# BEST $\lambda$ -APPROXIMATION FOR ENTIRE FUNCTIONS OF FINITE ORDER

## Slavko Simić

Communicated by Stevan Pilipović

ABSTRACT. We investigate so-called BLAS problem for entire functions whose logarithm of maximum moduli is regularly varying in the sense of Karamata or de Haan . We also give an interesting application on Hadamard-type convolutions with regularly varying sequences of arbitrary index.

#### Introduction

For a given entire function  $f(z) := \sum_{k=0}^{\infty} a_k z^k$  we define, as usual, its partial sums  $S_n(z) := \sum_{k \le n} a_k z^k$  and maximum moduli  $M_f(r) := \max |f(z)|_{|z|=r} = |f(re^{i\phi_0})| = |f(z_0)|$ . The order  $\rho$  of f(z) is  $\rho := \limsup_{r \to \infty} \log \log M_f(r)/\log r$ .

In [5], we gave a notion of best  $\lambda$ -approximating (BLAS) partial sums for functions analytic on the unit disc. This can be easily reformulated for entire functions (analytic on the whole complex plane) as:

If there is an integer-valued function  $n := n(r, \lambda) \to \infty$   $(r \to \infty)$  such that

$$\frac{S_{n(r,\lambda)}(z_0)}{f(z_0)} = \begin{cases} o(1), & 0 < \lambda < 1; \\ 1 + o(1), & \lambda > 1; \end{cases} (r \to \infty)$$
 (I)

we call  $S_{n(r,\lambda)}(z_0)$  the best  $\lambda$ -approximating partial sum (BLAS).

In this way, we are going to find the "shortest" partial sum which is well approximating f(z) at the point(s) of maximal growth, for r sufficiently large.

Note that analogous to (I) is the relation between moduli of BLAS and  $M_f(r)$ .

An important role in measuring the growth of entire functions of order  $\rho > 0$  have the class  $R_{\rho}$  consisting of regularly varying functions in the sense of Karamata; i.e.,  $g(x) \in R_{\rho}$  can be represented in the form  $g(x) = x^{\rho}l(x)$ , x > 0,  $\rho \in R$ , where  $\rho$  is the index of regular variation and  $l(x) \in R_0$  is a slowly varying function i.e., positive, measurable and satisfying  $l(tx)/l(x) \sim 1$ ,  $\forall t > 0$   $(x \to \infty)$ .

 $<sup>1991\ \</sup>textit{Mathematics Subject Classification}.\ \text{Primary 26A12},\ 30\text{D20}.$ 

An immediate consequence which we are going to use in the sequel is

$$g(x) \in R_{\varrho} \iff g(tx)/g(x) \sim t^{\varrho}, \ \forall t > 0. \ (x \to \infty)$$
 (0.1)

For further information on regular variation we recomend [1] and [4]. In order to study entire functions of order zero we shall consider a subclass of  $R_0$  i.e. de Haan's class  $\Pi_l$ ,

$$h(x) \in \Pi_l \iff \frac{h(tx) - h(x)}{l(x)} \sim \log t, \quad \forall t > 0; \quad (x \to \infty)$$
 (0.2)

where  $l(x) \in R_0$  is called the auxiliary function and we can take  $h(x) = l(x) + \int_1^x l(t)/t dt$  [1, pp. 160–165].

We are going to apply our BLAS results to entire functions with non-negative coefficients i.e., to determine the asymptotic behavior of Hadamard-type convolutions  $T_f(r) := \sum n^{\alpha} l_n a_n r^n$ , where  $(l_n)$  are slowly varying sequences; therefore improving our results from [6].

#### Results

Let f(z),  $M_f(r)$ ,  $n(r, \lambda)$ ,  $\rho$ ,  $z_0$  be defined as above. Then we have the following Theorem 1. If  $\log M_f(r) \in R_\rho$ ,  $\rho > 0$ , and

$$n(r,\lambda) \sim \lambda \rho \log M_f(r). \qquad (r \to \infty)$$
 (1)

Then

$$\frac{S_{n(r,\lambda)}(z_0)}{(z_0)} = \left\{ \begin{array}{ll} \epsilon_1(r,\lambda), & 0 < \lambda < 1; \\ 1 + \epsilon_2(r,\lambda), & \lambda > 1, \end{array} \right.$$

with

$$|\epsilon_i(r,\lambda)| \le \frac{1}{|\lambda^{1/\rho} - 1|} M_f(r)^{-(\lambda \log \lambda - \lambda + 1 + o(1))}, \ i = 1, 2 \quad (r \to \infty).$$

