REMAINDER TERM IN CHAKALOV-POPOVICIU QUADRATURES OF RADAU AND LOBATTO TYPE AND INFLUENCE FUNCTION

Miodrag M. Spalević

Communicated by Gradimir Milovanović

ABSTRACT. Let f be a given real function defined on $[a,b], -\infty < a < b \le \infty$. We develop estimates of the remainder term in the quadrature formulas with multiple nodes (Q) below, where $\sigma = \sigma_n = (s_1, s_2, \ldots, s_n)$ is a given sequence of nonnegative integers, $p,q \in \mathbb{N}_0$, and w(t) is a given weight function on (a,b). Let $N=2(\sum_{\nu=1}^n s_\nu+n)+p+q$, and denote by $AC^k[a,b], B^k[a,b], C^k[a,b]$ the classes of functions whose the k-th derivative is absolutely continuous, bounded or continuous on [a,b], respectively. An influence function is introduced, its relevant properties are investigated, and in classes of functions $AC^{N-1}[a,b], B^N[a,b], C^N[a,b]$ the error estimates are given. A numerical example is included.

1. Introduction

Let $d\varphi(t)$ be a given nonnegative measure on the real line \mathbb{R} , with compact or unbounded support, for which all moments $\mu_k = \int_{\mathbb{R}} t^k d\varphi(t)$ (k = 0, 1, ...) exist and are finite, and $\mu_0 > 0$.

A quadrature formula of the form

(1.1)
$$\int_{\mathbb{R}} f(t) \, d\varphi(t) = \sum_{\nu=1}^{n} \sum_{i=0}^{2s} A_{i,\nu} f^{(i)}(\tau_{\nu}) + R(f),$$

where $A_{i,\nu}=A_{i,\nu}^{(n,s)}$, $\tau_{\nu}=\tau_{\nu}^{(n,s)}$ $(i=0,1,\ldots,2s; \nu=1,\ldots,n)$, which is exact for all algebraic polynomials of degree at most 2(s+1)n-1, was considered firstly by P. Turán (see [24]), in the case when $d\varphi(t)=dt$ on [-1,1]. The case with a weight

 $^{2000\ \}textit{Mathematics Subject Classification}.\ \textit{Primary 41A55};\ \textit{Secondary 65D32}.$

Key words and phrases. s-orthogonality, σ -orthogonality, multiple nodes, influence function, remainder term, error estimate.

Partially supported by Serbian Scientific Foundation

function $d\varphi(t) = w(t) dt$ on [a, b] has been investigated by Italian mathematicians Ossicini, Ghizzetti, Guerra, Rosati, and also by Chakalov, Stroud, Stancu, Ionescu, Pavel, etc. (see the survey paper [11] for references).

The nodes τ_{ν} in (1.1) must be zeros of a (monic) polynomial $\pi_n(t)$ which minimizes the integral

$$\Phi \equiv \Phi(a_0, a_1, \dots, a_{n-1}) = \int_{\mathbb{R}} \pi_n(t)^{2s+2} d\varphi(t),$$

where $\pi_n(t) = t^n + a_{n-1}t^{n-1} + \ldots + a_1t + a_0$. In order to minimize Φ we must have

(1.2)
$$\int_{\mathbb{R}} \pi_n(t)^{2s+1} t^k \, d\varphi(t) = 0, \quad k = 0, 1, \dots, n-1.$$

Such polynomials $\pi_n(t)$, which satisfy this new type of orthogonality so called "power orthogonality" are known as s-orthogonal (or s-self associated) polynomials with respect to the measure $d\varphi(t)$.

For s = 0 we have the standard case of orthogonal polynomials.

Take now a sequence of nonnegative integers $\sigma = (s_1, s_2, \ldots)$. Consider a generalization of Gauss-Turán quadrature formula (1.1) to rules having nodes with arbitrary multiplicities

(1.3)
$$\int_{\mathbb{R}} f(t) \, d\varphi(t) = \sum_{\nu=1}^{n} \sum_{i=0}^{2s_{\nu}} A_{i,\nu} f^{(i)}(\tau_{\nu}) + R(f),$$

where $A_{i,\nu} = A_{i,\nu}^{(n,\sigma)}$, $\tau_{\nu} = \tau_{\nu}^{(n,\sigma)}$ $(i = 0, 1, \dots, 2s_{\nu}; \nu = 1, \dots, n)$. Such formulas were derived independently by Chakalov [2, 3] and Popoviciu [18]. A deep theoretical progress in this subject was made by Stancu (see [23] and references in it).

In this case, it is important to assume that the nodes τ_{ν} (= $\tau_{\nu}^{(n,\sigma)}$) are ordered, say

with odd multiplicities $2s_1 + 1$, $2s_2 + 1$, ..., $2s_n + 1$, respectively, in order to have uniqueness of Chakalov-Popoviciu quadrature formula (1.3) (cf. Karlin and Pinkus [8]). Then this quadrature formula has the maximum degree of exactness

$$d_{\max} = 2\sum_{\nu=1}^{n} s_{\nu} + 2n - 1$$

if and only if

(1.5)
$$\int_{\mathbb{R}} \prod_{\nu=1}^{n} (t - \tau_{\nu})^{2s_{\nu} + 1} t^{k} d\varphi(t) = 0, \quad k = 0, 1, \dots, n - 1.$$

The last *orthogonality conditions* correspond to (1.2). The existence of such quadrature rules was proved by Chakalov [2], Popoviciu [18], Morelli and Verna [15], and existence and uniqueness subject to (1.4) by Ghizzetti and Ossicini [6].

The conditions (1.5) define a sequence of polynomials $\{\pi_{n,\sigma}\}_{n\in\mathbb{N}_0}$,

$$\pi_{n,\sigma}(t) = \prod_{\nu=1}^{n} \left(t - \tau_{\nu}^{(n,\sigma)} \right), \quad \tau_{1}^{(n,\sigma)} < \tau_{2}^{(n,\sigma)} < \dots < \tau_{n}^{(n,\sigma)}, \quad \tau_{\nu}^{(n,\sigma)} \in \text{supp}(d\lambda),$$

such that

$$\int_{\mathbb{R}} \pi_{k,\sigma}(t) \prod_{\nu=1}^{n} \left(t - \tau_{\nu}^{(n,\sigma)} \right)^{2s_{\nu}+1} d\varphi(t) = 0, \quad k = 0, 1, \dots, n-1.$$

These polynomials are called σ -orthogonal polynomials and they correspond to the sequence $\sigma = (s_1, s_2, \ldots)$. If we have $\sigma = (s, s, \ldots)$, the above polynomials reduce to the s-orthogonal polynomials.

