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ABSTRACT. A slant Toeplitz operator A, with symbol ¢ in L°°(T'), where T is
the unit circle on the complex plane, is an operator whose representing matrix
M = (aj;) is given by a;; = {p,2%*~7), where (-,) is the usual inner product
in L%(T). The operator B, denotes the compression of A, to H2(T) (Hardy
space). In this paper, we prove that the spectral radius of B, is greater than
the spectral radius of Ay, and if ¢ and p~! are in H*, then the spectrum of
B, contains a closed disc and the interior of this disc consists of eigenvalues
with infinite multiplicity.

1. Introduction

Let ¢ € L°(T). Then ¢(2) ~ Y a;2%, where a; = (i, 2*) is the i-th Fourier
i=—00

coefficient of ¢ and {z* : i € Z} is the usual basis, and Z is the set of integers.
o0

The slant Toeplitz operator A, is defined as follows: A,(2¥) = Y ag_r2.
i=—o00

Furthermore, by [4, Proposition 1] A, = WM,, where M, is a multiplication
operator and Wz2" = 2" W21 =0, forn € Z.

B, the compression of A, to H?(T), is by definition B, = PA,|g>. Equiva-
lently, B,P = PA,P, where P is the orthogonal projection from L? on to H?. By
[4, p. 846], B, = WT,, where T, is the Toeplitz operator on H*(T).

2. Spectral radius

Our aim is to prove that the spectral radius of B, is greater than the spectral
radius of A,. To do this we need the following lemmas.
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LEMMA 2.1. (I—P)M.» — 0, as n — 0o in the strong operator topology, where
M~ is the multiplication by z™ on L?(T).

x .
PRrROOF. Let f € L?(T) and f(z) ~ Y. a;2° be its Fourier expansion. Then

i=—
o) . —01:—1 . —-n—1 . 2
(I—-P)Maf=(I- P)( > a,-z’+") = Y a;z"™. Since, | Y a;2"t"|| =
1=—00 1=—00 i=—o00
—n—1
> lai|* = 0, as n — oo, the assertion follows. O
i=—00

The proof of the following lemma is similar to that of [1, Theorem 5].

LEMMA 2.2. Mz»B,PM,2n — A,, as n — o0, in the strong operator topology.

ProoOF. From Lemma 2.1, we know (I — P)M,~ — 0. This implies that
M:zn (I — P)M_,» — 0 which is equivalent to Mz» PM,~» — I. Consider
ME"BLPPMZ?"‘ = MEHPA¢PM22W. = (MznPMzn)(MgnAwMZQ'n)(MzknPMZ21L).
Since, for each n =1,2,..., M;n A,PM 2. = A, [4, Proposition 3], and the first
and the last factors converge to I, as n — oo, the assertion follows. O

The following theorem is proved in [4, p. 851] but we give here a different proof.

THEOREM 2.3. ||Ay|| = ||Byl|-

PrROOF. For each n = 1,2..., we have ||[Mz»B,PM,2| < ||By||. So from
Lemma 2.2, we get [|Ay|| < [|Byl||. Since B, is the compression of A,, we get
[|Ap|| > ||Byl||- The proof is complete. O

We are now ready to prove our main result.

THEOREM 2.4. The spectral radius of B, is greater than the spectral radius of
A,.

PRrROOF. First, we prove the following claim by induction.

Claim: For k = 1,2,3,..., MznBEPM ., — AF, as n — oo in the strong
operator topology.

For k = 1, the claim is true by Lemma 2.2. Let m be any positive integer and
assume that it is true for £ < m, and consider

|Mzn BF T PM omsr,, — ATH|

= [|Mzn (B$+1PMz2m+1n - MznA;”“)H = ||B$+1PMz2m+1,, - MZHAZ}HH

<||IBFP'PM omt1, — PMon A7 + |PMon AT — Mo A7H|
By Lemma 2.1, the second term tends to 0 as n approaches infinity. As to the
first term, we use M;nA, = A,M_o~ [4, Proposition 3] and get the following
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approximation
IBIH PM gmt1, — PMon A7 = |PA,BY PM gmt1, — PA, M 20 AT ||
<A |BG PM om+1, — M 2n AZ|
= [l Ag || [(BG' PM zmn — Mn AZ) M 2o ||
< [[Apl[IBG' PM 2mn — Mon AZ|
= |Ag|[ [|Mon B PM omn — AZ|
By the induction assumption, the last expression tends to 0 as n approaches infinity.
Therefore, the claim is proved. The fact that |[|[M.» BEPM .|| < ||BE]|, for k =

1,2,..., and the above claim imply that ||BZZ|| > ||A’;|| This in turn implies that
r(B,) > r(A,), where r represents spectral radius. O

DEFINITION 2.5. H® = {p € L>®(T) : (p,2") = 0 for n < 0}. The elements
of H* are called analytic and their conjugates are called coanalytic.

COROLLARY 2.6. r(Ay) =r(By), if ¢ is analytic or coanalytic.

PRrOOF. If ¢ is analytic, then B, = A,|g2. Therefore, for each k¥ =1,2,3,...,
||Bé§|| < ||A’:,|| This implies r(B,) < r(A,). This together with Theorem 2.4,
gives the required assertion. If ¢ is coanalytic, then Bj = A"(;,| 2. By the same
argument, we get r(AY}) = r(B}), Consequently 7(A,) = r(By). O

The following fact is indicated in [4, p. 856], but we give a different proof below.

