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ABSTRACT. Recently, Kanas and Wisniowska [7, 8, 9] introduced the class of
k-uniformly convex, and related class of k-starlike functions (0 < k < o0),
denoted k-UCV and k-ST, respectively. In the present paper a notion of
generalized convexity, by applying the well known Ruscheweyh derivative, is
introduced. Some extremal problems for functions satisfying the condition of
generalized convexity are solved.

1. Introduction
Denote by H a class of functions of the form
(1.1) f(x)=z4+a® +---,

analytic in the open unit disk U, by CV its subclass consisting of convex and
univalent functions, and by UCV a class of uniformly convex, univalent functions in
U. Futher on, let k-UCV, (0 < k < o0), be a class of k-uniformly convex univalent
functions in U, introduced and investigated by Kanas and Wisniowska in [7] and
[8].

A geometric characterization of k-U/CV is that this class is a collection of func-
tions f which map each circular arc with center at the point ¢ € C (|¢| < k), onto
an arc which is a convex arc. An analytic condition for members of k-UCV was
stated as:

THEOREM 1.1. [7] Let f € H, and 0 < k < co. Then f € k-UCV if and only if

(1.2) Re{1+ z]{(z)} > k‘i{“&iﬂ (z € U).
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We shall also consider the class denoted k-S7T

2f'(2) 2f'(2)
1.3 k-ST = S:R k -1 U;.
(1.3) T={se e{f(z)}>‘f(z) e
From (1.2) and (1.3) the class k-ST in a natural way emerged as the class of
functions with the property that g € k-UCV if and only if z¢'(z) € k-ST.
Setting q(z) = 1+ zf"(2)/f'(2) (and q(z) = zf'(2)/ f(z) for the case of class
k-ST) we may rewrite the conditions (1.2) and (1.3), respectively, in the form

(1.4) Re q(z) > k|q(z) — 1| (z € U).

The condition (1.4) may be also read as a description of the range of the expression
q(z) (z € U), that is a conic domains Qy, such that 1 € Q and ¢ € Q. Let P(pi)
(0 € k < 0), be a subclass of the well known class of Carathéodory functions P,
consisting of functions with the property (1.4). Also, let py denote the ekstremal
functions in P(pg). The explicit form of functions p; were determined (cf. [7]).
Obviously

(1) () =

and (compare [10] or [11])

=1+2z+22"+22° +---

. 2 1+2\2 8 16 , 184
(1.6) pl(Z)_1+F(10g1—\/E) —1+Fz+—z +

32 4572
and when 0 < k < 1 (see [6], [7] and [8]),

1 o 14+4/z k?
= (i ) - o

[’} 2n
B 1 (AN (2n—1\] ,
‘”1—k2§1[;2 (l)(zn—l)]z’

2
where A = —arccosk. Finally when k > 1, the function pj has the form (cf. [7],

[8])

z3+...’

(1.7) pr(z)

u(z

(1.8) (2) = 1 sin ( —— / ﬁ dt + L
S P E R TTK®R) Sy Vioevioee) o1

2 2 2 2

i u cfed B Lot D oy

4/k(k? — 1) K2(k)(1 + k) 24\/kK?(k)(1 + k)
with
2=k
= 1
u(z) T 0<k<1, z€eU),
where k is chosen, such that
KI
k = cosh Q)

4K (k)
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K (k) is Legendre’s complete elliptic integral of the first kind, and K'(x) is comple-
mentary integral of K (k).

Ruscheweyh [12] introduced the operator D* : H — H, defined by the Hada-
mard product (or convolution)

z

(1.9) D f(z) = f(2) * A=)t A>-1, zeU),

which implies that

22" f(2)™

Drf(z) = L (n € No),

D°f(z) = f(2), D' f(2) = 2f'(2), D*f(2) = 2f'(2) + (1/2)2*f"(2).
We observe that the power series of D f(z) for the function f of the form (1.1),

in view of (1.9), is given by

(1.10) D f(2) —z+z _;n,;fi‘lr)\) 2M (2 €U).

Using the Ruschweyh derivative new classes of convex and starlike functions
were introduced. For instance, in [12] author investigated the class denoted I, such
that Re D™t f(2)/D"f(z) > 1/2. He proved, among others, that X,, is a subclass
of ST(1/2). Clearly K; = CV. Subsequent generalization is due to Al-Amiri [1],
who studied the class of functions f such that D**! f(2)/D*f(z) < 1/(1 — 2).