In this paper we consider the generalized Chakalov-Popoviciu quadrature formulae $\,$

(Q)
$$\int_{a}^{b} w(t)f(t) dt = \sum_{i=0}^{p-1} A_{i,0}f^{(i)}(a) + \sum_{\nu=1}^{n} \sum_{i=0}^{2s_{\nu}} A_{i,\nu}f^{(i)}(\tau_{\nu}) + \sum_{i=0}^{q-1} A_{i,n+1}f^{(i)}(b) + R(f),$$

with arbitrary, $\tau_{\nu}(\nu=1,\ldots,n)$, and fixed, a and (or) b, multiple nodes. A such quadrature formula has maximum degree of exactness N-1 if and only if

$$\int_a^b w(t)(1+t)^p (1-t)^q \prod_{\nu=1}^n (t-\tau_\nu)^{2s_\nu+1} t^k dt = 0, \quad k=0,1,\ldots,n-1.$$

Recent proofs of the existence and the uniqueness of such quadrature rules have been obtained in [19], [22]. Proofs of convergence of such formulas can be found in [17]. [20].

In Section 2 an influence function is considered, its relevant properties are investigated, and in the classes of functions $AC^{N-1}[a,b]$, $B^N[a,b]$, $C^N[a,b]$ the error estimates are given. In order to illustrate the possibility of use these error estimates we give a numerical example.

2. Error estimates for quadrature formulae of Radau and Lobatto type connected to σ -orthogonal polynomials

In [16] (see also [5]) Ossicini, for the Gauss-Turán quadratures (formula (Q) with p=q=0, $s_1=\cdots=s_n=s$, or (1.1) with $d\varphi(t)=w(t)\,dt$), and the Gauss-Turán quadratures of Lobatto type (formula (Q) with $s_1=\cdots=s_n=s$

and p=q=2s+1), constructed an influence function, investigated its relevant properties, and in some classes of functions gave error estimates. Recently, we have generalized those results to the formula (Q) with p=q=0 (or (1.3) with $d\varphi(t)=w(t)\,dt$) (see [14]). In this section we will consider the quadrature formula (Q), the general case.

For all undefined notions and notations we refer to [5].

Radau formula. Let

(2.1)
$$\int_{a}^{b} w(t)f(t) dt = \sum_{i=0}^{p-1} A_{i,0}^{R} f^{(i)}(a) + \sum_{\nu=1}^{n} \sum_{i=0}^{2s_{\nu}} A_{i,\nu}^{R} f^{(i)}(\tau_{\nu}) + R^{R}(f),$$

 $-\infty < a < \infty, p \in \mathbb{N}$, with $R^R(f) = 0$ for $f \in \mathcal{P}_{2(\sum_{\nu=1}^n s_{\nu} + n) + p - 1}$, be the generalized Chakalov-Popoviciu quadrature formula of Radau type. With \mathcal{P}_k we denoted the set of all polynomials of degree at most $k, k \in \mathbb{N}_0$. Denote $N = 2(\sum_{\nu=1}^n s_{\nu} + n) + p$. Concerning the assumptions on w(t), f(t) for the validity of (2.1) we have the following theorem:

THEOREM 2.1. Formula (2.1) is valid under the following hypotheses:

$$w(t) \in L[a,b], \quad f(t) \in AC^{N-1}[a,b], \quad \text{if b is finite},$$
 $t^N w(t) \in L[a,\infty), \quad f(t) \in AC^{N-1}_{loc}[a,\infty),$ $f^{(N)}(t) \int_t^\infty \xi^{N-1} w(\xi) \, d\xi \in L[0,\infty).$

The proof is the same as the one of Theorem 4.13.I. in [5, pp. 132–133] and will be omitted.

Consider, for example, the case:

$$(2.2) p-1 < 2s_1 < 2s_2 < \dots < 2s_n,$$

i.e., $N-p-1>N-2s_1-2>\cdots>N-2s_n-2$. Let p be odd, without loss of generality. Then, we have that N is odd. Assuming already computed the nodes τ_{ν} and the coefficients $A_{i,\nu}^R$ for the remainder in (2.1) we have (see [5]):

(2.3)
$$R^{R}(f) \equiv R(f) = \int_{a}^{b} \Phi(t) f^{(N)}(t) dt,$$

where the influence-function $\Phi(t)$ is expressed by

(2.4)
$$\Phi(t) = \varphi_{\nu+1}(t)$$
 for $\tau_{\nu} < t < \tau_{\nu+1}$, $\nu = 0, 1, \dots, n; \tau_0 = a, \tau_{n+1} = b$,

and the functions $\varphi_{\nu}(t)$, integrals of the differential equation $\varphi^{(N)}(t) = -w(t)$ (since N is odd), are given by the formulae

(2.5)
$$\varphi_{\nu}(t) = -\int_{a}^{t} w(\xi) \frac{(t-\xi)^{N-1}}{(N-1)!} d\xi + \sum_{j=1}^{\nu-1} \sum_{i=0}^{2s_{j}} (-1)^{i} A_{i,j} \frac{(t-\tau_{j})^{N-i-1}}{(N-i-1)!} + \sum_{i=0}^{\nu-1} (-1)^{i} A_{i,0} \frac{(t-a)^{N-i-1}}{(N-i-1)!},$$

where $\nu = 1, \dots, n+1$, and $A_{h,j} = A_{h,j}^R$. For $\varphi_{n+1}(t)$ we have

(2.6)
$$\varphi_{n+1}(t) = \int_{t}^{b} w(\xi) \frac{(t-\xi)^{N-1}}{(N-1)!} d\xi.$$

From (2.4), (2.5) it follows, differentiating k times (with $0 \le k \le N - 1$):

