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CRAIG INTERPOLATION THEOREM
FOR CLASSICAL PROPOSITIONAL LOGIC
WITH SOME PROBABILITY OPERATORS

Nebojsa Ikodinovié

Communicated by Zarko Mijajlovié

ABSTRACT. Raskovi¢ [3] introduced a conservative extension of classical proposition-
al logic with some probability operators and proved corresponding completeness and
decidability theorem. We prove the Robinson’s consistency and Craig interpolation
for this logic.

1. Introduction

Let I be a set of propositional letters and For(I) the set of propositional
formulas whose propositional variables are from I. A standard model of classical
propositional logic is every map p : I — 2 where 2 is the two-element Boolean
algebra. If we replace the Boolean algebra 2 by arbitrary Boolean algebra B =
(B,+,-,—,0,1), we shall call the B-interpretation of classical propositional logic. In
this case, the logical connectives V, A, - are interpreted by corresponding operations
of Boolean algebra B, and the propositional letters by the elements of the Boolean
algebra B, i.e. every map f : I — B is an interpretation of the set I in Boolean
algebra B. Then, it is natural to extend the map f : I — B to map f : For(I) » B
inductively as follows:

f(=p) = =f(p)
flevy) = flp)+ f(¥)
Flony) = flp)- f(¥).

For T C For(I) let Br(I) = (Br(I),+,,—,0,1) be the Lindenbaum-Tarski
algebra of the theory T. It easy to see that, if I} C I, T1 C For(l;) and T» C
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For(I,) such that T is a conservative extension of 77, then Br, is embedded in By,
and Br, can be understood as a subalgebra of Br, and [¢], and [¢]y, are identified
for all ¢ € For(I;). The map f : For(I) — Br, f(p) = [¢]|y for ¢ € For(I) is Br-
interpretation of the set For(I).

2. LP logic

We study a conservative extension of classical propositional logic.

The symbols of LP logic are the so—called connectives: A (and), - (negation),
the list of probability operators P>, for each s € [0,1] N @, and finally an infinite
sequence of propositional letters I.

The set Fopp(I) of all classical propositional formulas is defined inductively
as the smallest set containing the propositional letters and closed under the usual
formation rules: if ¢ and v are classical propositional formulas, then - and @ A
are classical propositional formulas. The set Forfp(I) of all probability formulas is
the smallest set such that:

—if p € For{p(I) and s € [0,1]N Q, then P> ;¢ is probability formula;

— if ¢ and ¥ are probability formulas, then =¢ and ¢ A ¥ are also probability
formulas.

Let Forp(I) = For{p(I) U Forfp(I). We introduce the abbreviations V, =,
&, in the usual way. It is convenient the following abbreviations in LP:

o Py for =Pss0,

o Pcyp for Ps1_s5—p,

o P, for ~P<sep,

o P_,p for P>y APsg0.

The axioms for LP logic are every instance of classical propositional tautology
and the following ones:

(1) P>op, for all p € For&p(I);

(2) P<,p = P, for all € For‘p(I) and s,7 € [0,1] N Q such that s > r;

(3) P<sip = P<yp for all ¢ € For{p(I) and s € [0,1] N Q;

(4) (P>rp A Postp A P>1(m@ V 7)) = Psmin{1,r45)(p V 9) for all p, ¢ €
ForgP(I)a T8 € [07 1] N Q7

(5) (P<rip A Pest)) = Pepys(p V 4) for all @,4p € Forfp(I), s,r € [0,1]NQ
such that r + s < 1.

The rules of inference are:

(R1) From & and & = U, infer ¥, &, ¥ € Forlp(I) or &, € Forlp(I).

(R2) From ¢, infer P>y, ¢ € For{p(I).

(R3) From & = Ps,_q ¢, for every k > 1/s, infer & = P> 0, & € Forip(I),
¢ € Forfp(I)

A proof of a formula & in a theory T of logic LP is every countable sequence
by, P, ..., of formulas such that each formula &;,i < w, is either an axiom, or
a formula from 7', or it is derived by inference rules from preceding members of
the sequence. If there exists a proof of @ in T, then & is called a theorem of T,
and in this case we use the notation T Fyp @. A theory T is consistent if there is
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a formula ¢ € Fors(I) such that T¥ipy and a formula & € Forip(I) such that
TFrp®. A theory T is a maximal consistent iff T is a consistent theory and:

—for all p € Forgp(I), if TH1py, then p € T and P> 19 € T}

—for all $ € Forip(I), € T or -& € T.