*Proof.* An implementation of Cauchy's Integral formula gives

$$\frac{1}{2\pi i} \int_{C} f(w) \frac{(z_0/w)^{n+1}}{w - z_0} dw = \begin{cases} -S_n(z_0), & z_0 \notin \text{int } C, \\ f(z_0) - S_n(z_0), & z_0 \in \text{int } C. \end{cases}$$
 (2)

Let the contour C be a circle  $w = r\lambda^{1/\rho}e^{i\phi}$ . Since

$$|z_0| = r \begin{cases} > |w|, & 0 < \lambda < 1, \\ < |w|, & \lambda > 1; \end{cases}$$

from (2) we get

$$I := \frac{1}{2\pi} \int_0^{2\pi} \frac{f(r\lambda^{1/\rho}e^{i\phi})}{f(re^{i\phi_0})} \frac{\lambda^{-n/\rho}e^{in(\phi_0 - \phi)}}{\lambda^{1/\rho}e^{i(\phi - \phi_0)} - 1} d\phi = \begin{cases} -\frac{S_n(z_0)}{f(z_0)}, & 0 < \lambda < 1, \\ 1 - \frac{S_n(z_0)}{f(z_0)}, & \lambda > 1. \end{cases}$$
(3)

Taking into account that  $|f(z_0)| = M_f(r)$ , a simple estimation of I gives

$$|I| \leq \frac{1}{2\pi} \int_0^{2\pi} \frac{|f(r\lambda^{1/\rho} e^{i\phi})|}{|f(z_0)|} \frac{e^{-\frac{n}{\rho}\log \lambda}}{|\lambda^{1/\rho} e^{i(\phi-\phi_0)}-1|} \, d\phi$$

i.e.,

$$|I| \le \frac{M_f(r\lambda^{1/\rho})}{M_f(r)} \frac{e^{-\frac{n}{\rho}\log\lambda}}{|\lambda^{1/\rho} - 1|} \tag{4}$$

Since, for sufficiently large r (cf. (0.1)),

$$\log M_f(r) \in R_\rho \Rightarrow \frac{\log M_f(r\lambda^{1/\rho})}{\log M_f(r)} = \lambda(1 + o(1)),$$

putting in (4),  $n = n(r, \lambda) = \lambda \rho \log M_f(r) (1 + o(1))$ , we finally obtain

$$|I| \le \frac{1}{|\lambda^{1/\rho} - 1|} \exp(-\log M_f(r)(\lambda \log \lambda - \lambda + 1 + o(1))) \qquad (r \to \infty)$$
 (5)

For  $\lambda > 0$ ,  $\lambda \neq 1$ ,  $\lambda \mapsto \lambda \log \lambda - \lambda + 1$  is strictly positive, hence the assertion of Theorem 1 follows.

In the case of entire functions of order zero, we shall treat the subclass whose logarithm of the maximum modulus belongs to de Haan's class  $\Pi_l$  with unbounded auxiliary function  $l \in R_0$ .

Taking in (2) the contour  $C: |w| = \lambda r$ ;  $\lambda > 0$ ,  $\lambda \neq 1$ , the estimation (4) can be rewritten as

$$|I| \le \frac{1}{|\lambda - 1|} \exp\left(l(r) \frac{\log M_f(\lambda r) - \log M_f(r)}{l(r)} - n \log \lambda\right) \tag{6}$$

Putting there  $n = n(r, \lambda) = \lambda l(r)(1 + o(1))$   $(r \to \infty)$  and taking into account the definition (0.2), (6) yields

$$|I| \le \frac{1}{|\lambda - 1|} \exp(-l(r)((\lambda - 1)\log \lambda + o(1))) \quad (r \to \infty).$$

Since  $\lambda \mapsto (\lambda - 1) \log \lambda$  is strictly positive for  $\lambda > 0$ ,  $\lambda \neq 1$ , we obtain

THEOREM 2. If  $\log M_f(r) \in \Pi_l$  with auxiliary function  $R_0 \ni l(r) \to \infty$   $(r \to \infty)$ , and  $n(r, \lambda) \sim \lambda l(r)$   $(r \to \infty)$ , then

$$\frac{S_{n(r,\lambda)}(z_0)}{f(z_0)} = \begin{cases} \mu_1(r,\lambda), & 0 < \lambda < 1\\ 1 + \mu_2(r,\lambda), & \lambda > 1 \end{cases}$$

with

$$|\mu_i| \le \frac{1}{|\lambda - 1|} e^{-l(r)((\lambda - 1)\log \lambda + o(1))}, \quad i = 1, 2; \quad (r \to \infty).$$

