SUBCLASSES OF k-UNIFORMLY CONVEX AND STARLIKE FUNCTIONS DEFINED BY GENERALIZED DERIVATIVE, II

Stanisława Kanas and Teruo Yaguchi

Communicated by Miroljub Jevtić

ABSTRACT. Recently, Kanas and Wiśniowska [7, 8, 9] introduced the class of k-uniformly convex, and related class of k-starlike functions ($0 \le k < \infty$), denoted k- \mathcal{UCV} and k- \mathcal{ST} , respectively. In the present paper a notion of generalized convexity, by applying the well known Ruscheweyh derivative, is introduced. Some extremal problems for functions satisfying the condition of generalized convexity are solved.

1. Introduction

Denote by ${\mathcal H}$ a class of functions of the form

$$(1.1) f(z) = z + a_2 z^2 + \cdots,$$

analytic in the open unit disk \mathcal{U} , by \mathcal{CV} its subclass consisting of convex and univalent functions, and by \mathcal{UCV} a class of uniformly convex, univalent functions in \mathcal{U} . Futher on, let k- \mathcal{UCV} , $(0 \le k < \infty)$, be a class of k-uniformly convex univalent functions in \mathcal{U} , introduced and investigated by Kanas and Wiśniowska in [7] and [8].

A geometric characterization of $k\text{-}\mathcal{UCV}$ is that this class is a collection of functions f which map each circular arc with center at the point $\zeta \in \mathbf{C}$ ($|\zeta| \leq k$), onto an arc which is a convex arc. An analytic condition for members of $k\text{-}\mathcal{UCV}$ was stated as:

THEOREM 1.1. [7] Let $f \in \mathcal{H}$, and $0 < k < \infty$. Then $f \in k$ -UCV if and only if

(1.2)
$$\operatorname{Re}\left\{1 + \frac{zf''(z)}{f'(z)}\right\} > k \left| \frac{zf''(z)}{f'(z)} \right| \quad (z \in \mathcal{U}).$$

¹⁹⁹¹ Mathematics Subject Classification. Primary 30C45; Secondary 33E05.

Key words and phrases. Convex functions, uniformly convex functions, k-uniformly convex functions, Jacobian elliptic functions.

We shall also consider the class denoted k-ST

(1.3)
$$k-\mathcal{ST} = \left\{ f \in \mathcal{S} : \operatorname{Re} \left\{ \frac{zf'(z)}{f(z)} \right\} > k \left| \frac{zf'(z)}{f(z)} - 1 \right| \quad (z \in \mathcal{U}) \right\}.$$

From (1.2) and (1.3) the class k- \mathcal{ST} in a natural way emerged as the class of functions with the property that $g \in k$ - \mathcal{UCV} if and only if $zg'(z) \in k$ - \mathcal{ST} .

Setting q(z) = 1 + zf''(z)/f'(z) (and q(z) = zf'(z)/f(z) for the case of class k-ST) we may rewrite the conditions (1.2) and (1.3), respectively, in the form

(1.4) Re
$$q(z) > k |q(z) - 1| \quad (z \in \mathcal{U}).$$

The condition (1.4) may be also read as a description of the range of the expression q(z) ($z \in \mathcal{U}$), that is a conic domains Ω_k , such that $1 \in \Omega_k$ and $q \in \Omega_k$. Let $\mathcal{P}(p_k)$ ($0 \le k < \infty$), be a subclass of the well known class of Carathéodory functions \mathcal{P} , consisting of functions with the property (1.4). Also, let p_k denote the ekstremal functions in $\mathcal{P}(p_k)$. The explicit form of functions p_k were determined (cf. [7]). Obviously

(1.5)
$$p_0(z) = \frac{1+z}{1-z} = 1 + 2z + 2z^2 + 2z^3 + \cdots$$

and (compare [10] or [11])

$$(1.6) p_1(z) = 1 + \frac{2}{\pi^2} \left(\log \frac{1 + \sqrt{z}}{1 - \sqrt{z}} \right)^2 = 1 + \frac{8}{\pi^2} z + \frac{16}{3\pi^2} z^2 + \frac{184}{45\pi^2} z^3 + \cdots,$$

