are given by
Q(9, O)nijkim = gniCmijk + 9 Chmjk + 9jtChimk + 9riChijm

(10) —9rmClijk — 9imChijk — 9imChitk — Grm Chijt -

Next, contracting the relation

(11) (C - R)nijkim = LQ(g, C)nijkim

with g% and using (9) and the identity ¢ Q(g, C)nijrim = 0 we get (5). Substituting

the expression for the components of the Weyl conformal curvature tensor

1
Chijk = Rhijr — p— (9nkSij + 9ijShk — 9njSik — 9ikShj)
K

C (n—1)(n-2)
into (5) gives (6). Further, we note that the following identity holds on M

(C - Ohijkim = (C - R)hrijim
1

v (9:5(C - S)nrtm — 9ik(C - S)njim + 9r (C - S)ijim — gni (C - S)ikim)

(12) (9nk9ij — 9njGik)
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where

(13) (C- R)nijkim =

1 K
R-R)piitim — —— Q(S, R)nsj s R)pi;
( )hmklm n—2 Q( ) )hz]klm + (n — 1)(7’L — 2) Q(g7 )hz]klm
1
o (9niAmijk — ghmAijk — JitAmnjk + 9imAtnjk
+ 9jtAmkhi — 9imAtkhi — 9kiAmjini + GemAtjni) ,

(14) Amijk = S Rpijk -
and S,P = ¢g"PSp,,. Applying in this (3) and (5), we obtain (4). This finishes the
proof of Proposition 3.1. O

Before proceeding, we derive a number of useful formulas which will find ap-
plication in the next propositions; we organize them into the following lemma.

LEMMA 3.1. For a semi-Riemannian manifold (M, g), n > 4, satisfying C-R =
LQ(g,C) on Ug, the following relations hold on Uc:

1
(15) Anigk + Ainjk = — (9rj Dik + 9iDuk — gniDij — gik Dhj) ,
(16) "™ Q(S, R)hijkim = —Aujk — & Ruijr + SuSi; — SjiSir
(17) "™ Q(g, C)nijkim = —(n — 1) Cuyji ,
1
(18) Bij = §™ Ryijs = ——— (Si; = 1 Sij) -

where D;; are the local components of the (0,2)-tensor D, defined by (7).
ProOF. From (6), by (14), we get (15). Summing (15) cyclically in h, j, k we
obtain
(19) Apijr + Ajikn + Agijn = 0.
Contracting now Q(S, R) hijkim and Q(g, C)nijrim with "™ and applying (19) we

obtain (16) and (17), respectively. Furthermore, contracting (15) with g"* and
using (14) and S™ = ¢"?S,?, we get (18). This finishes the proof of Lemma 3.1. O

PROPOSITION 3.2. Let (M, g),n > 4, be a semi-Riemannian manifold satisfying
on the set Ug the conditions C - R = L Q(g,C) and

(20) R-R-Q(S,R)=L2Q(9,0),

where L and L, are functions on Ug, then the following relation holds on U¢:
(21) R-S=0.

Moreover, on the set Uc, we also have that

K

(22) (@) §*=

S, () tr(s?)=

n—1 n—1"



108 DABROWSKA, DEFEVER, DESZCZ, AND KOWALCZYK

PROOF. Applying in (13) the relations (3) and (20) we obtain

n—3 K
— =g QS B)nijeim = ) Q(9, R)nijkim + (L2 — L) Q(g, Ohijkim
1
- m(ghlAmijk - ghmAlijk - gilAmhjk + gimAlhjk
(23) + 9j1Amkhi — 9imAtkhi — Ikt Amjhi + emAijni) -

Contracting (23) with g"™ and using (16) and (17) we find
(n —3) Aijr — (n — 1) Aggjr = —(n — 2) & Ry, — (n — 1)(n — 2) (L2 — L) Cyiji
(24) + (n = 3) (S Sij — SjSix) + %(glksij — 9;1Sik) + g1 Bir, — g Bij
whence
(n = 3) (Aijr + Aije) — 2(n — 2) Aiijrk = —(n — 2)k Ruiji
— (n—2)(n—1)(La — L) Ciigi + (n — 3) (SSij — S;uSu)
(25) + %(glksij — giuSik) + 9j1 Bir, — g Bij -
This, in view of (15), turns into
—2(n — 2) Aiiji = —Z—:; Q(9; D)iijk — (n — 2)k Ruiji
—(n—=2)(n —1)(L2 — L) Cijk, + (n — 3) (St Sij — Sj1Sik)
(26) + ﬁ (9irSij — gj1Sik) + 95 Bir. — gniBij -
From this, after symmetrization in [, 1, it follows that
——2Q5,D) =~ Q6,9 + Q. B),

which, by making use of (7) and (18) reduces to Q(g,D) = 0. Now (15) reduces
o (21). Further, from (21) we get S™R,;;, = S};. Comparing this with (18) we
get (22)(a), and consequently also (22)(b). This finishes the proof of Proposition
3.2. O

THEOREM 3.1. Let M be a Ricci-semisymmetric hypersurface of a semi-Euclid-
ean space EMt1 n > 4. If C - R = LQ(g,C) is satisfied on M then M is a
semisymmetric manifold.