It is easy now to derive, from the Theorems above, various estimation formulae for the moduli of BLAS. We need the following in the sequel:

PROPOSITION 1. Under the conditions of the Theorem 1, for any  $\sigma > 1$ ,  $\rho > 0$  and  $n_1(r, \sigma) \sim e\sigma\rho\log M_f(r)$   $(r \to \infty)$ ,

$$\left| \sum_{n > n_1(r,\sigma)} a_n z_0^n \right| < C M_f(r)^{-e\sigma \log \sigma + o(1)}.$$

*Proof.* Applying Theorem 1 with  $\lambda > 1$ , we get

$$\sum_{n>n(r,\lambda)} a_n z_0^n = f(z_0) - S_{n(r,\lambda)}(z_0) = -f(z_0)\epsilon_2(r,\lambda),$$

i.e., since  $|f(z_0)| = M_f(r)$ ,

$$\Big|\sum_{n>n(r,\lambda)}a_nz_0^n\Big|=M_f(r)|\epsilon_2(r,\lambda)|\leq \frac{1}{\lambda^{1/\rho}-1}M_f(r)^{\lambda(\log\lambda-1)+o(1)}.$$

Putting there  $\lambda = e\sigma$ ,  $n(r, \lambda) = n_1(r, \sigma)$  we obtain the proof with  $C = C(\rho, \sigma) = 1/(e\sigma)^{1/\rho-1}$ .

Now, we give some applications of our BLAS results. For a given entire function  $f(r) := \sum_n a_n r^n$  with non-negative coefficients, there is a classical problem of estimating asymptotic behavior of Hadamard-type convolutions  $T_f(r) := \sum_n c_n a_n r^n$   $(r \to \infty)$ .

In the well-known book [3, pp. 20, 197, 198) this is solved in the case

$$c_n := n^{\alpha}, \ \alpha \in \mathbb{R}; \ \log f(r) \sim ar^{\rho}, \ a, \rho > 0 \ (r \to \infty).$$

In [6] we obtain a result for regularly varying  $c_n := n^{\alpha} l_n$ ,  $\alpha \in \mathbb{R}$ ,  $c_0 := 1$  and  $\log f(r) \in SR_{\rho}$ ,  $\rho > 0$ .

Here  $l_n$  are slowly varying sequences [2], for example:

$$\log^a 2n, \quad \log^b(\log 3n), \quad \exp\Big(\frac{\log n}{\log\log 3n}\Big), \quad \exp(\log^c 2n); \quad a, b \in R; \ 0 < c < 1;$$

and  $SR_{\rho} \subset R_{\rho}$  is the class of smoothly varying functions [1, pp. 44–47].

Using Theorem 1 and Lemmas 1 and 2 below, we are going to prove the next:

Theorem 3. Let an entire function  $f(r):=\sum_n a_n r^n,\ a_n\geq 0,$  of order  $\rho>0,$  satisfy  $\log f(r)\in R_\rho.$  Then

$$T_f(r) := \sum_n c_n a_n r^n \sim \rho^{\alpha} c_{[\log f(r)]} f(r) \quad (r \to \infty),$$

for any regularly varying sequence  $(c_n)$  of arbitrary index  $\alpha \in R$ .

For the proof we need two lemmas.

Lemma 1. Define

$$S(\lambda, r) := \sum_{n < \lambda n(r)} a_n r^n, \quad a_n \ge 0, \quad n \in N,$$

where n(r) increases to infinity with r, and an operator T acting on S:

$$TS(\lambda, r) := \sum_{n \le \lambda n(r)} c_n a_n r^n, \quad n \in N,$$

where  $(c_n)_{n\in\mathbb{N}}$  is a regularly varying sequence of index  $\alpha\in R$ .

If there exist  $g, g_1, g_2 : R^+ \to R^+$ ;  $b_1 : (0,1) \to R^+$ ;  $b_2 : (1,\infty) \to R^+$ , and

$$\lim_{r\to\infty}\frac{\log n(r)}{g_i(r)}=0, \quad i=1,2;$$

such that

$$\frac{S(\lambda, r)}{g(r)} = \begin{cases} O(e^{-b_1(\lambda)g_1(r)}), & 0 < \lambda < 1, \\ A + O(e^{-b_2(\lambda)g_2(r)}), & \lambda > 1, \end{cases} A \in \mathbb{R}^+, (r \to \infty),$$

then

$$\frac{TS(\lambda,r)}{g(r)} = \begin{cases} o(c_{[n(r)]}), & 0 < \lambda < 1, \\ c_{[n(r)]}(A + o(1)), & \lambda > 1; \end{cases} (r \to \infty).$$

In this form Lemma 1 is proved in [7] as the Theorem A.