Having in mind the deducibles relation just defined, by induction on the length
of the corresponding derivation, we can prove that the Deduction Theorem holds.

THEOREM 1. For every consistent theory T' C Foryp(I), there exists a maxi-
mal consistent theory extending T

For a proof of Theorem see [3].

A Boolean model for LP logic is every triple (B, f, u), where B is a Boolean
algebra, f is a B-interpretation of the set of classical propositional formulas, and p
is a (finitely-additive probability) measure on B. For any formula ¢ € Forpp(I), we
define the relation (B, f, ) = @, by induction on the complexity of the formulas &,
as follows:

— if & € For"p(I), then (B, f,p) = & iff f(®) =1,

—if & = P50, ¢ € For{p(I), s € [0,1]N Q, then (B, f, ) k= & iff u(f(¢)) > s,

—if = WAO,¥,0 € For{p(I), then (B,f,n) = & iff (B,f,p) = ¥ and
(B, f,p) F O,

—if @ = =0, ¥ € For{p(I), then (B, f,p) = @ iff not (B, f, ) = ©.

We simply write = @ and say that @ is valid iff for every Boolean model
(IB7f7/‘L)7 (B7f7ﬂ) |= ¢'

THEOREM 2 (Soundness Theorem). Any set T' of formulas of LP logic which
has a model is consistent.

Proof. As usual, to prove the soundness theorem it suffices to show that each
axiom is valid and that the rules of inference preserve validity.

A classical propositional tautology is obviously valid.

Let & and ¥ be either both classical or both probability formulas such that
é and ¢ = T are valid. If we suppose that [= ¥, then there is a Boolean model
(B, f, ) such that (B, f,p) £ ¥ and (B, f,p) =& = ¥, s0 (B, f, ) £ &, which is
a contradiction by validity of @.

If ¢ € Forjp(I) is valid then for any Boolean model (B, f,u), f(v) = 1,

(Ba fa IU/) |: P21<p
Finally, the rule (3) preserves validity since the set of reals is Archimedean

field. O

THEOREM 3 (Completeness Theorem). Every consistent theory T C Forrp(I)
has a Boolean model.

Proof. Let T be a consistent theory. By the Theorem 1. there is a maximal
consistent extension T of T. Let T° be the set of all classical consequences of T,
Br- the Lindenbaum algebra of T¢ and let f : For{p(I) — Bre be defined by
F (@) = [p]re. Let p: Bye — [0,1] be defined by:

p([plye) = sup{r € [0,1]NQ : P>,p € T}, ¢ € Forfp.
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We shall show that u is a measure on By..
First, let us prove that p is a well-defined. It is suffices to prove that for all

v, Y € Forfp, if [¢]pe < [¥]ge, then p([p]lr.) < p([Y]g.). Really, if []re < [¥]7,

then T° I (¢ = 9) and consequently TrypP>1(p = ). Thus, if Ps>sp € T, then
Pogy € T. So, u(l¢ly.) < u([¥le).

It is easy to see that u(1) = 1.

Finally, we show that u([¢]re) + p([¥]re) = pllelre + [¥]1e), for all ,¢ €
For{p such that [¢]g. - [/]z. = 0. Let u([¢]g.) = 7, p([¥]z.) = 5. Then r +s < 1.
Let us suppose that r > 0 and s > 0. By monotonicity, for all rational numbers r’ €
[0,7) and s’ € [0, s) we have P>/, P>yt € T. Thus, we have Ps,qo(pVep) €T.
So, 7+ s < sup{t € [0,1]NQ : P>¢(p V) € T}. If r + s = 1, then obviously the
statement holds. Let us suppose that r+s < 1. If r + s < tg = sup{t € [0,1] N Q :
Psi(¢ V ¢) € T}, then for all rational numbers t' € (r + s,tp), Psp(p V¢) € T.
Let us choose rational numbers " > r and s > s such that —P>,»¢p, Pcro,
=Psgith, Pcgrtp € T and r'" + 5" =t' < 1. Thus, we have P<,»¢ € T and we have
Pepiygn (@ V), = Pspiyen (o V1), 7Psy (p V1p) € T which is a contradiction. So,
w([plpe) + p([¥]re) = p((lpe + [¢]pe). Similarly, for r =0 and s = 0. So, p is a
measure on Bre.

It is easy to see that (Bre, fre,u) is a Boolean model of the theory 7. O

The Boolean model of T constructed in the way described above is called a
canonical model.

