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ON THE LAPLACE TRANSFORMS
OF LOGCONCAVE DENSITIES

A. A. Balkema

ABSTRACT. This paper describes for any given logconcave density f the
set of all finite measures u whose Laplace transforms are asymptotic to the
Laplace transform of f. It is shown that the density of u is asymptotic to f
if it is logconcave. Thus logconcavity is a Tauberian condition for Laplace
transforms of finite measures.

1. Introduction

Let M denote the space of all finite measures u on R with the topology of vague
convergence, and LC the subset of those measures p with density f = e~ ¥ with
@ € C. Here C consists of all convex function ¢ : R = (—o00, 00] with non-empty
open domain D = {¢ < oo}, such that e~¥ is integrable. Such densities e~¢ are
called logconcave. They may be regarded as natural generalizations of the Gaussian
density and play an important role in statistics.

We shall approach the exponential transform of u via the exponential family
generated by u. This approach was developed in studying the domains of attraction
for the limit laws of exponential families. It was introduced in Feigin and Yashchin
[1983]. It has the advantage that it does not distinguish between finite and infinite
upper endpoint of the moment generating function (lower endpoint of the Laplace
transform). Proofs are based on probabilistic arguments for weak convergence.

With g € M associate the Radon measures duy(z) = e**du(z), A € R. The
moment generating function (mgf) K of p

K\ = / e*dp(z) = pa(R)  with domain A = {K < oo}

is continuous on the vertical strip A x iR in the complex plane and analytic on
the interior of the strip. Assume g #Z 0. Then for each A € A one may introduce
a random variable X with probability distribution py/K(X). The set of random
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variables X, A € A, is the natural exponential family generated by . The function
k =logK : R = (—o00,00] is the cumulant generating function (cgf) of u. For
interior points A of A

k' (A) = EXy, k"(A) = 0%()\) = var(X)).

So « is strictly convex unless p is degenerate.

We are interested in finite measures p with a logconcave density. The subset
LC C M is invariant under exponential tilting: If u € £C then py € LC provided
ux € M. Convexity is preserved, but integrability may be lost by tilting. This
invariance is one reason for being interested in logconcave densities. Another reason
is that mgfs are logconvex. One might hope to establish some kind of duality
between logconcave densities and their mgfs. Such a duality exists in the case of
Gaussian densities and has been extended to the case of logconcave densities with
Gaussian tails, see Balkema, Kliippelberg and Stadtmiiller [1997]. In the present
paper we turn our attention to the full class of logconcave densities.

Integrable logconcave functions are well behaved. See Barndorff-Nielsen [1978]
for details. For an integrable logconcave density e™ ¥ there exists a constant ¢ > 0
and € > 0 so that

(1.1) e %@ L ceclel, zeR

Set pa(z) = p(x) — Az. The set of X for which e~%* is integrable is open. This set
is exactly the domain A of the mgf K of e ¥. The function &' is strictly increasing
on A and maps A onto the domain D = {p < oo}. (To prove surjectivity assume
k'(A) < o for all A € A for some 2o € D. By a change of coordinates we may
assume that zg = 0. Let ¢ € (0,2 ). Then py(—00,0) = 0 and py(x,00) = oo for
A = Ao while the expectation remains negative!) The map ' is a homeomorphism.
Hence we may define an analytic function a : D — (0, 00) by

(1.2) alk'N) =o(\) = Ve"(V),  A€A.

Observe that a'(z) = —(1/0)"(A) for z = k'(\). For z € D one may describe a(z)
as the standard deviation of the random variable X, where X is chosen so that z
is the expectation. The function « and its derivative will play an important role
below.

It is well known that asymptotic equality of measures in their upper endpoint
implies asymptotic equality of the Laplace transforms: For u € M the upper end-
point is o = sup{z € R | p[z,00) > 0}. If p and i have the same upper endpoint
Too and if ji[z,00) ~ p[z,00) for & 1 2o then the mgfs K and K have the same
upper endpoint Ao = supA = sup A and K(\) ~ K()) for A+ Ao. The converse
implication need not hold. Karamata’s celebrated theorem on the Laplace trans-
form of measures p whose distribution functions M (z) = u(—oc, z] vary regularly
in infinity is amazing precisely because no extra Tauberian condition is needed for
the converse.
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2. Main results

Our first theorem states that logconcavity is a Tauberian condition for Laplace
transforms: If the Laplace transforms of f and g are asymptotically equal, and
if f and g each are asymptotic to a logconcave density then they are asymptotic
to each other. The second theorem characterizes those finite measures i whose
Laplace transforms are asymptotic to the Laplace transform of a given measure
with a logconcave density f. Such measures may be obtained by roughening the
smooth measure fd\ replacing Lebesgue measure by the rough approximation p.