LEMMA 2. For any regularly varying sequence  $(c_n)$  of index  $\alpha \in R$ ,

$$c_{[\lambda x]} \sim c_{[\lambda[x]]} \sim \lambda^{\alpha} c_{[x]} \quad (x \to \infty).$$

This is a well-known fact [1, pp. 49–53].

Now, we are able to prove cited Theorem 3.

First of all, note that the condition  $a_n \ge 0$  implies that on the circle |z| = r we have

$$|f(z)| = \left|\sum_n a_n z^n\right| \le \sum_n a_n |z|^n = \sum_n a_n r^n = f(r).$$

Hence,  $M_f(r) = f(r)$ ,  $z_0 = r$  and, comparing the assertions from Theorem 1 and Lemma 1, we see that the conditions of Lemma 1 are satisfied with

$$g(r) := f(r); \ n(r) := \rho \log f(r); \ g_1(r) = g_2(r) := \log f(r); \ A := 1.$$

Write, in terms of Theorem 1,

$$T_f(r) := \sum_n c_n a_n r^n = \sum_{n \le n(r, 2e2^\rho)} c_n a_n r^n + \sum_{n > n(r, 2e2^\rho)} c_n a_n r^n = S_1 + S_2.$$

Applying Lemma 1 with  $\lambda := 2e2^{\rho} > 1$  and Lemma 2, we obtain

$$S_1 \sim c_{\lceil \rho \log f(r) \rceil} f(r) \sim \rho^{\alpha} c_{\lceil \log f(r) \rceil} f(r), \quad \alpha \in R \quad (r \to \infty).$$
 (3.1)

For estimating  $S_2$ , note that (0.1) implies  $2^{\rho} \log f(r) \sim \log f(2r)$ ,  $(r \to \infty)$ , i.e., using Proposition 1 with  $n(r, 2e2^{\rho}) = n_1(2r, 2)$ , we get

$$S_2 \le \sup_n (2^{-n}c_n) \sum_{n>n(r,2e2^\rho)} a_n (2r)^n = O(1) \sum_{n>n_1(2r,2)} a_n (2r)^n$$
$$= O(1)e^{-(2e\log 2 + o(1))\log f(2r)} = o(c_{\lceil \log f(r) \rceil} f(r)) \quad (r \to \infty).$$

This, along with (3.1) yields the proof of Theorem 3.

In the same manner, using Theorem 2 and Lemmas 1 and 2 we can prove

Theorem 4. Under the conditions of Theorem 2, for a given entire function f of order zero,

$$f(r) := \sum_{n} a_n r^n, \quad a_n \ge 0, \ n \in \mathbb{N},$$

we have

$$T_f(r) := \sum_n c_n a_n r^n \sim c_{[l(r)]} f(r) \quad (r \to \infty),$$

for any regularly varying sequence  $(c_n)$  of arbitrary index.

Finally, we shall give two examples. To illustrate the results from Theorems 1 and 3, we shall consider the Mittag-Leffler function  $E_s(z)$ ,

$$E_s(z) := \sum_{n=0}^{\infty} \frac{z^n}{\Gamma(1+ns)}, \quad s > 0.$$

Then, for  $z = re^{i\phi}$ ,

$$z_0 = r, \quad M_E(r) = E_s(r) = \sum_{n=0}^{\infty} \frac{r^n}{\Gamma(1+ns)}, \quad s > 0,$$

and (cf. [1, p. 329]),

$$E_s(r) \sim (1/s)e^{r^{1/s}}; \quad \log E_s(r) \sim r^{1/s} \quad (r \to \infty).$$

Hence  $E_s(z)$  is an entire function of order 1/s and Theorem 1 gives:

PROPOSITION 2. For the Mittag-Leffler function  $E_s(z)$ ,

$$n(r,\lambda) \sim (\lambda/s)r^{1/s}, \quad s > 0, \quad (r \to \infty)$$

and

$$S_{n(r,\lambda)}(r) := \sum_{n \le n(r,\lambda)} \frac{r^n}{\Gamma(1+ns)} = o(E_s(r)) \quad for \quad 0 < \lambda < 1;$$
  
$$S_{n(r,\lambda)}(r) \sim E_s(r) \quad for \quad \lambda > 1 \quad (r \to \infty).$$