Other approach to generalization one may find in [13], [2] and [3]. The class
Rn = {f : Rez(D*f(2))'/D*f(z) > 0} was considered in [13] and the class
Ru(a) = {f : Re2(D*f(2))'/D*f(2) > a} was investigated in [2], [3]. Also, in
[5] the class Rx(8) = {f : 2(D*f(2))'/D*f(2) < [(1 + 2)/(1 — 2)]°} was studied.
Therefore it seems natural to use the Ruscheweyh derivative to introduce the notion
of generalized convexity related to the mentioned earlier classes k-ST or k-UCV .

DEFINITION 1.1. Let k € [0,00) and A > —1. By UK (), k) we denote the class
of functions f € H satisfying the condition

D 1 f(z) ) k|D*+1f()
DX f(z) DA f(2)

DEFINITION 1.2. Let f € H, k € [0,00) and A > —1. We say that the function
f belongs to the class UR(\, k) if and only if

A ! A !
(1.12) Re(%) >k‘%—l‘ (z € U).

REMARK 1.1. It is easy to check that for A = 0 both definitions reduce to the
condition (1.3) and when A =1 the condition (1.12) coincides with (1.2).

(1.11) Re( 1‘ (z € U).
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2. Properties of the class UK(\, k)

In the Section 2 we will assume that A > —1. By virtue of (1.11) and the
properties of the domain Qj we have for f € UK (A, k) with 0 < k < oo,

A1
(2.1) Re(DD)\fJ(:E')z)) > kf—l (z elU),
and
D M1f(2) arctanl/k 0 <k < oo
(2.2) ‘Arg( 70 )‘ <{ i e

Setting k = 1 we get from (2.1) that Re D ! f(2)/D*f(2) > 1/2 so that for
k> 1 we have UK (N, k) C K.

Taking into account the fundamental relation pg(z) = DAL fy(2)/D fi(2)
between the extremal functions in the classes P(pg) and UK (A, k), and in view of
(1.10), (1.11) we have for fr(2) = 2z + A22? + A323 + --- and pp(2) = 1 + Piz +
Pyz%2 4 -- - a coefficients relation

m—1
L'(m+ \) T(p+A)
2. ApPr_p, A1 =1.
@23 Gorein? Z(p—l'P1+)\) A
In particular, by a straightforward computation we obtain
(2.4)
P, + (A +1)P} 2P; +3(1+ AP Py + (1 4+ \)?P}
A2:P1’ A3:—, A4: )

24+ A 2+N)B+N)

with coeflicient Py, P2, Ps,... given in a complete form in [8].

Observe also, that the coefficients A,, are nonnegative, since A > —1 and P,
are nonnegative.

THEOREM 2.1. Let k € [0,00), and f of the form (1.1) belongs to the class
UK (N, k). Then

(25) |a2| S Az, |0,3| S Ag.

PROOF. From the univalency od py, and the relationship between f and p(z) =
14+piz+---, we have

a1:1.

(m 2)'F 2+)\ lzzl l_l |1“ 1+)\)alpm7l5

The function
_14+p ' (p(2)
1) = 1 2))

is analytic in U/, and Re ¢(z) > 0. Since

=1l4+cz+c2®+---,

_ o (1x -1y 1 1 1, ,
p(2) _pk(q(z) n 1) =1+ §C1P1Z+ [§C2P1 + 1 (P> _Pl)]z +e
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we have |as| = |p1]| < |e1P1|/2 < Pi = A,, where we have used the inequality
|cn| < 2. By virtue of the same estimation and the relation |p; |* + [ps| < P2 + Py,
(cf. [8]), we obtain

2+ Nlas| = [p2| + A+ 1)|p1?| = |p2| + |p2|* + Alpa|?
<P +P?+ AP =P+ (A +1)P% = (2+ )\ 43,

as desired. O

THEOREM 2.2. Let 0< k < o0, and let f of the form (1.1) belongs to the class
UK (N, k). Then

P14+ 1+ A)Py)n—2
2. | < , n=2,3,....
(2.6) lan| < PESY n 3

where (7), is the Pochhammer symbol.