and when 0 < k < 1 (see [6], [7] and [8]),

(1.7)
$$p_k(z) = \frac{1}{1 - k^2} \cos\left\{Ai \log \frac{1 + \sqrt{z}}{1 - \sqrt{z}}\right\} - \frac{k^2}{1 - k^2}$$
$$= 1 + \frac{1}{1 - k^2} \sum_{n=1}^{\infty} \left[\sum_{l=1}^{2n} 2^l \binom{A}{l} \binom{2n-1}{2n-l}\right] z^n,$$

where $A = \frac{2}{\pi} \arccos k$. Finally when k > 1, the function p_k has the form (cf. [7], [8])

$$(1.8) p_k(z) = \frac{1}{k^2 - 1} \sin\left(\frac{\pi}{2K(\kappa)} \int_0^{\frac{u(z)}{\sqrt{\kappa}}} \frac{dt}{\sqrt{1 - t^2} \sqrt{1 - \kappa^2 t^2}}\right) + \frac{k^2}{k^2 - 1}$$

$$= 1 + \frac{\pi^2}{4\sqrt{\kappa}(k^2 - 1)K^2(\kappa)(1 + \kappa)} \times \left\{z + \frac{4K^2(\kappa)(\kappa^2 + 6\kappa + 1) - \pi^2}{24\sqrt{\kappa}K^2(\kappa)(1 + \kappa)} z^2 + \cdots\right\},$$

with

$$u(z) = \frac{z - \sqrt{\kappa}}{1 - \sqrt{\kappa} z} \quad (0 < \kappa < 1, \ z \in \mathcal{U}),$$

where κ is chosen, such that

$$k = \cosh \frac{\pi K'(\kappa)}{4K(\kappa)}.$$

 $K(\kappa)$ is Legendre's complete elliptic integral of the first kind, and $K'(\kappa)$ is complementary integral of $K(\kappa)$.

Ruscheweyh [12] introduced the operator $D^{\lambda}: \mathcal{H} \to \mathcal{H}$, defined by the Hadamard product (or convolution)

(1.9)
$$D^{\lambda} f(z) = f(z) * \frac{z}{(1-z)^{\lambda+1}} \quad (\lambda \ge -1, \ z \in \mathcal{U}),$$

which implies that

$$D^{n}f(z) = \frac{z(z^{n-1}f(z))^{(n)}}{n!} \quad (n \in \mathbf{N_0}),$$

$$D^0 f(z) = f(z), \ D^1 f(z) = z f'(z), \ D^2 f(z) = z f'(z) + (1/2) z^2 f''(z).$$

We observe that the power series of $D^{\lambda}f(z)$ for the function f of the form (1.1), in view of (1.9), is given by

(1.10)
$$D^{\lambda}f(z) = z + \sum_{m=2}^{\infty} \frac{\Gamma(m+\lambda)}{(m-1)!\Gamma(1+\lambda)} a_m z^m \quad (z \in \mathcal{U}).$$

Using the Ruschweyh derivative new classes of convex and starlike functions were introduced. For instance, in [12] author investigated the class denoted \mathcal{K}_n such that Re $D^{n+1}f(z)/D^nf(z) > 1/2$. He proved, among others, that \mathcal{K}_n is a subclass of $\mathcal{ST}(1/2)$. Clearly $\mathcal{K}_1 = \mathcal{CV}$. Subsequent generalization is due to Al-Amiri [1], who studied the class of functions f such that $D^{\lambda+1}f(z)/D^{\lambda}f(z) \prec 1/(1-z)$.

Other approach to generalization one may find in [13], [2] and [3]. The class $\mathcal{R}_n = \{f : \operatorname{Re} z(D^{\lambda}f(z))'/D^{\lambda}f(z) > 0\}$ was considered in [13] and the class $\mathcal{R}_n(\alpha) = \{f : \operatorname{Re} z(D^{\lambda}f(z))'/D^{\lambda}f(z) > \alpha\}$ was investigated in [2], [3]. Also, in [5] the class $\bar{\mathcal{R}}_{\lambda}(\beta) = \{f : z(D^{\lambda}f(z))'/D^{\lambda}f(z) \prec [(1+z)/(1-z)]^{\beta}\}$ was studied. Therefore it seems natural to use the Ruscheweyh derivative to introduce the notion of generalized convexity related to the mentioned earlier classes k- $\mathcal{S}\mathcal{T}$ or k- \mathcal{UCV} .