THEOREM 4. Let T C Forrp be a maximal consistent theory. Then y : Bre —
[0, 1] defined by

p([@lz.) = sup{r € [0,1]NQ : P>, € T}, ¢ € For{p
is a unique measure on Br., such that (Bre, fr-,u) is a Boolean model of T.

3. LP(n) logic

The logic LP(n) is a restriction of the logic LP. Let n > 0 be a natural number
and S, ={0,1/n,...,(n —1)/n,1}.

The symbols of LP(n) logic are the usual symbols for classical proposition-
al connectives: A(and), —(negation), an infinite set I of propositional letters and
the probability operator P>, for all s € S,. Let Forfp(n)(I ) = Fortp(I) and
let Forfp(n)(l ) be the set of all probability formulas & of LP such that for ev-
ery probability operator P>,, which occurs in ¢, s € S,. Let Forpp,)(I) =
Forfp(n)(I) U Forfp(n)(I). Note that |J,,cy Forrp(n)(I) = Forrp(I).

For the axioms of LP(n) we take all the axioms for LP, which are adopted
to the language of LP(n). The rules of inference of LP(n) are the same as for LP
except (R3) which is replaced by a new rule of inference:

(R3,) From & = P, i/pp, infer & = Ps,p, & € Forfpg,(I),
Y E Forfp(n)(l), s € Sp.
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The notations of derivations from hypotheses in LP(n) are defined as usual.
Since the infinite rule of inference is omitted, this system is finite, and so sequences
of formulas in proofs are finite.

We introduce the notion of Boolean model for LP(n) in the same way as for
LP logic with exception that the range of a measure on a Boolean algebra is S,,.
The satisfaction is defined naturally. Soundness is easy to prove. The crucial step
of the proof of the Completeness Theorem is the definition of measure p in the
canonical model of consistent theory T' C Fory,p(y,) (I) and we have:

w([¢]pe) = max{r € Sp : P>, € T}

where T¢ is the set of all classical consequence of T and T is the maximal consistent
extension of 7.

Note that a probability formula ® = ®(py,...,p,) is valid, in LP or LP(n),
if for all measure p : B(p1,...,pn) = [0,1] or o : B(p1,...,pn) — Sn, we have
(Bp1,---,0n), 1) E @, where B(py,...,pn) is a Lindenbaum algebra of formulas
built up using only p1,...,pn, i.e. B(p1,...,pn) is a free Boolean algebra generated
by p1,...,pn. Similarly, a probability formula ® = ®(py, ..., p,) is satisfiable, in LP
or LP(n), if for same measure p : B(py,...,pn) = [0,1] or p: B(p1,-..,0n) = Sn,
we have (B(pl yree 5pn)a f’ /J/) IZ ®.

Let ® € ForfP and let py,...,p, be a list of all propositional letters from ®.
An atom a of ® is a formula of the form +py,...,+p,, where £p; is either p;, or
—p;- It is easy to see that ® is equivalent, in LP and also in LP(n) to a formula

m ks
DNF(®)=\/ A\ P.;SNDF, (p,...,pn)
i=1j=1
where P; ; is either P>, or P<,,; and SNDF; ;(p1,...,pn) is a classical formula in

the complete disjunctive normal form, i.e., as a disjunction of atoms. & is satisfiable
iff at least one disjunct from DN F(®) is satisfiable. Let the measure of the atom
a; be denoted by z;. We use an expression of the form a € SNDF; ;(p1,...,pn)
to denote that the atom a appears in SNDF; ;(p1,...,pn). So, a disjunct D; =

/\f:1 P;;SNDF;, ;(p1,---,pn) from DNF(®) is satisfiable iff the following system
of linear equation and inequalities is satisfiable:

Sa=
i=1

z; >0, fori=1,...,2"

ZT’U if Pi,j = PZTij
> z
)

a1€SNDF; ;(p1,.Pn <rij if P;j = Py
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THEOREM 5. Let & € For{p. Then, the following holds: |=;p® iff = p(,)®
for all n € N such that ® € Forfp(n).

Proof. For every disjunct D;,i =1,...,k from DNF(=®) let S(i),i =1,...,k
be the corresponding system of linear equalities and inequalities with rational co-
efficients.

If =1 p®, then no S(i),i = 1,...,k has solution in R, and hence no S(i),i =
1,...,k has solution in Sy, for any n € N. So, [y p(, ® for all n € N, such that
®c Forfp(n).