PRrROOF. In view of Theorem 2.1 the result is clearly true for n = 2. Let n € N
be an integer number satisfying n > 2 and assume that the inequality is true for all
I <n—1. Then for p € P(p;), p(z) =1+ piz+--- and p(z) = D 1 f(2)/D*f(z)
we have

lan| = aPn—i

m—2)TE2+A\) = T(+\
T(n+\) ZZ (- DITI+ N

(n —2)I0(2 + A — I‘(l+,\ Pi(14+ 1+ NP
<T[ 2; —DIT(1+ ) (24 A)i—2 ]

m—2TQR+NP[. X TU+A QA+ 0+NP)is
T(n+ ) [”Z —DTA+N @+ Vi ]

where we have applied the induction hypothesis to the |a;| and the Rogosinski result
|pj| < Pi. Since

INUEEDY)
=14+
L1+ A)(2+ N)i—2 -
it suffices to show that
n—1
1+A 1+ @+ NPy

2. 1 1 1 P)i_s =

(2.7) +§(l—1)!( + L+ NP2 n—2)

Above is true by the sequence of conversions, below.
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1+§:;j? (1+ 1+ NP
= ﬁ{(n -2+ (n=2)!A+ AP+ (2—2)(1 + NP1+ (1+ )P
=ﬁ[1+(1+A)P1]{(n 2+ 5 D NP4t 3'+(1+)\)P1]}
= ﬁ[l+(1+)\)P1][2+(1+)\)P1]"-[n—3+(1+)\)P1]
— (1+(1+/\)P1)n72
B (n—2)!

as asserted in (2.7). O

COROLLARY 2.1. For A\ = 0 Theorem 2.2 reduces to the coefficients estimates
in the class k-ST (cf. [9]).

THEOREM 2.3. If for the function f of the form (1.1) the inequality

oo

2.8) 3 %[kz(n— 1) + A +nlan] < T2+ N)

n=2

holds for some k € [0,00) then f € UK(X, k).

PRrOOF. The condition (1.11) is equivalent to

_ D’\'Hf( ) D’\'Hf(z)
Then
= T(n+A+1) "
DMLf(2) at 22 (n— DIT2+ )
Sg(k+1)A7—1‘:(k+1) n= 1 <1
DAf(z) T(n+)) n
S o™
if
= T(n+A) n+ A = Lin+A)
E 0 G nrmam e el <X ara e o
which holds when the inequality (2.8) is fulfilled. O

COROLLARY 2.2. For A\ =0 Theorem 2.3 coincides with results obtained in [9].
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THEOREM 2.4. Let k € [0,00) and A > —1. The function f belongs to the class
UK\ E) if and only if (f x H)(2)/z #0 in U, where
Bz ]
B-1

(2.9) H() = _'z o [1 -

with
(2.10) B =tk +\/t2 — (tk —1)2, (t* - (tk—1)>>0, t>0).
PROOF. The condition (1.11) means that the values of D! f(2)/D*f(2) (2 €

U) lie in a conic domain Q. Since 0Q; = {u + v : u? = k*(u — 1)? + k%v?} the
condition (1.11) may be rewritten as

(2.11)
D M1f(z)

——— #tht /12— (th—1)2=DB t2 — (tk—1)> >0, t > 0).
S (1P =B (z €U,  ~ (t—17 >0, 1> 0)
Applying the definition of D f(z) and properties of Hadamard product, (2.11) will
hold if (f « H)(z)/z # 0, with the function H given by (2.9). O

THEOREM 2.5. The coefficients h,, of the function H given by (2.9) satisfy the
inequality
T(n+ A)

(2.12) Il < X +n+ k(=D —re

(n=2,3,...).

ProoF. From the power series of the function H we have

_ L(n+ ) B-n
= TR (A +5-1)
and therefore
2 T'(n+A) 2 s 214+ MN(n-1) nm-1)2A\+n+1)
[hnl” = [(n—l)!I‘(2+)\)] [()‘“) B t + 12
o T(n+A) 2
= [aorasy) YO

The function v(¢) is decreasing in the interval [1/(k + 1), ) and increasing in
(to, 00) with tg = (2A+n+1)/[k(1+ A)] with its minimum at ty. The limit of v(¢) as
t tends to infinity is equal to (1+X)2, and v(1/(k+1)) = [A+n+k(n—1)]2 > (1+X)2.
Thus the maximal value of v(t) is attained at the point 1/(k+ 1), so the coefficients
of H must satisfy the inequality (2.12). O

