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ABSTRACT. We investigate so-called BLAS problem for entire function-
s whose logarithm of maximum moduli is regularly varying in the sense
of Karamata or de Haan . We also give an interesting application on
Hadamard-type convolutions with regularly varying sequences of arbitrary
index.

Introduction

For a given entire function f(z) := Y o, arz® we define, as usual, its par-
tial sums Sy, (2) := Y <, arz® and maximum moduli My (r) := max |f(2)| ;= =
|f(rei®0)| = |f(z0)|- The order p of f(z) is p := limsup,_, ., loglog M(r)/logr.

In [5], we gave a notion of best A-approximating (BLAS) partial sums for
functions analytic on the unit disc. This can be easily reformulated for entire
functions (analytic on the whole complex plane) as:

If there is an integer-valued function n := n(r,\) = oo (r = o0) such that

Sn(T,)\) (ZO) _ { 0(1)7 0<AL 1;
flz) L 140(1), A>1;

we call Sy, ) (20) the best A-approximating partial sum (BLAS).

In this way, we are going to find the “shortest” partial sum which is well
approximating f(z) at the point(s) of maximal growth, for r sufficiently large.

Note that analogous to (I) is the relation between moduli of BLAS and My (r).

An important role in measuring the growth of entire functions of order p > 0
have the class R, consisting of regularly varying functions in the sense of Karamata;
i.e., g(z) € R, can be represented in the form g(z) = z*I(x), z > 0, p € R, where
p is the index of regular variation and I(z) € Ry is a slowly varying function i.e.,
positive, measurable and satisfying (tx)/l(z) ~ 1, Vt > 0 (x — 00).

(r - o) (I)
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An immediate consequence which we are going to use in the sequel is
9(z) € R, <= g(tx)/g9(x) ~t°, ¥Vt>0. (z— o0) (0.1)

For further information on regular variation we recomend [1] and [4]. In order
to study entire functions of order zero we shall consider a subclass of Ry i.e. de
Haan’s class II;,

h(tx) — h(z)
lz)

where [(z) € Ry is called the auxiliary function and we can take h(z) = I(z) +
[ 1) /tdt [1, pp. 160-165].

We are going to apply our BLAS results to entire functions with non-negative
coefficients i.e., to determine the asymptotic behavior of Hadamard-type convo-
lutions Ty (r) := Y n%l,anr™, where (I,) are slowly varying sequences; therefore
improving our results from [6].

hiz) €I} < ~logt, Vt>0; (z— o) (0.2)

Results
Let f(2), Mf(r), n(r, ), p, 2o be defined as above. Then we have the following
THEOREM 1. Iflog My(r) € R,, p > 0, and

n(r,A) ~ Aplog My (r). (r = o) (1)
Then
Sn(r)(20) { ex(r, ), 0<A<I;
(20) Sl 14 e, N, A>1,
with
L — og A— o .
les(r, A)| < me(r) (AMogA=At1+o(l)) "y =12  (r o o0).

Proof. An implementation of Cauchy’s Integral formula gives

1 n+1 -8, (20), int C,
o [ s L gy [, &)
27 Jo w — 2o f(z0) — Sn(z0), 20 €intC.
Let the contour C be a circle w = rA/?¢i®. Since
>lw|, 0<A<],
|zo| =7
<l|w], A>1;
from (2) we get
1 27 f(TAl/p€i¢) )\*H/Pei"(¢0*¢) —i@"(iig) , 0< A< 1,
T % 0 f(rei¢0) )\I/Pei(¢*¢0) — ]_ - 1 _ Sn(ZO) A > 1 (3)
f(z0) ’ )
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Taking into account that |f(29)| = M (r), a simple estimation of I gives

|I| < i /27r |f(r)\1/Pei¢)| e*%logk d¢
~ 27 Jo |f(Z0)| |)\1/Pei(¢*¢o) _ 1|

ie.,
M (rAl/Py e~ losX
Myg(r) [AVe —1]

Since, for sufficiently large r (cf. (0.1)),

log M (rA'/?)

log M
ogMs(r) € R, = log M;(r)

= \(1+0(1)),
putting in (4), n = n(r,A) = Aplog M¢(r)(1 + o(1)), we finally obtain

I < exp(—log M¢(r)(AlogA = A+ 1+0(1)) (r— o0) (5)

1
N7 1]
For A > 0, A # 1, A = Alog A — XA + 1 is strictly positive, hence the assertion of
Theorem 1 follows.

In the case of entire functions of order zero, we shall treat the subclass whose
logarithm of the maximum modulus belongs to de Haan’s class II; with unbounded
auxilary function [ € Ry.