(2.7)
$$\Phi^{(k)}(t) = \varphi_{\nu}^{(k)}(t) \quad \text{for} \quad t \in (\tau_{\nu-1}, \tau_{\nu}), \quad \nu = 1, \dots, n+1,$$

where for $l = \nu, \nu - 1, \dots, 1$,

$$\varphi_{\nu}^{(k)}(t) = -\int_{a}^{t} w(\xi) \frac{(t-\xi)^{N-k-1}}{(N-k-1)!} d\xi + \sum_{j=1}^{l-1} \sum_{i=0}^{2s_{j}} (-1)^{i} A_{i,j} \frac{(t-\tau_{j})^{N-i-k-1}}{(N-i-k-1)!} + \sum_{j=l}^{\nu-1} \sum_{i=0}^{N-k-1} (-1)^{i} A_{i,j} \frac{(t-\tau_{j})^{N-i-k-1}}{(N-i-k-1)!} + \sum_{i=0}^{p-1} (-1)^{i} A_{i,0} \frac{(t-a)^{N-i-k-1}}{(N-i-k-1)!},$$

with: (i) $0 \le k \le N - 2s_{\nu-1} - 2$, for $l = \nu$, (ii) $N - 2s_l - 1 \le k \le N - 2s_{l-1} - 2$, for $l = \nu - 1, \nu - 2, \dots, 1$, where we put $s_0 = (p-1)/2$, and

$$\varphi_{\nu}^{(k)}(t) = -\int_{a}^{t} w(\xi) \frac{(t-\xi)^{N-k-1}}{(N-k-1)!} d\xi + \sum_{j=1}^{\nu-1} \sum_{i=0}^{N-k-1} (-1)^{i} A_{i,j} \frac{(t-\tau_{j})^{N-i-k-1}}{(N-i-k-1)!} + \sum_{i=0}^{N-k-1} (-1)^{i} A_{i,0} \frac{(t-a)^{N-i-k-1}}{(N-i-k-1)!},$$
(2.8)

for $N - p \le k \le N - 1$. (We used the convention $\sum_{i=1}^{j} w_i = 0$ for j < i.) For the derivatives of $\varphi_{n+1}(t)$ $(t \in (\tau_n, b))$ we can use the following formulas:

(2.9)
$$\varphi_{n+1}^{(k)}(t) = \int_{t}^{b} w(\xi) \frac{(t-\xi)^{N-k-1}}{(N-k-1)!} d\xi, \quad t \in (\tau_n, b).$$

Now, we can conclude that

(2.10)
$$\Phi^{(k)}(a) = 0, \ k = 0, 1, \dots, N - p - 1, \\ \Phi^{(k)}(b) = 0, \ k = 0, 1, \dots, N - 1,$$

and that the functions $\Phi(t), \Phi'(t), \ldots, \Phi^{(n-2_n-2)}(t)$ are continuous in [a, b], since $N-2s_n-2=\min_{1\leq \nu\leq n}(N-2s_\nu-2)$, while $\Phi^{(N-2s_n-1)}(t),\ldots,\Phi^{(N-1)}(t)$ have discontinuities of the first kind at the points $\tau_1, \tau_2, \ldots, \tau_n$. From (2.9) we conclude

$$(2.11) (-1)^k \Phi^{(k)}(t) > 0 \text{for} t \in (\tau_n, b), \ k = 0, 1, \dots, N-1,$$

and, particularly, $\Phi(t) > 0$ on (τ_n, b) .

Let the weight function w(t) be not identically zero in any interval contained in [a, b]. We will prove that the influence function $\Phi(t)$ is positive inside [a, b]. We give the proof for the case (2.2). (The general case can be considered in analogous way, see the Lobatto case.) If we identify the function $\Phi(t)$ as a monospline, then the property $\Phi(t) > 0$ on (a, b) is a corollary from the Micchelli estimate [9] of the number of zeros for monosplines with multiplicities (cf. Braess [p. 241, 1]). Our proof is direct and use only Rolle theorem.

We show that $\Phi^{(N-2s_l-2)}(t)$ $(l=1,2,\ldots,n)$ has at most $2s_l+2$ zeros in each interval $[\tau_{\nu-1},\tau_{\nu}], \ \nu=1,2,\ldots,n$. In fact, should it have $2s_l+3$ of them, for the Rolle theorem, $\Phi^{(N-2s_l-1)}(t)$ would have at least $2s_l+2$ zeros inside $[\tau_{\nu-1},\tau_{\nu}]$, $\Phi^{(N-2s_l)}(t)$ would have at least $2s_l+1$ zeros and so on, until we may conclude that $\Phi^{(N-1)}(t)$ would have at least two zeros inside $[\tau_{\nu-1},\tau_{\nu}]$. But this is absurd since from (2.8) there follows that, for $t \in (\tau_{\nu-1}, \tau_{\nu})$, we have

$$\Phi^{(N-1)}(t) = \varphi_{\nu}^{(N-1)}(t) = -\int_{a}^{t} w(\xi) d\xi + \sum_{i=0}^{\nu-1} A_{0,i}$$

and this function is decreasing (for the hypothesis on w(t)).

 $\Phi^{(N-p)}(t)$ is continuous in $[a, \tau_1]$ and, we can prove as for $\Phi^{(N-2s_1-2)}(t)$, it has at most p zeros in $[a, \tau_1]$. $\Phi^{(N-2s_2-2)}(t)$ ($\nu = 1, 2, ..., n$) is continuous in $[a, \tau_1]$ and let it have α zeros in $[a, \tau_1]$. Applying Rolle theorem (using (2.10) for a) we conclude that $\Phi^{(N-p)}(t)$ has at least α zeros in (a, τ_1) . Since $\alpha \leq p$, we have that $\Phi^{(N-2s_{\nu}-2)}(t) \ (\nu=1,2,\ldots,n) \text{ has at most } p \text{ zeros in } [a,\tau_1].$

 $\Phi^{(N-2s_1-2)}(t)$ is continuous in $[a, au_2]$ and has at most $p+(2s_1+2)$ zeros in $[a, \tau_2]$. $\Phi^{(N-2s_{\nu}-2)}(t)$ $(\nu=2,\ldots,n)$ is continuous in $[a,\tau_2]$ and let it have α_1 zeros in $[a, \tau_2]$. Applying Rolle theorem (using (2.10) for a) we conclude that $\Phi^{(N-2s_{\nu}-1)}(t)$ has at least α_1 zeros in (a, τ_2) , etc., $\Phi^{(N-2s_1-2)}(t)$ has at least α_1 zeros in (a, τ_2) . Since $\alpha_1 \leq p + (2s_1 + 2)$, we have that $\Phi^{(N-2s_\nu-2)}(t)$ $(\nu = 2, \ldots, n)$ has at most

 $p+(2s_1+2)$ zeros in $[a,\tau_2]$. $\Phi^{(N-2s_2-2)}(t)$ is continuous in $[a,\tau_3]$ and has at most $p+(2s_1+2)+(2s_2+2)$ zeros in $[a,\tau_3]$. $\Phi^{(N-2s_\nu-2)}(t)$ ($\nu=3,\ldots,n$) is continuous in $[a,\tau_3]$ and let it have α_2 zeros in $[a, \tau_3]$. Applying Rolle theorem (using (2.10) for a) we conclude that $\Phi^{(N-2s_{\nu}-1)}(t)$ has at least α_2 zeros in (a,τ_3) , etc., $\Phi^{(N-2s_2-2)}(t)$ has at least α_2 zeros in (a, τ_3) . Since $\alpha_2 \leq p + (2s_1 + 2) + (2s_2 + 2)$, we have that $\Phi^{(N-2s_\nu-2)}(t)$ $(\nu=3,\ldots,n)$ has at most $p+(2s_1+2)+(2s_2+2)$ zeros in $[a,\tau_3]$. In analogous way, we conclude that $\Phi^{(N-2s_n-2)}(t)$ is continuous in $[a,\tau_n]$ and

has at most

$$p + \sum_{\nu=1}^{n-1} (2s_{\nu} + 2) = N - 2s_n - 2$$

zeros in $[a, \tau_n]$, and also in (a, b), because of (2.11).