THEOREM 1. Let f and g be integrable logconcave functions on R with mgfs
Ky and K. The following two statements are equivalent:

1) f and g have the same upper endpoint T, and f(x) ~ g(x) for T = T;

2) Ky and K, have the same upper endpoint \oo and Kz(X) ~ Ky(X) for
A= Ao-

THEOREM 2. Let f = e~ % be a logconcave integrable function on R with domain
D ={p<oo}and mgf K. Set x, = supD. Let i be a finite measure on (—00, Too)
with mgf K. Let R: D — R be a distribution function of the measure dp = (1/f)djfi
on D. Let a: D — (0,00) be the standard deviation associated with the exponential
family generated by the density f, see (1.2), and let & be the function associated
with fi. Then z +ua(z) € D if ¢ € D and |u| < ag where ag is the universal
constant defined in Section 5. The following two statements are equivalent:

1) For u € [0, ao]

(2.1) R+ UZ((Z))) G/ N U, T Too;

2) The mgfs K and K have the same upper endpoint Ao, and K ~ K in Ay.
If 1) or 2) holds then & ~ a in T.

3. An example

This section exhibits two measures whose mgfs are asymptotically equal.
Let fi be the discrete measure with mass 1/n! in the points n = 0,1,2,... The
mgf is

I”{(,\):Zen—,:ee*, AeA=R
n=0 '

We claim that the mgf K of the density f(z) = 1/T'(1 + z), z > —1, is asymptotic
to K in co. This may be seen by noting that

1
V2rz

f(IL') NfO(m) = e_¢($)7 T — 00, ¢($) ZIUIOgJI—.’L‘,
and evaluating the integral of e** fo(z) for A = Ao, using Laplace’s principle.

The measure i may be regarded as a discretization of the measure p with
density f. See Nagaev [1998]. This does not explain the asymptotic equality of the
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Laplace transforms. Indeed let us delete the mass of i in the points p which are
prime and compensate by doubling the mass in the points p + 1. Does this affect
the asymptotic behaviour of the mgf? One could also delete all composite numbers
and compensate by multiplying the mass 1/p! in the prime p by the distance to the
next prime!

In order to evaluate the effect of these changes on the asymptotic behaviour
of the Laplace transform we use Theorem 2 and look at the asymptotic behaviour
of the function & in infinity. We observe that p is the counting measure on the
non-negative integers and that a(z) = y/z since 02 = k'. Since /z — oo deleting
the occasional prime does not affect the asymptotic behaviour of the mgf K. As
for deleting the mass in the composite numbers, the known bounds on the dis-
tance between adjacent primes are too far apart at present to decide whether the
asymptotic behaviour of the Laplace transform is affected. O

The example lies outside the scope of Karamata’s theorem [1930]. It may be
regarded as a limiting case though, see Balkema, Kliippelberg and Resnick [2002].
There it is shown that for a measure y € M with mgf K = e the following
statements are equivalent:

1) The upper endpoint Ay, of K is finite and £ — K (Ao — &) varies regularly
for £ | 0 with exponent —y < 0;

2) The distribution function

F(z) = /( e

varies regularly in infinity with exponent -y;

3) (1/a)'(A) = —1//7 for A1 A € A;

4) the variables X, A € A, in the exponential family generated by p may be
normalized to converge in law to a variable U > 0 with a gamma distribution with
parameter ~y.

The equivalence between 1) and 2) is Karamata’s theorem.

In the example above (1/0)" — 0. This corresponds to v = oo. For v —
oo the gamma distribution properly normed converges to the standard normal
distribution. The condition (1/¢)" — 0 can be shown to be equivalent to asymptotic
normality of the associated exponential family.

One can now ask what happens if one only assumes that the derivative (1/0)’ is
bounded. It will be shown below that this condition is satisfied if u has a logconcave
density. On the other hand if (1/0)" has a limit in (—1,1) then there exists a
logconcave density whose mgf is asymptotic to K. This raises two interesting
questions, answer unknown: How does one characterize the asymptotic behaviour
of Laplace transforms of logconcave functions? Does there exist a simple class of
continuous densities which yield a Tauberian condition for Laplace transforms for
which (1/0)" is bounded?

Alternative generalizations of Karamata’s theory are treated in Bingham, Goldie
and Teugels [1987], de Haan and Stadtmdiller [1985] and Balkema, Geluk and de
Haan [1979].
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4. Convergence of convex functions

In this section we briefly review some results about convergence of convex
functions. See Barndorfl-Nielsen [1978] for details.