Taking in (2) the contour C : |w| = Ar; A > 0, XA # 1, the estimation (4) can
be rewritten as

7] < ] i 1 exp (l(r) log Mf(/\rl)(;) log My (r) _ nlog )\) (6)

Putting there n = n(r,\) = M(r)(1 4+ o(1)) (r — o0) and taking into account the
definition (0.2), (6) yields

1l < Mlﬁ exp(=1(r) (A — 1) log A + o(1)))  (r = o).

Since A — (A — 1) log X is strictly positive for A > 0, A # 1, we obtain
THEOREM 2. If log My(r) € II; with auxilary function Ry 3 l(r) = oo (r —
00), and n(r,\) ~ A(r) (r = o), then
Sn(r,)\)(Z()) _ { /111(7“,)\), 0<Akl1
f(z0) 14 pa(rA), A>1
with

1

il € e OO =12 00),

It is easy now to derive, from the Theorems above, various estimation formulae
for the moduli of BLAS. We need the following in the sequel:
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PROPOSITION 1. Under the conditions of the Theorem 1, for any o > 1, p > 0
and nq(r,0) ~ eoplog My (r) (r - o0),

S ansg| < OMy(r) s,

n>na(r,o)

Proof. Applying Theorem 1 with A > 1, we get

D anzf = f(20) = Sn(x)(20) = = f(20)ex(r, V),

n>n(7")‘)
i.e., since |f(z0)| = My(r),
1

‘ Z anzé" = My (r)|ex(r,A)| < me(r)/\(log A-1)+o(1)
n>n(r,\)

Putting there A\ = eo, n(r,\) = n1(r,o) we obtain the proof with C = C(p,0) =
1/(eq)/P—1.

Now, we give some applications of our BLAS results. For a given entire function
f(r) := 3, a,r™ with non-negative coefficients, there is a classical problem of es-
timating asymptotic behavior of Hadamard-type convolutions T¢(r) := ) cpanr”™
(r — o0).

In the well-known book [3, pp. 20,197,198) this is solved in the case

cni=n% a€R; logf(r)~ar, a,p>0 (r— 00).

In [6] we obtain a result for regularly varying ¢, := n®l,, @ € R, ¢o := 1 and
log f(r) € SR,, p > 0.
Here [,, are slowly varying sequences [2], for example:

logn

Cc . . .
m), exp(log®2n); a,b€ER; 0<c<1;

log? 2n, log’(log3n), exp (

and SR, C R, is the class of smoothly varying functions [1, pp. 44-47].
Using Theorem 1 and Lemmas 1 and 2 below, we are going to prove the next:

THEOREM 3. Let an entire function f(r) := )", a,r", an > 0, of order p > 0,
satisfy log f(r) € R,. Then

Tf (’I") = Z Cnlnr™ ~ Pa Cllog (7)] f(T‘) (’I“ - OO),
n

for any regularly varying sequence (c,,) of arbitrary index a € R.

For the proof we need two lemmas.
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LEMMA 1. Define

S(A,r) = Z anr®, anp >0, neN,
n<An(r)

where n(r) increases to infinity with r, and an operator T acting on S':

TS\ r) := Z cnanr™, n€N,
n<An(r)

where (¢,)nen is a regularly varying sequence of index o € R.

If there exist g,g1,92 : RT — RT; by : (0,1) = Rt; by : (1,00) = RT, and

logn(r)

lim =0, i=1,2;
r—00 gi(r)
such that
S(A,r) { O(e~n1Ma(r), 0<A<1,
? — Ae R+, N ,
g(r) A+ 0(e M) A > 1, (r — o)
then ot
n(r)])s <AL,
TS(\r) _ { o(Cn(r)) o o0).
9(r) (A +0(1), A>1;

In this form Lemma 1 is proved in [7] as the Theorem A.
LEMMA 2. For any regularly varying sequence (c,,) of index a € R,

Chaz] ~ (Al ~ A (T — 00).