We may then show that $\Phi(t)$ does not vanish inside [a, b] and therefore it is positive, because it is such on (x_n, b) . In fact, if $\Phi(t)$ should vanish at one point in (a,b), using (2.2) and (2.10) and applying Rolle theorem, we find that $\Phi'(t)$ would vanish at least two times, etc., $\Phi^{(N-2s_n-2)}(t)$ would vanish at least $N-2s_n-1$ times, in contraposition with the preceding deduction, because $N-2s_n-1 \leq N-2s_n-2$ gives $1\leq 0$.

So, we proved the theorem:

Theorem 2.2. Under the hypothesis that the weight function w(t) is not identically zero in any interval contained in [a,b], the influence function $\Phi(t)$ defined by (2.4) (together with (2.5) and (2.6)) belongs to the class $C^{N-2s_k-2}[a,b]$, where $N-2s_k-2=\min_{1\leq \nu\leq n}(N-2s_\nu-2)$, and it is positive inside [a,b].

Now, we can estimate the remainder in the formulas of the type (2.1), by using (2.3).

 1^0 If $f(t) \in AC^{N-1}[a,b]$ and $a,b \in R$ we have

$$|R(f)| \le \max_{a \le t \le b} \Phi(t) V_{N-1} = \Phi(x_0) V_{N-1},$$

where V_{N-1} denotes the total variation of the function $f^{(N-1)}(t)$ absolutely continuous on the interval [a,b]. Because $\Phi'(t)$ vanish in exact one point of the interval (a,b) it holds $(\exists x_0 \in (a,b)) \max_{a \le t \le b} \Phi(t) = \Phi(x_0)$.

 2^0 If $f^{(N)}(t)$ is bounded in [a,b], i.e., $M_N = \sup_{a \le t < b} |f^{(N)}(t)|, b \le \infty$, then we have

$$|R(f)| \le M_N \int_a^b \Phi(t) dt.$$

 3^0 If $f \in C^N[a, b], b < \infty$, because $\Phi(t) > 0$ on (a, b) we may apply the mean value theorem and write

$$R(f) = f^{(N)}(\xi) \int_a^b \Phi(t) dt, \quad \xi \in (a, b).$$

Lobatto formula. Let

(2.12)
$$\int_{a}^{b} w(t)f(t) dt = \sum_{i=0}^{p-1} A_{i,0}^{L} f^{(i)}(a) + \sum_{\nu=1}^{n} \sum_{i=0}^{2s_{\nu}} A_{i,\nu}^{L} f^{(i)}(\tau_{\nu}) + \sum_{i=0}^{q-1} A_{i,n+1}^{L} f^{(i)}(b) + R^{L}(f),$$

 $-\infty < a < b < \infty, \ p,q \in \mathbb{N}$, with $R^L(f) = 0$ for $f \in \mathcal{P}_{2(\sum_{\nu=1}^n s_{\nu} + n) + p + q - 1}$, be the generalized Chakalov-Popoviciu quadrature formula of Lobatto type. Denote $N = 2(\sum_{\nu=1}^n s_{\nu} + n) + p + q$. Concerning the assumptions on w(t), f(t) for the validity of (2.12) we have the following theorem:

THEOREM 2.3. Formula (2.12) is valid under the following hypothesis:

$$w(t) \in L[a, b], \quad f(t) \in AC^{N-1}[a, b].$$

The proof is the same as one of the theorem 4.13.I. in [5, pp. 132-133] and will be omitted.

Let, for simplicity,

$$(2.13) p-1 < 2s_1 < 2s_2 < \dots < 2s_n < q-1,$$

i.e.,

$$N-p-1 > N-2s_1-2 > \cdots > N-2s_n-2 > N-q-1$$

and, let p + q – be even, without loss of generality. Then, N is even.

Assuming already computed the nodes τ_{ν} and the coefficients $A_{i,\nu}^{L}$ for the remainder in (2.12) we have (see [5]):

(2.14)
$$R^{L}(f) \equiv R(f) = \int_{a}^{b} \Phi(t) f^{(N)}(t) dt,$$

where the influence-function $\Phi(t)$ is expressed by

(2.15)
$$\Phi(t) = \varphi_{\nu+1}(t)$$
 for $\tau_{\nu} < t < \tau_{\nu+1}$, $\nu = 0, 1, \dots, n; \tau_0 = a, \tau_{n+1} = b$,

and the functions $\varphi_{\nu}(t)$, integrals of the differential equation $\varphi^{(N)}(t) = w(t)$ (since N is even), are given by the formulae

(2.16)
$$\varphi_{\nu}(t) = \int_{a}^{t} w(\xi) \frac{(t-\xi)^{N-1}}{(N-1)!} d\xi - \sum_{j=1}^{\nu-1} \sum_{i=0}^{2s_{j}} (-1)^{i} A_{i,j} \frac{(t-\tau_{j})^{N-i-1}}{(N-i-1)!} - \sum_{i=0}^{\nu-1} (-1)^{i} A_{i,0} \frac{(t-a)^{N-i-1}}{(N-i-1)!},$$

where $\nu = 1, \dots, n+1$, and $A_{h,j} = A_{h,j}^L$. For $\varphi_{n+1}(t)$ we have

(2.17)
$$\varphi_{n+1}(t) = -\int_{t}^{b} w(\xi) \frac{(t-\xi)^{N-1}}{(N-1)!} d\xi + \sum_{i=0}^{q-1} (-1)^{i} A_{i,n+1} \frac{(t-b)^{N-i-1}}{(N-i-1)!}$$