DEFINITION 1.1. Let $k \in [0, \infty)$ and $\lambda \geq -1$. By $\mathcal{UK}(\lambda, k)$ we denote the class of functions $f \in \mathcal{H}$ satisfying the condition

(1.11)
$$\operatorname{Re}\left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right) > k \left| \frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)} - 1 \right| \quad (z \in \mathcal{U}).$$

DEFINITION 1.2. Let $f \in \mathcal{H}$, $k \in [0, \infty)$ and $\lambda \geq -1$. We say that the function f belongs to the class $\mathcal{UR}(\lambda, k)$ if and only if

(1.12)
$$\operatorname{Re}\left(\frac{z(D^{\lambda}f(z))'}{D^{\lambda}f(z)}\right) > k \left|\frac{z(D^{\lambda}f(z))'}{D^{\lambda}f(z)} - 1\right| \quad (z \in \mathcal{U}).$$

Remark 1.1. It is easy to check that for $\lambda = 0$ both definitions reduce to the condition (1.3) and when $\lambda = 1$ the condition (1.12) coincides with (1.2).

2. Properties of the class $\mathcal{UK}(\lambda, k)$

In the Section 2 we will assume that $\lambda \geq -1$. By virtue of (1.11) and the properties of the domain Ω_k we have for $f \in \mathcal{UK}(\lambda, k)$ with $0 \leq k < \infty$,

(2.1)
$$\operatorname{Re}\left(\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)}\right) > \frac{k}{k+1} \quad (z \in \mathcal{U}),$$

and

(2.2)
$$\left| \operatorname{Arg} \left(\frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)} \right) \right| < \begin{cases} \arctan 1/k & 0 < k < \infty \\ \pi/2 & k = 0 \end{cases}$$

Setting k=1 we get from (2.1) that Re $D^{\lambda+1}f(z)/D^{\lambda}f(z) > 1/2$ so that for $k \geq 1$ we have $\mathcal{UK}(\lambda, k) \subset \mathcal{K}_n$.

Taking into account the fundamental relation $p_k(z) = D^{\lambda+1} f_k(z) / D^{\lambda} f_k(z)$ between the extremal functions in the classes $\mathcal{P}(p_k)$ and $\mathcal{UK}(\lambda, k)$, and in view of (1.10), (1.11) we have for $f_k(z) = z + A_2 z^2 + A_3 z^3 + \cdots$ and $p_k(z) = 1 + P_1 z + P_2 z^2 + \cdots$, a coefficients relation

(2.3)
$$\frac{\Gamma(m+\lambda)}{(m-2)!\Gamma(2+\lambda)}A_m = \sum_{p=1}^{m-1} \frac{\Gamma(p+\lambda)}{(p-1)!\Gamma(1+\lambda)} A_p P_{m-p}, \quad A_1 = 1.$$

In particular, by a straightforward computation we obtain

(2.4)

$$A_2 = P_1, \quad A_3 = \frac{P_2 + (\lambda + 1)P_1^2}{2 + \lambda}, \quad A_4 = \frac{2P_3 + 3(1 + \lambda)P_1P_2 + (1 + \lambda)^2P_1^3}{(2 + \lambda)(3 + \lambda)},$$

with coefficient P_1, P_2, P_3, \ldots given in a complete form in [8].

Observe also, that the coefficients A_n are nonnegative, since $\lambda \geq -1$ and P_n are nonnegative.

Theorem 2.1. Let $k \in [0, \infty)$, and f of the form (1.1) belongs to the class $\mathcal{UK}(\lambda, k)$. Then

$$(2.5) |a_2| < A_2, |a_3| < A_3.$$

PROOF. From the univalency of p_k and the relationship between f and $p(z) = 1 + p_1 z + \cdots$, we have

$$\frac{\Gamma(m+\lambda)}{(m-2)!\Gamma(2+\lambda)}a_m = \sum_{l=1}^{m-1} \frac{\Gamma(l+\lambda)}{(l-1)!\Gamma(1+\lambda)} a_l p_{m-l}, \quad a_1 = 1.$$