This is a well-known fact [1, pp. 49-53].
Now, we are able to prove cited Theorem 3.
First of all, note that the condition a,, > 0 implies that on the circle |z| = r we

have
=] ane"| < S anlel = Y aur” = 1),

Hence, M¢(r) = f(r), 20 = r and, comparing the assertions from Theorem 1 and
Lemma 1, we see that the conditions of Lemma 1 are satisfied with

g(r) := f(r); n(r) :=plog f(r); g1(r) = ga(r) :=log f(r); A:=1.

Write, in terms of Theorem 1,

Ts(r) == Z Cnlnr™ = Z Cnanr™ + Z Cnanr™ = Sy + Ss.
n

n<n(r,2e2r) n>n(r,2e2f)
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Applying Lemma 1 with A := 2e2” > 1 and Lemma 2, we obtain

S1 ~ ¢lprog s F (1) ~ pCliog s f (1), a €R (1 — o). (3.1)

For estimating S, note that (0.1) implies 2° log f(r) ~ log f(2r), (r — o),
i.e., using Proposition 1 with n(r,2e2?) = ny(2r,2), we get

Sy < s%p(Z_"cn) Z an(2r)" =0(1) Z an(2r)"

n>n(r,2e2P) n>n1(2r,2)
= O(1)e (Zelos2+o(N 1B L) — o(cy w0 f(r))  (r = 00).
This, along with (3.1) yields the proof of Theorem 3.
In the same manner, using Theorem 2 and Lemmas 1 and 2 we can prove

THEOREM 4. Under the conditions of Theorem 2, for a given entire function
f of order zero,

ZZanr", an >0, n€N,

we have

= Z Cnant™ ~ ey f(r)  (r— 00),
n

for any regularly varying sequence (c,,) of arbitrary index.

Finally, we shall give two examples. To illustrate the results from Theorems 1
and 3, we shall consider the Mittag-Leffler function F,(z),

o0 Z”
Z) —nz:%m, s> 0.

Then, for z = re’?,

z0=r1, MEg(r) ZI"1+ns 5> 0,
n=0
and (cf. [1, p. 329]),
E;(r) ~ (l/s)e’"l/s; log Ey(r) ~r'/* (1 — 0).
Hence F(z) is an entire function of order 1/s and Theorem 1 gives:
PROPOSITION 2. For the Mittag-Leffler function Es(z),
n(r,\) ~(\/s)rt/s, s>0, (r— o)

and
’IL T E =0 E l o1 0 )\ 1

Sn(r.2) (r) ~ Es(r) for A>1 (r = 00).

Similarly, applying Theorem 3 and the properties of E4(r) mentioned above,
we obtain
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PROPOSITION 3. For any slowly varying sequence ({£,) and arbitrary a € R,
o~ (1)8)0t e/ s g(pt/ %) exp(rt/® r— 00).
§:F1+ns (1/s) (M) exp(rt/?) (= 00)

For the next example we take the function Q(z) of zero order,

Q@) == H(1+ )—1+Z 7 q—l) = b

n=1

(Euler, cf. [8, p. 32])
For z = re'?, we have
o0
w=r; Mo(r)=Q(r)=[[(A+r/q".
n=1
That log Q(r) belongs to de Haan’s class II; follows from Hardy’s result (cf. [9,
p. 171]),

logQ(r) = %(logr—%loqu%—O(l) (r — o).

Therefore, for ¢t > 0,
logt
log Q(ir) ~log Q(r) ~ 1> logr

ie.,
log Q(tr) —log Q(r)
logr/logg
According to (0.2), log Q(r) € II; and we can take for the auxiliary function

l(r)—wg—qER

Applying Theorem 2 we obtain

—logt, Vt>0 (r— )

PROPOSITION 4. For the function Q(r) defined above,

A
n(r,A) ~~ (@ ~)logr  (r — o),

and

,r.n
Sy (r) =1+ Z — ——~ =0(Q(r)) for <A<
)¢ —1)--(¢" - 1)
n<n(r)\)

Spiray ~ Q(r) for A>1 (r = 00).

Theorem 4 also gives

PROPOSITION 5. For any slowly varying sequence (£,), n € N and arbitrary
real a we have (when r — 00).

s nafn n 1 a
r)=1+ Z (q=1D)(@2=1)---(¢" — l)r “ log%q tog”r tllog ) Q(r)
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