From (2.15), (2.16) it follows, differentiating k times (with $0 \le k \le N - 1$):

$$\Phi^{(k)}(t) = \varphi_{\nu}^{(k)}(t)$$
 for $t \in (\tau_{\nu-1}, \tau_{\nu}), \quad \nu = 1, \dots, n+1,$

where for $l = \nu, \nu - 1, \dots, 1$,

$$\varphi_{\nu}^{(k)}(t) = \int_{a}^{t} w(\xi) \frac{(t-\xi)^{N-k-1}}{(N-k-1)!} d\xi - \sum_{j=1}^{l-1} \sum_{i=0}^{2s_{j}} (-1)^{i} A_{i,j} \frac{(t-\tau_{j})^{N-i-k-1}}{(N-i-k-1)!} - \sum_{i=l}^{\nu-1} \sum_{i=0}^{N-k-1} (-1)^{i} A_{i,j} \frac{(t-\tau_{j})^{N-i-k-1}}{(N-i-k-1)!} - \sum_{i=0}^{\nu-1} (-1)^{i} A_{i,0} \frac{(t-a)^{N-i-k-1}}{(N-i-k-1)!},$$

with

(i) $0 \le k \le N-2s_{\nu-1}-2$, for $l=\nu$, (ii) $N-2s_l-1 \le k \le N-2s_{l-1}-2$, for $l=\nu-1,\nu-2,\dots,1$, where we put $s_0 = (p-1)/2,$

$$\varphi_{\nu}^{(k)}(t) = \int_{a}^{t} w(\xi) \frac{(t-\xi)^{N-k-1}}{(N-k-1)!} d\xi - \sum_{j=1}^{\nu-1} \sum_{i=0}^{N-k-1} (-1)^{i} A_{i,j} \frac{(t-\tau_{j})^{N-i-k-1}}{(N-i-k-1)!} - \sum_{i=0}^{N-k-1} (-1)^{i} A_{i,0} \frac{(t-a)^{N-i-k-1}}{(N-i-k-1)!},$$

for $N - p < k \le N - 1$.

For the derivatives of $\varphi_{n+1}(t)$ $(t \in (\tau_n, b))$ we can use the following formulas:

$$\varphi_{n+1}^{(k)}(t) = -\int_t^b w(\xi) \frac{(t-\xi)^{N-k-1}}{(n-k-1)!} d\xi + \sum_{h=0}^I (-1)^i A_{i,n+1} \frac{(t-b)^{N-i-k-1}}{(N-i-k-1)!},$$

with I = q - 1, for $0 \le k \le N - q - 1$; I = N - k - 1, for $N - q \le k \le N - 1$. Now, we can conclude that

(2.18)
$$\Phi^{(k)}(a) = 0, \ k = 0, 1, \dots, N - p - 1,$$
$$\Phi^{(k)}(b) = 0, \ k = 0, 1, \dots, N - q - 1,$$

and that the functions $\Phi(t), \Phi'(t), \dots, \Phi^{(N-2s_n-2)}(t)$ are continuous in [a, b], since $N-2s_n-2=\min_{1\leq \nu\leq n}(N-2s_{\nu}-2)$, while $\Phi^{(n-2s_n-1)}(t),\ldots,\Phi^{(n-1)}(t)$ have discontinuities of first kind at the points $\tau_1, \tau_2, \ldots, \tau_n$.

The same conclusions can be derived for an arbitrary case $\sigma = (s_1, s_2, \dots, s_n)$, $p,q \in \mathbb{N}, s_{\nu} \in \mathbb{N}_0 \ (\nu = 1,2,\ldots,n)$. So, we have just proved that the influence function $\Phi(t)$ defined by (2.15) (together with (2.16) and (2.17)) belongs to the class $C^{N-2s_k-2}[a,b]$, where $N-2s_k-2=\min_{1\leq \nu\leq n}(N-2s_{\nu}-2)$. If we put $f(t)=(t-a)^p(b-t)^q\prod_{\nu=1}^n(t-\tau_{\nu})^{2s_{\nu}+2}$ in (2.14), then

$$(-1)^q N! \int_a^b \Phi(t) dt = \int_a^b w(t) (t-a)^p (b-t)^q \prod_{\nu=1}^n (t-\tau_{\nu})^{2s_{\nu}+2} dt.$$

So, we obtain that

$$\int_a^b \Phi(t) dt \left\{ \begin{array}{ll} <0, & \text{if } q \text{ is odd,} \\ >0, & \text{if } q \text{ is even.} \end{array} \right.$$

Therefore, if $\Phi(t)$ does not vanish in (a,b) it holds a sign on this interval.

Let the weight function w(t) be not identically zero in any interval contained in [a, b]. We will prove that the influence function $\Phi(t)$ holds a sign in (a, b).

We will give a proof for a sufficient general case. Then, proceed in analogous way, a proof for any other case can be performed. The consideration will be given in detail.

Let n = 9 and

$$q-1>2s_1>2s_5>2s_4>2s_8>p-1>2s_9>2s_6>2s_3>2s_7>2s_2$$

i.e.,

$$N-q-1 < N-2s_1-2 < \cdots < N-2s_2-2$$
.

A point τ_{ν} , $\nu=2,3,\ldots,n-1$, we will call a point of partition of [a,b] if for it holds $s_{\nu-1}\leq s_{\nu}>s_{\nu+1}$, i.e., $N-2s_{\nu-1}-2\geq N-2s_{\nu}-2< N-2s_{\nu+1}-2$. τ_1 is the point of partition of [a,b] if for it holds $p-1\leq s_1>s_2$. τ_n is the point of partition of [a,b] if for it holds $s_{n-1}\leq s_n>q-1$. Denote by I the index set whose elements are the indices of the points of partition of [a,b]. It is clearly that $I\subset\{1,2,\ldots,n\}$. Therefore, in our case, the points of partition of [a,b] are τ_1,τ_5,τ_8 , and $I=\{1,5,8\}$. [a,b] by the points of partition we divide into the intervals of partition, in our case $[a,\tau_1],[\tau_1,\tau_5],[\tau_5,\tau_8],[\tau_8,b]$, on which we consider the functions $\Phi^{(N-2s_{\nu}-2)}(t)$, $\nu\in I$. It is clearly that [a,b] can be represented as the union of the intervals of partition.

For $\nu \in I$, order in the decreasing sequence the values $N-2s_{\nu}-2$, and consider the functions $\Phi^{(N-2s_{\nu}-2)}(t)$, respectively. Therefore, in our case we consider $\Phi^{(N-2s_8-2)}(t)$, $\Phi^{(N-2s_5-2)}(t)$, $\Phi^{(N-2s_1-2)}(t)$, respectively.