The function

$$q(z) = \frac{1 + p_k^{-1}(p(z))}{1 - p_k^{-1}(p(z))} = 1 + c_1 z + c_2 z^2 + \cdots,$$

is analytic in \mathcal{U} , and Re q(z) > 0. Since

$$p(z) = p_k \left(\frac{q(z) - 1}{q(z) + 1} \right) = 1 + \frac{1}{2} c_1 P_1 z + \left[\frac{1}{2} c_2 P_1 + \frac{1}{4} c_1^2 (P_2 - P_1) \right] z^2 + \cdots,$$

we have $|a_2| = |p_1| \le |c_1P_1|/2 \le P_1 = A_2$, where we have used the inequality $|c_n| \le 2$. By virtue of the same estimation and the relation $|p_1|^2 + |p_2| \le P_1^2 + P_2$, (cf. [8]), we obtain

$$(2+\lambda)|a_3| = |p_2| + (\lambda+1)|p_1|^2 = |p_2| + |p_1|^2 + \lambda|p_1|^2$$

$$< P_2 + P_1|^2 + \lambda P_1|^2 = P_2 + (\lambda+1)P_1|^2 = (2+\lambda)A_3,$$

as desired. \Box

Theorem 2.2. Let $0 \le k < \infty$, and let f of the form (1.1) belongs to the class $\mathcal{UK}(\lambda,k)$. Then

(2.6)
$$|a_n| \le \frac{P_1(1+(1+\lambda)P_1)_{n-2}}{(2+\lambda)_{n-2}}, \quad n=2,3,\ldots.$$

where $(\tau)_n$ is the Pochhammer symbol.

PROOF. In view of Theorem 2.1 the result is clearly true for n=2. Let $n \in \mathbb{N}$ be an integer number satisfying $n \geq 2$ and assume that the inequality is true for all $l \leq n-1$. Then for $p \in P(p_k)$, $p(z) = 1 + p_1 z + \cdots$ and $p(z) = D^{\lambda+1} f(z)/D^{\lambda} f(z)$ we have

$$\begin{split} |a_n| &= \left| \frac{(n-2)!\Gamma(2+\lambda)}{\Gamma(n+\lambda)} \sum_{l=1}^{n-1} \frac{\Gamma(l+\lambda)}{(l-1)!\Gamma(1+\lambda)} a_l p_{n-l} \right| \\ &\leq \frac{(n-2)!\Gamma(2+\lambda)}{\Gamma(n+\lambda)} \left[P_1 + \sum_{l=2}^{n-1} \frac{\Gamma(l+\lambda)}{(l-1)!\Gamma(1+\lambda)} \frac{P_1(1+(1+\lambda)P_1)_{l-2}}{(2+\lambda)_{l-2}} \right] \\ &= \frac{(n-2)!\Gamma(2+\lambda)P_1}{\Gamma(n+\lambda)} \left[1 + \sum_{l=2}^{n-1} \frac{\Gamma(l+\lambda)}{(l-1)!\Gamma(1+\lambda)} \frac{(1+(1+\lambda)P_1)_{l-2}}{(2+\lambda)_{l-2}} \right], \end{split}$$

where we have applied the induction hypothesis to the $|a_l|$ and the Rogosinski result $|p_i| \leq P_1$. Since

$$\frac{\Gamma(l+\lambda)}{\Gamma(1+\lambda)(2+\lambda)_{l-2}} = 1 + \lambda$$

it suffices to show that

(2.7)
$$1 + \sum_{l=2}^{n-1} \frac{1+\lambda}{(l-1)!} (1+(1+\lambda)P_1)_{l-2} = \frac{(1+(1+\lambda)P_1)_{n-2}}{(n-2)!}.$$

Above is true by the sequence of conversions, below.

$$1 + \sum_{l=2}^{n-1} \frac{1+\lambda}{(l-1)!} (1+(1+\lambda)P_1)_{l-2}$$

$$= \frac{1}{(n-2)!} \Big\{ (n-2)! + (n-2)!(1+\lambda)P_1 + \frac{(n-2)!}{2!} (1+\lambda)P_1 [1+(1+\lambda)P_1] + \frac{(n-2)!}{3!} (1+\lambda)P_1 [1+(1+\lambda)P_1] [2+(1+\lambda)P_1] + \dots + [n-3+(1+\lambda)P_1] \Big\}$$

$$= \frac{1}{(n-2)!} [1+(1+\lambda)P_1] \Big\{ (n-2)! + \frac{(n-2)!}{2!} (1+\lambda)P_1 + \dots + [n-3!+(1+\lambda)P_1] \Big\}$$

$$= \frac{1}{(n-2)!} [1+(1+\lambda)P_1] [2+(1+\lambda)P_1] \dots [n-3+(1+\lambda)P_1]$$

$$= \frac{(1+(1+\lambda)P_1)_{n-2}}{(n-2)!}$$

as asserted in (2.7).