Given any sequence of convex functions ¢, : R — (—00, 0] and any countable
dense set A C R one may use the diagonal argument to select a subsequence which
converges in each z € A to an element p(z) € [—00,00]. Let u, have density
e~ %~ and suppose u, converges vaguely to a finite measure pu. If p(z) = —oo
in two distinct points z; < zy of A then g, [z1,22] — oo contradicting vague
convergence. If p,(z) — oo for all x € D (with the possible exception of one point)
then the limit measure p is degenerate. We conclude that there is an open interval
D so that ¢ is finite and convex on D N A, and such that ¢ = 0o on A outside the
closure of D. Convergence ¢, — ¢ holds uniformly on compact subsets of D and
¢!, — ¢' weakly on D. To the right of the closure of D the sequence ¢,, tends to
oo and so does ¢!,. To the left ¢, — 0o and ¢!, = —oo. This proves

PROPOSITION 3. Let pi, € LC have density e~ %~. If u, — p vaguely for some
uw € M, and p is non-degenerate then pu € LC with density e~ ¥ and @, — ¢
pointwise on a dense set A C R. The densities f, = e % converge in L' to
f=e"%.

PROPOSITION 4. Suppose p,, € LC for n = 0,1,... has density e %~ and cgf
Kn with domain A, = {k, < oo}. Suppose pn, — po vaguely. Then k, — kg
uniformly on compact subsets of Ag X iR, and the same holds for the derivatives
m%m) for m > 1. In particular X\ € Ay implies X € A,, eventually.

Proof. If sup Dy is finite then sup Ag = oo and sup A,, — oo by the arguments
above. If sup Dy = oo then supAg = sup pj(z). If A € Ag then pp(z — 0) > A
for some z € D, hence (yo(z) — wo(x — h))/h > A for some h > 0, hence this also
holds for n > ng which implies ¢/, (z — 0) > X for n > ng. Hence A < supA,. By
symmetry we also find A > inf Ag implies A > inf A,, eventually.

Let A\; < A2 liein Ag. Then po(z) = x(x) = ¢+ (A1x V A2z) uniformly on R for
some ¢ € R, and ¢, > x — 1 on R holds for n > ng. (Indeed let A\; <0 < A in Aq.
Choose z < y in Dg so that ¢i(z +0) < A; and ¢j(y — 0) > A2. These inequalities
then also hold for ¢}, for n > ng. Convergence is uniform on [z,y]. The inequality
for the derivatives yields the inequality ¢, > x — 1 outside the interval [z, y].)

It follows that K,(¢), n > ng, { € [A1,A2], is uniformly bounded. This also
holds for complex ¢ in [A1, A2] X iR since K, are mgfs. So the sequence K, is
relatively compact. The condition u, — po implies that it converges uniformly
on compact subsets of the vertical strip (A1, A2) X iR, as does the sequence of

derivatives K\™ for any m > 1. O

5. The space L(C19; and the universal constant ag

Let M101 denote the set of all finite measures p on R which satisfy

/du(w) =1, /mdu(x) =0, /a:Qd,u(a:) =1
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and define £C191 = LC N Mjg1. We claim that £C107 is a compact set in M.

For a > 0, b € R and ¢ > 0 define T,p.(r) as the image of the measure p/c
under the affine transformation z — (x — b)/a. The map T : (a,b,c, u) = Tape(t)
from (0,00) x R x (0,00) x M to M is continuous.

PROPOSITION 5. The function o' is invariant under the transformations Typ.:

&'(az+b) =d'(z),  =r(), i =Tapcpt-

Proof. By computation. Let X = (X — b)/a. Then
k() = k(A +&/a) — K(A) — bE/a
gives 62(€) = a?0?(\ + £/a). Now use that o (z) = (1/0)'()) for z = &'()). O
Define £C; as the set of all p with density e~ % such that
infp =0, o(z) <lon (-1,1), p(z) 21 off [-1,1].

It is clear that £C; is compact. Any sequence ¢,, which satisfies the three conditions
above has a convergent subsequence whose limit satisfies these three conditions.
Moreover the mgf K of any measure 1 € £C; is finite on (—1/2,1/2). The functions
w— p(R), p— var(u/p(R)) are positive and continuous on £C, hence bounded
below. Hence LCi01 is the continuous image of £C;. In fact these two spaces
are homeomorphic. The map which associates with p € £C with density e~ the
standardized probability measure p* € LCy91 with density e~ ¢ is continuous. This
yields the following result:

THEOREM 6. The space LC C M is homeomorphic to the product (0,00) x Rx
(0,00) X LC101 and the space LC101 C M is compact.

As a consequence a number of bounds hold uniformly on £C19;. Some of these
are listed below.