- a) Firstly, consider $\Phi^{(N-2s_8-2)}(t)$, which is continuous in $[\tau_5, b] = [\tau_5, \tau_8] \cup [\tau_8, b]$.
- **a.1)** Firstly, consider $[\tau_5, \tau_8]$. For $\nu \in \{5, 6, 7, 8\}$ (the indices of the nodes belong to $[\tau_5, \tau_8]$), order in the decreasing sequence the values $N-2s_{\nu}-2$ so that the last be one which correspond to the point of partition τ_8 , and then consider the functions $\Phi^{(N-2s_{\nu}-2)}(t)$, respectively. Therefore, in our case we consider $\Phi^{(N-2s_7-2)}(t)$, $\Phi^{(N-2s_8-2)}(t)$, $\Phi^{(N-2s_8-2)}(t)$, respectively.

 $\Phi^{(N-2s_7-2)}(t)$ is continuous in $[\tau_6, \tau_8] = [\tau_6, \tau_7] \cup [\tau_7, \tau_8]$ and has at most $(2s_7+2)+(2s_7+2)$ zeros in it.

 $\Phi^{(N-2s_6-2)}(t)$ is continuous in $[\tau_5, \tau_8] = [\tau_5, \tau_6] \cup [\tau_6, \tau_8]$. Let $\Phi^{(N-2s_6-2)}(t)$ have β_6 zeros in $[\tau_6, \tau_8]$. Then, using (2.18) and applying Rolle theorem, we conclude that $\Phi^{(N-2s_6-1)}(t)$ has at least $\beta_6 - 1$ zeros in (τ_6, τ_8) , etc., $\Phi^{(N-2s_7-2)}(t)$ has at least $\beta_6 - (2s_6 - 2s_7)$ zeros in (τ_6, τ_8) . Therefore, we have $\beta_6 - (2s_6 - 2s_7) \le (2s_7 + 2) + (2s_7 + 2)$, i. e., $\beta_6 \le (2s_6 + 2) + (2s_7 + 2)$.

Therefore, $\Phi^{(N-2s_6-2)}(t)$ has at most $(2s_6+2)+(2s_6+2)+(2s_7+2)$ zeros in $[\tau_5, \tau_8]$.

Let $\Phi^{(N-2s_8-2)}(t)$ have α_8 zeros in $[\tau_5, \tau_8]$. Then, using (2.18) and applying Rolle theorem, we conclude that $\Phi^{(N-2s_8-1)}(t)$ has at least α_8-1 zeros in (τ_5, τ_8) , etc., $\Phi^{(N-2s_6-2)}(t)$ has at least $\alpha_8-(2s_8-2s_6)$ zeros in (τ_5, τ_8) . Therefore, we have $\alpha_8-(2s_8-2s_6) \leq (2s_6+2)+(2s_6+2)+(2s_7+2)$, i.e., $\alpha_8 \leq (2s_6+2)+(2s_7+2)+(2s_8+2)$.

a.2) Consider $[\tau_8, b]$. For $\nu \in \{8, 9\}$ (the indices of the nodes belong to $[\tau_8, b]$), order in the decreasing sequence the values $N-2s_{\nu}-2$ so that the last be one which correspond to the point of partition τ_8 , and then consider the functions $\Phi^{(N-2s_{\nu}-2)}(t)$, respectively. Therefore, in our case we consider $\Phi^{(N-2s_9-2)}(t)$, $\Phi^{(N-2s_8-2)}(t)$, respectively.

 $\Phi^{(N-2s_9-2)}(t)$ is continuous in $[\tau_8,b]=[\tau_8,\tau_9]\cup[\tau_9,b]$ and has at most $(2s_9+2)+(2s_9+2)$ zeros in it.

Let $\Phi^{(N-2s_8-2)}(t)$ have β_8 zeros in $[\tau_8, b]$. Then, using (2.18) and applying Rolle theorem, we conclude that $\Phi^{(N-2s_8-1)}(t)$ has at least $\beta_8 - 1$ zeros in (τ_8, b) , etc., $\Phi^{(N-2s_9-2)}(t)$ has at least $\beta_8 - (2s_8 - 2s_9)$ zeros in (τ_8, b) . Therefore, we have $\beta_8 - (2s_8 - 2s_9) \le (2s_9 + 2) + (2s_9 + 2)$, i.e., $\beta_8 \le (2s_8 + 2) + (2s_9 + 2)$.

Therefore, using a.1), a.2), we conclude that $\Phi^{(N-2s_8-2)}(t)$ has at most $(2s_8+2)+\sum_{\nu=6}^{9}(2s_{\nu}+2)$ zeros in $[\tau_5,b]$.

b) Now, consider $\Phi^{(N-2s_5-2)}(t)$, which is continuous in $[\tau_1, b] = [\tau_1, \tau_5] \cup [\tau_5, b]$.

b.1) Consider $[\tau_1, \tau_5]$. For $\nu \in \{1, 2, 3, 4, 5\}$ (the indices of the nodes belong to $[\tau_1, \tau_5]$), order in the decreasing sequence the values $N - 2s_{\nu} - 2$ so that the last be one which correspond to the point of partition τ_5 , and then consider the functions $\Phi^{(N-2s_{\nu}-2)}(t)$, respectively. Therefore, in our case we consider $\Phi^{(N-2s_2-2)}(t)$, $\Phi^{(N-2s_3-2)}(t)$, $\Phi^{(N-2s_3-2)}(t)$, $\Phi^{(N-2s_3-2)}(t)$, respectively.

 $\Phi^{(N-2s_2-2)}(t)$ is continuous in $[\tau_1, \tau_3] = [\tau_1, \tau_2] \cup [\tau_2, \tau_3]$ and has at most $(2s_2+2)+(2s_2+2)$ zeros in it.

 $\Phi^{(N-2s_3-2)}(t)$ is continuous in $[\tau_1, \tau_4] = [\tau_1, \tau_3] \cup [\tau_3, \tau_4]$.

Let $\Phi^{(N-2s_3-2)}(t)$ have α_3 zeros in $[\tau_1, \tau_3]$. Then, using (2.18) and applying Rolle theorem, we conclude that $\Phi^{(N-2s_3-1)}(t)$ has at least $\alpha_3 - 1$ zeros in (τ_1, τ_3) , etc., $\Phi^{(N-2s_2-2)}(t)$ has at least $\alpha_3 - (2s_3 - 2s_2)$ zeros in (τ_1, τ_3) . Therefore, we have $\alpha_3 - (2s_3 - 2s_2) \leq (2s_2 + 2) + (2s_2 + 2)$, i.e., $\alpha_3 \leq (2s_2 + 2) + (2s_3 + 2)$.

Therefore, $\Phi^{(N-2s_3-2)}(t)$ has at most $(2s_2+2)+(2s_3+2)+(2s_3+2)$ zeros in $[\tau_1,\tau_4]$.