COROLLARY 2.1. For $\lambda = 0$ Theorem 2.2 reduces to the coefficients estimates in the class k-ST (cf. [9]).

Theorem 2.3. If for the function f of the form (1.1) the inequality

(2.8)
$$\sum_{n=2}^{\infty} \frac{\Gamma(n+\lambda)}{(n-1)!} [k(n-1) + \lambda + n] |a_n| < \Gamma(2+\lambda)$$

holds for some $k \in [0, \infty)$ then $f \in \mathcal{UK}(\lambda, k)$.

Proof. The condition (1.11) is equivalent to

$$S := k \left| \frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)} - 1 \right| - \text{Re}\left(\frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)} - 1\right) < 1.$$

Then

$$S \le (k+1) \left| \frac{D^{\lambda+1} f(z)}{D^{\lambda} f(z)} - 1 \right| = (k+1) \left| \frac{z + \sum_{n=2}^{\infty} \frac{\Gamma(n+\lambda+1)}{(n-1)! \Gamma(2+\lambda)} a_n z^n}{z + \sum_{n=2}^{\infty} \frac{\Gamma(n+\lambda)}{(n-1)! \Gamma(1+\lambda)} a_n z^n} - 1 \right| < 1$$

if

$$(k+1)\sum_{n=2}^{\infty}\frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(1+\lambda)}\Big[\frac{n+\lambda}{1+\lambda}-1\Big]|a_n|<1-\sum_{n=2}^{\infty}\frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(1+\lambda)}|a_n|,$$

which holds when the inequality (2.8) is fulfilled.

COROLLARY 2.2. For $\lambda = 0$ Theorem 2.3 coincides with results obtained in [9].

Theorem 2.4. Let $k \in [0, \infty)$ and $\lambda \geq -1$. The function f belongs to the class $\mathcal{UK}(\lambda, k)$ if and only if $(f * H)(z)/z \neq 0$ in \mathcal{U} , where

(2.9)
$$H(z) = \frac{z}{(1-z)^{\lambda+2}} \left[1 - \frac{Bz}{B-1} \right]$$

with

(2.10)
$$B = tk \pm \sqrt{t^2 - (tk - 1)^2}, \quad (t^2 - (tk - 1)^2 \ge 0, \ t \ge 0).$$

PROOF. The condition (1.11) means that the values of $D^{\lambda+1}f(z)/D^{\lambda}f(z)$ ($z \in \mathcal{U}$) lie in a conic domain Ω_k . Since $\partial \Omega_k = \{u+iv: u^2 = k^2(u-1)^2 + k^2v^2\}$ the condition (1.11) may be rewritten as

(2.11)

$$\frac{D^{\lambda+1}f(z)}{D^{\lambda}f(z)} \neq tk \pm \sqrt{t^2 - (tk-1)^2} = B \ (z \in \mathcal{U}, \ t^2 - (tk-1)^2 \geq 0, \ t \geq 0).$$

Applying the definition of $D^{\lambda}f(z)$ and properties of Hadamard product, (2.11) will hold if $(f*H)(z)/z \neq 0$, with the function H given by (2.9).

Theorem 2.5. The coefficients h_n of the function H given by (2.9) satisfy the inequality

(2.12)
$$|h_n| \le [\lambda + n + k(n-1)] \frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(2+\lambda)} \quad (n=2,3,\dots).$$

Proof. From the power series of the function H we have

$$h_n = \frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(2+\lambda)} \left(\lambda + \frac{B-n}{B-1}\right),\,$$

and therefore

$$|h_n|^2 = \left[\frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(2+\lambda)}\right]^2 \left[(\lambda+1)^2 - \frac{2k(1+\lambda)(n-1)}{t} + \frac{(n-1)(2\lambda+n+1)}{t^2}\right]$$

=: $\left[\frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(2+\lambda)}\right]^2 v(t)$.