Similarly, applying Theorem 3 and the properties of  $E_s(r)$  mentioned above, we obtain

Proposition 3. For any slowly varying sequence  $(\ell_n)$  and arbitrary  $\alpha \in R$ ,

$$T_E(r) := \sum_{n=1}^{\infty} \frac{n^{\alpha} \ell_n}{\Gamma(1+ns)} r^n \sim (1/s)^{\alpha+1} r^{\alpha/s} \ell(r^{1/s}) \exp(r^{1/s}) \qquad (r \to \infty).$$

For the next example we take the function Q(z) of zero order,

$$Q(z) := \prod_{n=1}^{\infty} \left( 1 + \frac{z}{q^n} \right) = 1 + \sum_{n=1}^{\infty} \frac{z^n}{(q-1)(q^2-1)\cdots(q^n-1)}, \quad q > 1.$$

(Euler, cf. [8, p. 32])

For  $z = re^{i\phi}$ , we have

$$z_0 = r;$$
  $M_Q(r) = Q(r) = \prod_{n=1}^{\infty} (1 + r/q^n).$ 

That  $\log Q(r)$  belongs to de Haan's class  $\Pi_l$  follows from Hardy's result (cf. [9, p. 171]),

$$\log Q(r) = \frac{1}{2\log q} \Big(\log r - \frac{1}{2}\log q\Big)^2 + O(1) \qquad (r \to \infty).$$

Therefore, for t > 0,

$$\log Q(tr) - \log Q(r) \sim \frac{\log t}{\log q} \log r,$$

i.e.,

$$\frac{\log Q(tr) - \log Q(r)}{\log r / \log q} \to \log t, \quad \forall t > 0 \quad (r \to \infty)$$

According to (0.2),  $\log Q(r) \in \Pi_l$  and we can take for the auxiliary function  $l(r) = \frac{\log r}{\log q} \in R_0$ .

Applying Theorem 2 we obtain

PROPOSITION 4. For the function Q(r) defined above,

$$n(r,\lambda) \sim (\frac{\lambda}{\log q} \sim) \log r \quad (r \to \infty),$$

and

$$S_{n(r,\lambda)}(r) := 1 + \sum_{n \le n(r,\lambda)} \frac{r^n}{(q-1)(q^2-1)\cdots(q^n-1)} = o(Q(r)) \quad \text{for } 0 < \lambda < 1;$$

$$S_{n(r,\lambda)} \sim Q(r) \quad \text{for } \lambda > 1 \qquad (r \to \infty).$$

Theorem 4 also gives

PROPOSITION 5. For any slowly varying sequence  $(\ell_n)$ ,  $n \in N$  and arbitrary real  $\alpha$  we have (when  $r \to \infty$ ).

$$T_Q(r) := 1 + \sum_{n=1}^{\infty} \frac{n^{\alpha} \ell_n}{(q-1)(q^2-1)\cdots(q^n-1)} r^n \sim \frac{1}{\log^{\alpha} q} \log^{\alpha} r \ \ell(\log r) \ Q(r)$$

### References

- [1] N.H. Bingham et al., Regular Variation, Cambridge University Press, Cambridge, 1989.
- [2] R. Bojanić and E. Seneta, A unified theory of regularly varying sequences, Math. Zeitchrift 134 (1973), 91-106.
- [3] G. Pólya and G. Szegő, Aufgaben und Lehrsatze aus der Analysis, Volume II, Springer-Verlag, Berlin, 1925.
- [4] E. Seneta, Functions of Regular Variation, Springer-Verlag, New York, 1976.
- [5] S. Simić, Best λ-approximations for analytic functions of rapid growth on the unit disc. Publ. Inst. Math. Belgrade 68(82) (2000), 72-76
- [6] S. Simić, Regularly varying sequences and entire functions of finite order, Publ. Inst. Math. (Belgrade) 67(81) (2000), 31-43.
- [7] S. Simić, Segments of exponential series and regularly varying sequences, Mat. Vesnik, 51 (1999).
- [8] G.E. Andrews, The Theory of Partitions, Addison-Wesley, Reading, Massachusets, 1976.
- [9] G.H. Hardy, On the function  $P_{\rho}(x)$ , Quart. J. Math. **37** (1906), 146-172.

Matematički institut Kneza Mihaila 35 11001 Beograd, p.p. 367 Yugoslavia ssimic@mi.sanu.ac.yu (Received 17 01 2001)