On the other side, if |=LP(n)<I)> then no S(i),7 = 1, ...,k have solution in S,
for all n € N such that ® € Forfp(n), and hence no S(i),i = 1,..., k has solution
in Q. Since, the coefficients of S(i),i = 1,...,k are rationals, no S(i),i = 1,...,k
has solution in R. So, |1 p®. O

4. Interpolation Theorem
In order to prove the next theorem, we use the following statement.

THEOREM 6. Let B; and By be two subalgebras of B and u, and ps measures
on B, and By respectively. If pq(x) = po(z) for all x € By N Bs, then there exists
a measure [ on B which is a common extension of both p; and ps.

The proof is similar to the proof of Theorem 3.6.1. in [2].

THEOREM 7. Let Ty C Forpp(l1) and Ty C Forpp(l3) be consistent theories
such that Ty N Ty C Forpp(Il; N I3) is a maximal consistent theory. If TY and T§
are conservative extensions of (T} NTy)¢, and (Ty UT)" a conservative extension
of T{ and Ty, then Ty UT5 is consistent theory.

Proof. Let (]BTlc , fre, p1) and (IBST;, frg, u2) be Boolean models of T} and T»
respectively. We shall show that there exists a measure p on B(r, uz,)c such that
(B, uta)e» f(1yuTs)< s 1) is a Boolean model of Ty UTh. Since (Ty UTh)¢ is a conser-
vative extension of T7 and T3, Bre and By are subalgebras of B(r, uz,)e. Similarly,
B(7, 1)< is subalgebra of Bre and Br;. So,

(Bry n1n)e, fernm)e s i1 B(rints)e)
and

(Bery n1n)e> frnt)e s 2| B(rynts)©)
are Boolean models of 77 N T». Since, T3 N T3 is a maximal consistent theory,
we have 1 ([¢]) = p2([¢)]) for all ¢ € ForSp(I; N L). By Theorem 6. there is
a measure f on Bg, yg,)e which is a common extension of y; and p2, and hence
(B¢, uts)e, fimut)e, 1) is a Boolean model of Ty UT>. O

THEOREM 8. Let Ty C Forpp(n)(f1) and Ty C Forpp(n)(I2) be consistent the-

ories such that Ty NT> C Forpp(yn) (I1 N I,) is a maximal consistent theory. If Tf
and T§ are conservative extensions of (Ty NTy)", and (T, UTs)° is a conservative
extension of T{ and Ty, then Th U T> is consistent theory in LP(n).

The proof is similar to the proof of previous theorem.
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THEOREM 9 (Craig Interpolation Theorem). If ® is a probability formula,
let T'(®) be the set of all propositional letters which occur in ®. If ® and ¥
are probability formulas such that ® is not a contradiction, ¥ is not valid and
= p(® = ), then for arbitrary large natural number n € N, such that ®,¥ €
Forfp(n), there is a probability formula © such that = p(, ® = 0, F1p(,)© = ¥
and ['(©) CT'(®) NT ().

Proof. Let ng € N be the natural number such that ®, ¥ € Forfp(no). Since ®
is not a contradiction there exists n; € N and a measure y; : B(I'(®)) — Sy, such
that (B(T'(®)), f, u1) = ®. Similarly, since ¥ is not a valid there exists np € N and
a measure pp : B(I'(¥)) — Sy, such that (B(I'(¥)), f,u2) E ~¥. Let n € N be a
natural number such that Sp,, Sn,, Sn, C Sp and aq,. .., asr be list of all the basic
conjunction on propositional letters from I'(®) N I'(¥) in same fixed order. Let

A={(ular),...,pulagr)) : p: BL(®)) = S, (BL'(®)), f,n) E @}
and

B = {(t(ar),-.., plaz)) : p: BO(W)) > S,, (BT (W), f,p) =~}

Since [=1p(® = ¥) and hence |y p(,\(® = ¥), by previous theorem we have
ANB =10. Let ©, = /\fi1 Py, 14)ai, where m;[A] is the set of i—th coordinates of the
k
2% —tuples in A and P, [4]Gi = VsEm[A] P_.q;. Let O = /\f:1 Py, Bjai, where m;[B]
is the set of i—th coordinates of the 2¥ —tuples in B and Pr.pai = Vsem (B] P_,a;.
Then |Frp,)® = ©1 and Fyp,)m¥ = O and so [yp(, 02 = ¥. Since,
ANB= @ we have |=LP(n) @1 = _|®2. O
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