 $\Phi^{(N-2s_4-2)}(t)$ is continuous in $[\tau_1, \tau_5] = [\tau_1, \tau_4] \cup [\tau_4, \tau_5]$.

Let $\Phi^{(N-2s_4-2)}(t)$ have α_4 zeros in $[\tau_1, \tau_4]$. Then, using (2.18) and applying Rolle theorem, we conclude that $\Phi^{(N-2s_4-1)}(t)$ has at least α_4-1 zeros in (τ_1, τ_4) , etc., $\Phi^{(N-2s_3-2)}(t)$ has at least $\alpha_4-(2s_4-2s_3)$ zeros in (τ_1, τ_4) . Therefore, we have $\alpha_4-(2s_4-2s_3) \leq (2s_2+2)+(2s_3+2)+(2s_3+2)$, i.e., $\alpha_4 \leq (2s_2+2)+(2s_3+2)+(2s_4+2)$.

Therefore, $\Phi^{(N-2s_4-2)}(t)$ has at most $\sum_{\nu=2}^4 (2s_{\nu}+2) + (2s_4+2)$ zeros in $[\tau_1, \tau_5]$. Finally, let $\Phi^{(N-2s_5-2)}(t)$ has α_5 zeros in $[\tau_1, \tau_5]$. As above, we conclude that $\alpha_5 \leq \sum_{\nu=2}^5 (2s_{\nu}+2)$.

b.2) Let $\Phi^{(N-2s_5-2)}(t)$ have β_5 zeros in $[\tau_5, b]$. In analogous way as above, by

using the conclusions from a), we conclude that $\beta_5 \leq \sum_{\nu=5}^9 (2s_{\nu}+2)$. Therefore, $\Phi^{(N-2s_5-2)}(t)$ has at most $\sum_{\nu=2}^9 (2s_{\nu}+2) + (2s_5+2)$ zeros in $[\tau_1, b]$. c) Finally, consider $\Phi^{(N-2s_1-2)}(t)$, which is continuous in $[a, b] = [a, \tau_1] \cup [\tau_1, b]$.

- **c.1)** Consider $[a, \tau_1]$. $\Phi^{(N-p)}(t)$ has at most p zeros in $[a, \tau_1]$. Let $\Phi^{(N-2s_1-2)}(t)$ have α_1 zeros in $[a, \tau_1]$. Then, using (2.18) (for the point a) and applying Rolle theorem, we conclude that $\Phi^{(N-2s_1-1)}(t)$ has at least α_1 zeros in (a, τ_1) , etc., $\Phi^{(N-p)}(t)$ has at least α_1 zeros in (a, τ_1) . Therefore, $\alpha_1 \leq p$.
- **c.2)** By using the conclusions for $\Phi^{(N-2s_5-2)}(t)$, from b), in analogous way as above, we conclude that $\Phi^{(N-2s_1-2)}(t)$ has at most $\sum_{\nu=1}^{9} (2s_{\nu}+2)$ zeros in $[\tau_1,b]$.

Therefore, on the basis of c.1), c.2), we conclude that $\Phi^{(N-2s_1-2)}(t)$ has at most $p + \sum_{\nu=1}^{9} (2s_{\nu} + 2) = N - q$ zeros in [a, b].

We may then show that $\Phi(t)$ does not vanish inside [a, b] and therefore holds a sign in it. In fact, if $\Phi(t)$ should vanish at one point in (a,b), using (2.18) and applying Rolle theorem, we find that $\Phi'(t)$ would vanish at least two times. $\Phi^{(N-q-1)}(t)$ would vanish at least N-q times, $\Phi^{(N-q)}(t)$ would vanish at least N-q+1 times, etc., $\Phi^{(N-2s_1-2)}(t)$ would vanish at least N-q+1 times, in contraposition with the preceding deduction, because $N-q+1 \leq N-q$ gives 1 < 0.

On the basis of the upper considerations we have just proved the following statement:

Theorem 2.4. Under the hypothesis that the weight function w(t) is not identically zero in any interval contained in [a, b], the influence function $\Phi(t)$ defined by (2.15) (together with (2.16) and (2.17)) belongs to the class $C^{n-2s_k-2}[a,b]$, where $N-2s_k-2=\min_{1\leq \nu\leq n}(N-2s_{\nu}-2)$, and one holds a sign inside [a,b].

Now, we can estimate the remainder in the formulas of the type (2.12), by using (2.14).

 1^{0} If $f(t) \in AC^{N-1}[a,b]$ we have

$$|R(f)| \le \max_{a < t < b} |\Phi(t)| V_{N-1} = |\Phi(x_0)| V_{N-1},$$

where V_{N-1} denotes the total variation of the function $f^{(N-1)}(t)$ absolutely continuous on the interval [a, b]. Because $\Phi'(t)$ vanish in exact one point of the interval (a,b) it holds $(\exists x_0 \in (a,b)) \max_{a \le t \le b} \Phi(t) = \Phi(x_0).$

 2^0 If $f^{(N)}(t)$ is bounded in [a,b], i.e., $M_N = \sup_{a < t < b} |f^{(N)}(t)|$, then we have

$$|R(f)| \le M_N \int_a^b |\Phi(t)| dt.$$

 3^0 If $f \in C^N[a,b]$, because $\Phi(t)$ holds a sign on (a,b) we may apply the mean value theorem and write

$$R(f) = f^{(N)}(\xi) \int_{a}^{b} \Phi(t) dt, \quad \xi \in (a, b).$$

Example. An iterative process for computing the coefficients of s-orthogonal polynomials in a special case, when the interval [a, b] is symmetric with respect to the origin and the weight function w is an even function, was proposed by Vincenti [25]. He applied his process to the Legendre case. When n and s increase, the process becomes numerically unstable.

In [10] (see also [4]) a stable procedure for numerical construction of s-orthogonal polynomials with respect to $d\varphi(t)$ on \mathbb{R} is given.

Recently, a simple and numerically stable procedure for construction of σ -orthogonal polynomials is proposed by Milovanović and Spalević [14].

A stable numerical procedure for calculating the coefficients $A_{i,\nu}$ in (1.1) was given by Gautschi and Milovanović [4]. Some alternative methods were proposed by Stroud and Stancu [23], Golub and Kautsky [7], and Milovanović and Spalević [12] (see also [21]). A generalization of methods, for the weights, from [4, 12] to the general case when $s_{\nu} \in \mathbb{N}_0$, $\nu = 1, \ldots, n$, was derived recently by Milovanović and Spalević [13].