COROLLARY 2.3. The function g(z) = z+ Cz"™ € UK (A, k) if and only if
(n=1)IT(A+2)
A+n+k(n—-1DTA+n)
PRrROOF. First we prove the sufficient condition. Since
‘ (g * H)(2) ‘
z

(2.13) IC] <

=1+ h, 02" >1—|h,C2[>1—|2| >0 (z€U),
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then g € UK (A, k). Assume next, for neccessity, that g € UK(A, k), and

= DM+n+k(n-1TA+n) ,
hz) =2 n—1DT(\+2)

Then

A+n+k(n-1]CA+n) , 4
=1 .
B o 75 W R
Thus, for |C| > [A+n + k(n — 1)]T'(A + n)]/[(n — 1)!T'(X\ + 2)] there exists a point
¢ € U such that (g * h)(¢)/¢ = 0, so that the inequality (2.13) must hold. O

(g xh)(2)
z

3. Properties of the class UR(), k)

Assume, like in Section 2 that A > —1. First observe that the class UR()\, k)
is closely related to the class k-S7 by the relation

(3.1) fEeURNEK) < D f(z) € k-ST.

Applying relation (3.1) numerous properties of the class UR(\, k) may be trans-
formed from the class k-ST.

By the equivalence py(z) = z(D*fr(2))'/D> f(2) between classes P(py,) and
UR(M, k), and in view of (1.10), (1.12) we have for fi(2) = z + Ag2% + Az23 +---
and py(z) =1+ Piz + Py2% + - - - the following equality

T(m+2x) , <~T(p+)) _
(3.2) mAm = Z‘: WAme_p, A =1.

In particular

P P, + P} L1+ A) 3
. A= — A3= — "~ =— (2P +3P P, + P,
(6:3) 4e= 1750 A= gy AT gy 20 IRR
with coefficient Py, P2, Ps,... given in a complete form in [8].

THEOREM 3.1. Let k € [0,00), and f of the form (1.1) belongs to the class
UR(N\ k). Then

(3.4) ag| < Aa, |asz| < Az, for k €[0,00), and |a4] < Ayg, when k € [0,1].

PROOF. Proof follows immediately from the relation (3.1) and the results ob-
tained in the paper [9]. O

THEOREM 3.2. Let 0 < k < 00, and let f of the form (1.1) belongs to the class
UR(N\ k). Then

(Pl)n—lr(l + /\)

(3.5) lan| < CESY ,

n=23,....

PROOF. Applying the relation (3.1) and the estimates of coefficients in the
class k-ST we obtain the desired result. O
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THEOREM 3.3. If for the function f of the form (1.1) the inequality

> T'(n+ A
(3.6) 22 m[n(k +1) — Kljan| < 1

n=

holds true for some k € [0,00) then f € UR(A k).

PRrROOF. Reasoning along the same line as in proof of Theorem 2.3 we have the
condition (3.6). O

THEOREM 3.4. Let k € [0,00) and A > —1. The function f belongs to the class
UR(N k) if and only if (f *G)(2)/z # 0 in U, where

(B+)\)z]
B-1

(3.7) G = 5 _zz = [1 -

with B defined in (2.10).

PROOF. Bearing in mind the relation (3.1) and the duality results in the class
kE-ST (cf. [9]) we get the thesis. O

THEOREM 3.5. The coefficients g, of the function G given by (3.7) satisfy the
inequality
T'(A+n)
(- DI+ 1)
ProOF. Using the power series of the function G' we get
_ '(A+n) B-n
I = DA+ ) B-1"
The expression [I'(A + n)]/[(n — 1)IT'(A + 1)] does not depend on B = B(t), so
gn attains its maximum at maximum of the factor [B — n]/[B — 1], namely at

to = 1/(k +1). The maximum is equal to n(k + 1) — k (cf. [9]). Hence we obtain
the desired result. O

(3.8) |9n| < [n(k +1) — k]

COROLLARY 3.1. The function g(z) = z + C2™ € UR(X, k) if and only if
(n=1DITA+1)

3.9 C| < .
(3.9) O] = [n(k + 1) — E]T(A + n)
PRrROOF. The result follows from Theorem 3.5 and the reasoning similar to that
in Section 2. O
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