ProOF. It is well known that every hypersurface M of a semi-Riemannian
space of constant curvature N™"t1(c), n > 4, fulfils a particular curvature condition
of pseudosymmetric type [8]. More precisely,

(27) R-R—Q(&R)=—ﬁk@(g,0)

holds on M, where & is the scalar of the ambient space. When the ambient space
is a semi-Euclidean space EP™!, n > 4, then the scalar curvature & = 0 and the

2
1
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hypersurface M fulfils
(28) R-R=Q(S,R).

First, we deal now with the question on the subset Uc where C # 0. Apply-
ing Proposition 3.1 learns that the condition C - C = LQ(g,C) holds on Ug. In
view of (28), the assumptions of Proposition 3.2 are also satisfied; hence U¢ is a
Ricci-semisymmetric manifold. Following Theorem 4.1 of [5] a Ricci-semisymmetric
hypersurface of a semi-Euclidean space which satisfies C - C = LQ(g,C) is in fact
semisymmetric; this establishes the result on the set Ug.

Next, we can remove the restriction C' # 0. Indeed, it is well known that on
every semi-Riemannian manifold (M,g), n > 4, the conditions: R- R = 0 and
R - S = 0 are equivalent on the set where the Weyl conformal curvature vanishes.
This finishes the proof of Theorem 3.1. O

We now strengthen Theorem 3.1 by proving that the function L necessarilly has
to vanish in the given circumstances. For the technicalities of the next proposition,
we work on the set U = {z € M | C # 0 and S # 0}; it will work out that this will
not cause obstructions for the conclusion.

ProprosITION 3.3. Let (M,g), n > 4, be a hypersurface of a semi-Euclidean
space EPT! satisfying C- R = L Q(g,C) on Ug, then the function L vanishes on U.

Proor. Consider a point z € U where the function L is nonzero. We note
that (3) and (5) can be presented in the following form

(29) (C - R)nijrim = LQ(9, C)hijkim »

(30) S,F Chiji + S;¥Cphjr =0,
respectively. From (29) we get

(C - R)nijripS,k + (C - R)nijkmpS;” = L (Q(9, Cnijrip St + Q9 C)nijkmpS;”) ,
which by making use of (8) and (30), reduces to
Q9 O)nijhtp Sy + Q(, C)nijrmpS;” = 0.
From this, by a application of (5) and (10), we get
ShiCmijk + SitChmjk + SjiChimk + SkiChijm

+ ShmClijk + SimChijk + SjmChitk + SkemChiji

— 9mS, " Cpijk + 9imS;" Conjk — 9imS;* Cpkni + 9kmS;* Cpjni
(31) = 9n1Sp, Cpijk + Git Sy Conjk — 9jtSm, Cpkhi + Gkt Sy Cpjni = 0.
Further, from (30) it follows that
(32)  SPUChp =0 and  S,Cpiji + S,*Cpian + S Cping = 0.
Furthermore, using (12) and (22), we get

1
(33) Sh”Cm-jk = ShpRpijk - m (ShkSz'j - ShjSz'k) .
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Contracting now (31) with ¢g'* and applying (30) and (32) we find
K

(34) Sm Cpijk = - Cmij »
which, by transvection with S, and making use of (22), yields
(35) K Sh”C’m-jk =0.
From (34) and (35) it follows that
(36) k=0,
holds at z. Now (33) reduces to
1
Using (18) and (22), and in view of (36), we get
1 tr(S?)

” n—2S” n(n—2)g” 0
Since L, = 0, and in view of (36), (26) therefore reduces to

n—1 n—3
(38) Alijrk = 5 LClijk — =2 (Sij Stk — S15Sik) -

Next, comparing the right sides of (37) and (38) we obtain
(39) ShkSij — ShjSik = —('I’L — 2) L Chijk .
From this we obtain

Sij (R - S)hkim + Sur(R - S)ijim — Sik(R - S)hjim — Shj(R - S)ikim
=—(n—-2)L(R-C)nijkim »

which, by making use of (4) and (21), implies L2Q(g,C) = 0. Since Q(g,C) is
nonzero at x, the last equality implies that L = 0. This finishes the proof of
Proposition 3.3. O

Since at points where C = 0, R- S = 0 is always equivalent to R - R = 0, and
since at points where S = 0, C'- R = 0 implies R - R = 0, Theorem 3.1 together
with Proposition 3.3 give

THEOREM 3.2. Let M be a Ricci-semisymmetric hypersurface of a semi-Euclid-
ean space EM1 n > 4. If C - R = 0 is satisfied on M then M is a semisymmetric
manifold.

Since semisymmetry always implies Ricci-semisymmetry, this leads to Theorem
1.1 as formulated in the Introduction.

Finally, we present an example of a semisymmetric hypersurface satisfying
C-R=0.
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ExAMPLE 3.1. Let (M, g) be a semi-Riemannian manifold defined in Example
4.1 of [7]. This manifold satisfies the following conditions: rankS = 1, k = 0,
S?2 =0,R-R=0and C(SX;, X5, X3,X4) = 0, for any vector fields X,..., Xy
on M. From these relations it follows immediately R(SX1, X2, X3, X4) = 0, i.e.
the tensor A with the local components Ap;j, defined by (14), is a zero tensor.
Further, the manifold (M, g) can be realized as a hypersurface in a semi-Euclidean
space ([7], Example 5.1). Thus we have on M: R-R = Q(S,R) = 0. Now we see
that (13) reduces on M to C'- R = 0.
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