Finally, a method for calculating the nodes and the coefficients in the generalized Chakalov-Popoviciu quadrature formulae of Radau and Lobatto type, by using the results from [13, 14], has been proposed in [22]. We use that method, for calculating in this example, in order to tabulate the corresponding influence function. Consider the Legendre case with w(t) = 1 on [-1,1]. Let p = q = 1 and $\sigma = (1,0,1)$ in (2.12). Therefore, we have a symmetric task. The results show that the nodes of the corresponding quadrature are symmetrically distributed with respect to the origin, namely,

$$\tau_1 = -\tau_3 = -0.66772435790692, \quad \tau_2 = 0.$$

The coefficients of the corresponding Chakalov-Popoviciu quadrature formula of Lobatto type are:

$$\begin{split} A_{0,1} &= A_{0,3} = 6.68946557387391(-01), \quad A_{1,1} = -A_{1,3} = 2.90757109134605(-02), \\ A_{2,1} &= A_{2,3} = 8.27917955975223(-03), \quad A_{0,2} = 5.47406124470793(-01), \\ A_{0,0} &= A_{0,4} = 5.7350380377213(-02). \end{split}$$

The results show that the influence function is even (see Table), and

$$\max_{-1 \le t \le 1} |\Phi(t)| = -\Phi(0) = 7.06(-12).$$

TABLE

t	∓ 1	$\pm au_1$	∓0.5	∓0.4	∓0.3	∓0.2	∓0.1
$\Phi(t)$	0	-4.05(-15)	-1.94(-13)	-8.23(-13)	-2.23(-12)	-4.31(-12)	-6.25(-12)

Therefore, these results can be use in estimations of the remainder given above for the corresponding Chakalov-Popoviciu quadrature formula of Lobatto type.

All computations were done using FORTRAN in double precision arithmetics. The numbers in parentheses denoted the decimal exponents.

References

- 1. D. Braess, Nonlinear Approximation Theory, Springer Verlag, Berlin, 1986.
- L. Chakalov, General quadrature formulae of Gaussian type, Bulgar. Akad. Nauk Izv. Mat. Inst. 1 (1954), 67–84. (Bulgarian)
- 3. L. Chakalov, Formules générales de quadrature mécanique du type de Gauss, Colloq. Math. 5 (1957), 69-73.
- W. Gautschi and G.V. Milovanović, S-orthogonality and construction of Gauss-Turán type quadrature formulae, J. Comput. Appl. Math. 86 (1997), 205-218.
- 5. A. Ghizzetti and A. Ossicini, Quadraturae formulae, Academie Verlag, Berlin, 1970.
- A. Ghizzetti and A. Ossicini, Sull' esistenza e unicità delle formule di quadratura gaussiane, Rend. Mat. (6) 8 (1975), 1-15.
- G. H. Golub and J. Kautsky, Calculation of Gauss quadratures with multiple free and fixed knots, Numer. Math. 41 (1983), 147-163.
- 8. S. Karlin and A. Pinkus, Gaussian quadrature with multiple nodes, in: Studies in Spline Functions and Approximation Theory (S. Karlin, C. A. Micchelli, A. Pinkus and I. J. Schoenberg, eds.), Academic Press, New York, 1976, pp. 113-141.
- C. A. Micchelli, The fundamental theorem of algebra for monosplines with multiplicities, in:
 P. Butzer, J. P. Kahane, B. Sz. Nagy (eds.), Linear Operators and Approximation, ISNM vol. 20, Birkhäuser, Basel, 1972, pp. 372-379.
- G. V. Milovanović, Construction of s-orthogonal polynomials and Turán quadrature formulae, in: Numerical Methods and Approximation Theory III, Niš, 1987 (G. V. Milovanović, ed.), Univ. Niš, Niš, 1988., pp. 311–328.
- G. V. Milovanović, Quadratures with Multiple Nodes, Power Orthogonality, and Moment-preserving Spline Approximation, in Numerical Analysis in 20th Century, Vol. 5 (W. Gautschi, F. Marcellan, L. Reichel, eds.), J. Comput. Appl. Math. 127 (2001) 267-286.
- 12. G. V. Milovanović and M. M. Spalević, A numerical procedure for coefficients in generalized Gauss-Turán quadratures, Filomat (Niš) 9:1 (1995), 1-8.
- 13. G. V. Milovanović and M.M. Spalević, Construction of Chakalov-Popoviciu's type quadrature formulae, Rend. Circ. Mat. Palermo 52 (1998), 625-636.
- G. V. Milovanović and M. M. Spalević, Quadrature formulae connected to σ-orthogonal polynomials, J. Comput. Appl. Math. 140 (2002), 619-637.
- A. Morelli and I. Verna, Formula di quadratura in cui compaiono i valori della funzione e delle derivate con ordine massimo variabile da nodo a nodo, Rend. Circ. Mat. Palermo (2) 18 (1969), 91-98.
- A. Ossicini, Le funzioni di influenza nel problema di Gauss sulle formule di quadratura, Matematiche (Catania) 23 (1968), 7-30.
- A. Ossicini and F. Rosati, Sulla convergenza dei funzionali ipergaussiani, Rend. Mat. 11 (1978), 97–108.
- T. Popoviciu, Sur une généralisation de la formule d'integration numérique de Gauss, Acad.
 R. P. Romîne Fil. Iaşi Stud. Cerc. Şti. 6 (1955), 29-57.
- Y.G. Shi, Generalized Gaussian quadrature formulas for Tchebycheff systems, Far East J. Appl. Math. 3 (1999), 153-170.
- Y. G. Shi, Convergence of Gaussian quadrature formulas, J. Approx. Theory 105 (2000), 279-291.
- 21. M. M. Spalević, Product of Turán quadratures for Cube, Simplex, Surface of the Sphere, \bar{E}_n^r , $E_n^{r^2}$, J. Comput. Appl. Math. **106** (1999), 99–115.
- M. M. Spalević, Calculation of Chakalov-Popoviciu's quadratures of Radau and Lobatto type, ANZIAM J. (3) 43 (2002), 429-447.
- A. H. Stroud, D. D. Stancu, Quadrature formulas with multiple gaussian nodes, J. SIAM Numer. Anal. Ser. B 2 (1965), 129-143.
- 24. P. Turán, On the theory of mecchanical quadrature, Acta Sci. Math. Szeged 12 (1950), 30-37.

25. G. Vincenti, On the computation of the coefficients of s-orthogonal polynomials, SIAM J. Numer. Anal ${\bf 23}$ (1986), 1290–1294.

Prirodno-matematički fakultet 34000 Kragujevac, p.p. 60 Yugoslavia spale@knez.uis.kg.ac.yu (Received 01 09 2001)