The function v(t) is decreasing in the interval $[1/(k+1),t_0)$ and increasing in (t_0,∞) with $t_0=(2\lambda+n+1)/[k(1+\lambda)]$ with its minimum at t_0 . The limit of v(t) as t tends to infinity is equal to $(1+\lambda)^2$, and $v(1/(k+1))=[\lambda+n+k(n-1)]^2\geq (1+\lambda)^2$. Thus the maximal value of v(t) is attained at the point 1/(k+1), so the coefficients of H must satisfy the inequality (2.12).

COROLLARY 2.3. The function $g(z) = z + Cz^n \in \mathcal{UK}(\lambda, k)$ if and only if

(2.13)
$$|C| \le \frac{(n-1)!\Gamma(\lambda+2)}{[\lambda+n+k(n-1)]\Gamma(\lambda+n)}.$$

Proof. First we prove the sufficient condition. Since

$$\left| \frac{(g * H)(z)}{z} \right| = |1 + h_n C z^{n-1}| \ge 1 - |h_n C z| \ge 1 - |z| > 0 \quad (z \in \mathcal{U}),$$

then $g \in \mathcal{UK}(\lambda, k)$. Assume next, for necessity, that $g \in \mathcal{UK}(\lambda, k)$, and

$$h(z) = \sum_{n=1}^{\infty} \frac{[\lambda + n + k(n-1)]\Gamma(\lambda + n)}{(n-1)!\Gamma(\lambda + 2)} z^n.$$

Then

$$\frac{(g*h)(z)}{z} = 1 + C \frac{[\lambda + n + k(n-1)]\Gamma(\lambda + n)}{(n-1)!\Gamma(\lambda + 2)} z^{n-1}.$$

Thus, for $|C| > [\lambda + n + k(n-1)]\Gamma(\lambda + n)]/[(n-1)!\Gamma(\lambda + 2)]$ there exists a point $\zeta \in \mathcal{U}$ such that $(g * h)(\zeta)/\zeta = 0$, so that the inequality (2.13) must hold.

3. Properties of the class $\mathcal{UR}(\lambda, k)$

Assume, like in Section 2 that $\lambda \geq -1$. First observe that the class $\mathcal{UR}(\lambda, k)$ is closely related to the class k- \mathcal{ST} by the relation

$$(3.1) f \in \mathcal{UR}(\lambda, k) \iff D^{\lambda} f(z) \in k\text{-}\mathcal{ST}.$$

Applying relation (3.1) numerous properties of the class $UR(\lambda, k)$ may be transformed from the class k-ST.

By the equivalence $p_k(z)=z(D^\lambda f_k(z))'/D^\lambda f_k(z)$ between classes $\mathcal{P}(p_k)$ and $\mathcal{UR}(\lambda,k)$, and in view of (1.10), (1.12) we have for $f_k(z)=z+A_2z^2+A_3z^3+\cdots$ and $p_k(z)=1+P_1z+P_2z^2+\cdots$, the following equality

(3.2)
$$\frac{\Gamma(m+\lambda)}{(m-2)!} A_m = \sum_{p=1}^{m-1} \frac{\Gamma(p+\lambda)}{(p-1)!} A_p P_{m-p}, \ A_1 = 1.$$

In particular

$$(3.3) \quad A_2 = \frac{P_1}{1+\lambda}, \quad A_3 = \frac{P_2 + P_1^2}{(1+\lambda)(2+\lambda)}, \quad A_4 = \frac{\Gamma(1+\lambda)}{\Gamma(4+\lambda)} \Big[2P_3 + 3P_1P_2 + P_1^3 \Big],$$

with coefficient P_1, P_2, P_3, \ldots given in a complete form in [8].

Theorem 3.1. Let $k \in [0, \infty)$, and f of the form (1.1) belongs to the class $\mathcal{UR}(\lambda, k)$. Then

$$(3.4)$$
 $|a_2| \leq A_2$, $|a_3| \leq A_3$, for $k \in [0, \infty)$, and $|a_4| \leq A_4$, when $k \in [0, 1]$.

PROOF. Proof follows immediately from the relation (3.1) and the results obtained in the paper [9].

Theorem 3.2. Let $0 \le k < \infty$, and let f of the form (1.1) belongs to the class $\mathcal{UR}(\lambda, k)$. Then

(3.5)
$$|a_n| \le \frac{(P_1)_{n-1}\Gamma(1+\lambda)}{\Gamma(n+\lambda)}, \quad n = 2, 3, \dots$$

PROOF. Applying the relation (3.1) and the estimates of coefficients in the class k-ST we obtain the desired result.