THEOREM 2.7. If ¢ is invertible in L>(T), then r(A,) > [r(Ay—1)]7".

PRrOOF. First, we show that ((z) is invertible if and only if (2?2) is invertible.
Suppose ¢ is invertible. Then ¢p~! = 1. Therefore, by [4, p. 846] W*oW*p~1 = 1.
Equivalently ¢(22)¢p~1(22) = 1. Hence ¢(22) is invertible. Conversely, if ¢(z?) is
invertible, then ¢(22)p~1(22) = 1. This and [4, p. 847] implies W (2?)Wp—1(22) =
1, which is equivalent to @@ ~! = 1. Therefore ¢ is invertible.

Let h(z) = ¢(2?) be invertible. Then hh~! = 1. This and [4, p. 847] implies
that (Wh)(Wh=1) = 1. Therefore (Wh)~! = W (h~!). This in turn implies that,

for each n =1,2,3,...
(Soil)n = (Qon)717

where
n times

——
on =WW(..(Wh)H?...)[h%)).
~—_————

n times

From this and [4, p. 851], we get
r(Ap) = Tim (@™l = Tim [l(pn) 12"
n— oo n— oo
-1
> [ lim llealltf?] = [r(4n)]™

Therefore, r(Ap) > [r(Ap-1)] L.
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Since o(4,) = o(A

0(22))s where o denotes the spectrum [4, Lemma 9], i
follows that r(Ay,) > [r(A,-1)]”
B

D

COROLLARY 2.8. r( !

are coanalytic.

o) > r(By-1)"1, if ¢ and ™! are analytic or ¢ and o~

ProOF. This is an immediate consequence of Corollary 2.6 and Theorem 2.7.
O

3. Spectrum

Ho [4] showed that, for invertible ¢ in L, the spectrum of A, contains a closed
disk consisting of eigenvalues of A,. We also show, for ¢ and ¢~! in H*, that
the spectrum of B, contains a closed disc and the interior of this disc consists of
eigenvalues with infinite multiplicity, by using the idea of the proof of Proposition
10 in [4].

THEOREM 3.1. Let ¢ and ¢~ be in H®. Then the spectrum of B, contains
a closed disc and the interior of this disc consists of eigenvalues with infinite mul-
tiplicity.

PROOF. Assume first that A # 0. Suppose that B;(ZZ) — )\ is onto. Since
By(.2) = T,W, we have, for f in H?,

B2y = A = (W'Ty = A f = (W'T, = AP.)f & (-AR f)
where P, is the projection on the closed span of {22" : n = 0,1,2...} in H?(T)
and Py = I — P,. Now let 0 # go be in Py(H?). Since B,(Zg) A is onto, there
exists a nonzero vector f in H?(T) such that (B 5(:2) — A = go. But then from

the computations above, we have (W*T, —AP,) f = 0, because go # 0. Since A # 0
and T, is invertible [2, Theorem 7.1], it follows that AW*T, ()\ V=T, W)f =0

and the fact that W* is an isometry implies that (A™! — T,—:W)f = 0. This
in turn implies A™! € 0p(By,-1(:2)), where o, denotes the point spectrum. Since
dim Py(H?) = oo, it follows that A~! is of infinite multiplicity. Now, for A €

p(B},2)), the resolvent of BZ ), the operator By . — A is invertible (hence
onto), so we have

D ={X":X€p(Bj.2))} € 0p(Byp-1(:2),
Since By (,2y = T,W, B, = WT, and T, is invertible, we have 0,(B(,2)) = 0,(By)
[3, Problem 61]. Therefore D C o,(B,-1). So by replacing ¢~ with ¢, we have
shown that for any invertible ¢ in H*°, the spectrum of B, contains a disc consisting
of eigenvalues with infinite multiplicity. Therefore, by the fact that the spectrum
of any operator is compact, o(B,) contains a closed disc and the interior of this
disc consists of eigenvalues with infinite multiplicity. O

REMARK 3.2. If ¢ and ¢~' are coanalytic, then T,T;" = T 'T, = I [2,
Theorem 7.1]. Therefore, one can repeat the proof above and arrive at the same
conclusion as Theorem 3.1, that is, if ¢ and ¢! are coanalytic, then the spectrum
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of B, contains a closed disc and the interior of this disc consists of eigenvalues of
infinite multiplicity.

REMARK 3.3. The radius of the closed disc contained in o,(B,) is equal to
(r(By-1)) "%, because if Do = {0} U{A"" : |A| > r(B,-1)}, then Do C {A"1: e
p(B;,-1} U{0} C 0,(By) and the radius of the disc Dy is equal to (r(B,-1))7t.
Hence r(B,) > [r(B,-1)]"". This relation is also proved in Theorem 2.7.

REMARK 3.4. If p(2) = 1, then r(B,-1) = r(B,) = 1 by the spectral radius
formula for A, [4, p. 851] and Corollary 2.6. Hence, the spectrum of B, is the
closed unit disc by Theorem 3.1 and Remark 3.3. Since the eigenvalues are of
infinite multiplicity, it follows that the essential spectrum of B, is the same as the
spectrum of B,,.
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