Theorem 3.3. If for the function f of the form (1.1) the inequality

(3.6)
$$\sum_{n=2}^{\infty} \frac{\Gamma(n+\lambda)}{(n-1)!\Gamma(1+\lambda)} [n(k+1)-k]|a_n| < 1$$

holds true for some $k \in [0, \infty)$ then $f \in \mathcal{UR}(\lambda, k)$.

PROOF. Reasoning along the same line as in proof of Theorem 2.3 we have the condition (3.6).

THEOREM 3.4. Let $k \in [0, \infty)$ and $\lambda \geq -1$. The function f belongs to the class $\mathcal{UR}(\lambda, k)$ if and only if $(f * G)(z)/z \neq 0$ in \mathcal{U} , where

(3.7)
$$G(z) = \frac{z}{(1-z)^{\lambda+2}} \left[1 - \frac{(B+\lambda)z}{B-1} \right]$$

with B defined in (2.10).

PROOF. Bearing in mind the relation (3.1) and the duality results in the class k- \mathcal{ST} (cf. [9]) we get the thesis.

Theorem 3.5. The coefficients g_n of the function G given by (3.7) satisfy the inequality

$$(3.8) |g_n| \leq [n(k+1)-k] \frac{\Gamma(\lambda+n)}{(n-1)!\Gamma(\lambda+1)}.$$

Proof. Using the power series of the function G we get

$$g_n = \frac{\Gamma(\lambda + n)}{(n-1)!\Gamma(\lambda + 1)} \frac{B - n}{B - 1}.$$

The expression $[\Gamma(\lambda+n)]/[(n-1)!\Gamma(\lambda+1)]$ does not depend on B=B(t), so g_n attains its maximum at maximum of the factor [B-n]/[B-1], namely at $t_0=1/(k+1)$. The maximum is equal to n(k+1)-k (cf. [9]). Hence we obtain the desired result.

COROLLARY 3.1. The function $q(z) = z + Cz^n \in \mathcal{UR}(\lambda, k)$ if and only if

$$|C| \le \frac{(n-1)!\Gamma(\lambda+1)}{[n(k+1)-k]\Gamma(\lambda+n)}.$$

Proof. The result follows from Theorem 3.5 and the reasoning similar to that in Section 2. $\hfill\Box$

References

- H. S. Al-Amiri, Certain generalization of prestarlike functions, J. Austral. Math. Soc. 28 (1979), 325-334.
- [2] O. P. Ahuja, On the radius problem of certain analytic functions, Bull. Korean Math. Soc. **22(1)** (1985), 31-36.
- [3] O. P. Ahuja, Integral operators of certain univalent functions, Inter. J. Math. 8(4) (1985), 653-662.
- [4] A. W. Goodman, On uniformly convex functions, Ann. Polon. Math. 56 (1991), 87-92.

- [5] S. Kanas, Class of functions defined by Ruscheweyh derivative, Bull. Malaysian Math. Soc. (Second Series) 18 (1995), 1-8.
- [6] S. Kanas, A coefficient problem for the hyperbolic function, Mathematica (Cluj), 41(63):1 (1999), 47-54.
- [7] S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity, J. Math. Anal. Appl. 105 (1999), 327–336.
- [8] S. Kanas and A. Wiśniowska, Conic regions and k-uniform convexity, II, Folia Sci. Tech. Resov. 170 (1998), 65-78.
- [9] S. Kanas and A. Wiśniowska, *Conic domains and starlike functions*, Rev. Roumaine Pures Appl. **45(3)** (2000).
- [10] W. Ma and D. Minda, Uniformly convex functions, Ann. Polon. Math. 57(2) (1992), 165–175.
- [11] F. Rønning, Uniformly convex functions and a corresponding class of starlike functions, Proc. Amer. Math. Soc. 118 (1993), 189-196.
- [12] S. Ruscheweyh, New criteria for univalent functions, Proc. Amer. Math. Soc. 49 (1975), 109-115.
- [13] R. Singh, S. Singh, Integrals of certain univalent functions, Proc. Amer. Math. Soc. 77 (1979), 336-343.

Department of Mathematics Rzeszów University of Technology 35-959 Rzeszów Poland

Department of Applied Mathematics College of Humanities and Sciences Nihon University Sakurajousui, Setagaya Tokyo 156-0045

Japan

(Received 19 10 1999)