PROPOSITION 7. There exist constants by € R, cg > 0, 8o > 0 so that uniformly
m JIRS EClOl

P(2) > bo+dolal, sER
o) 2 co = |¢'(z)] > do
and so that the functions
(5.1) (1, A) = 6™V, p € LCrot, | A < o

are continuous form =0,1,2,....
For any € > 0 there is a constant C > 0 so that

| evldsce  He<Oll<el,  pe Ll
{¢>C}

where p has density e=% and |J| denotes the length of the interval J.

Proof. The corresponding results are obvious for £C;. Take by = —1/2, §¢g =
1/2, g = 1, and use Proposition 4. Hence they carry over to LC101. O
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COROLLARY 1. There exists a constant ag € (0,1] so that |a'(z)| < 2/ao for
weLC, xeD,.

Proof. The result holds for u € £C191 by compactness and (5.1). Now use the
invariance of Proposition 5. O

COROLLARY 2. Suppose u € LC. Then

A+ag/o(A) < Ao, A€EA
A—ag/o(A) = Ao, A= Aso-

Similar results hold for the function a:

z + apa(z) < Too, r€D

z — apa(x) = Too, T — Too-

Proof. We only prove the top set. The first relation is obvious if Ao, = 0.
So suppose A is finite. Then 1/0(\) converges for A — A\, since the derivative
of 1/0 is bounded (by 2/ag see Corollary 1). The limit is zero since else o has a
finite limit in Ao, and then also k and K which contradicts the fact that A is open.
Now observe that on [A, A+ag/c(\)] the function 1/0 is bounded below by 1/20(\)
since the derivative (1/0)’ is bounded by 1/2aqg.

Convergence A—ag/o(A) = Ao for A = A follows from ag /o (X)) < Ao — A, see
above. If Ao = oo then 1/0(X\) < 3A/ag eventually and hence A — ag/o(X) > A/4.
O

6. Proof of Theorem 1

We need only prove the Tauberian half. So we may assume that Ao, =sup A =
supA and &(\) — k(A) = 0 for A = A. We claim that #,, = T and that
f(x) ~ f(z) = 0 for & = Too.

Let by, = oo where b, = k'(A,) and A, = Moo, and let a,, = a(by,) = /£"(An).
Let p} = Tapbpen (r,) With ¢, = K(),) denote the standardized probability
measure. So By, € LC101- By compactness of £C19; we may assume that py, T
vaguely for some 7 € LC1o; with density e~% and that ¢y, — . It suffices to
prove that b, — Fo and f(b,) ~ f(bn).

Note that the cgfs converge:

(61) Vn(g) = K';" (é‘) = H(/\n + g/an) - K:(/\n) - bné-/an — 7(6)7 |£| < o
where v is cgf of . Hence by Corollary 2 A, + £/a, = A, and & — k — 0 gives
(62)  Gn =3, (6) =R +€&/an) = R(An) = bnéfan = (), € <o

which implies @} — ¢ and ¢} — ¢ weakly on R. Hence & _"(0) — v"(0) by
Proposition 4 which implies that the first two moments of the normalized random
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variable (X, — bn)/a, converge to 4/(0) = 0 and 4"(0) = 1 respectively. Hence
&' (An) ~ £"(An) = @2 and &'(\,) — k' (A\n) = o(an) for n — oco. Since &'(A\,) £
G, — Too by Corollary 2 it follows that oo = Teo-

Write

(6.3) e ) = anfx, (bn + anu)/K(An) = anf(bn + an“)el\"(bn+a”u)/K(>‘n)
and similarly
(6'4) e_¢g" (W) = anfkn (bn + anu)/K()‘n) = an.f(bn + anu)e/\" (bntanu) /R()‘n)

Now @5, (0) = $(0) and @}, (0) = $(0) and K(An) ~ K(An) imply f(bn) ~ f(bn).
O

7. Proof of Theorem 2

The basic argument is that replacing Lebesgue measure by the measure p does
not impair weak convergence for the exponential families. We divide the proof into
two parts. First we need a lemma.

LEMMA 8. Suppose p and fi in M have mgfs K and K which are asymptotic
in their common upper endpoint. Then the upper endpoints T, and T of p and
it are equal.

Proof. Assume 2o, = 0 < Z by a change of coordinates. Then K'(A) = u({0})
for A = A and K(A) = co. By symmetry we have o = Foo- O

PROPOSITION 9. Suppose p € LC has density e”% and mgf K and ji € M has
mgf K. Let Ao = sup{K < oo}. If K is finite on [0, o) and K(A\) ~ K(X) for
A = Ay then the upper endpoint o, of [i equals T, = sup{p < oo} and

(7.1) plz, z + va(z)]/a(z) = u, 0<u<ag, T Two

where dp = e¥dji.

Proof. Let A\, = Ao, an, > 0, b, € R, § > 0. Assume (6.1) holds with ~
non-linear, A, + §/a, < A eventually and A, — §/a, = Ax. Then (6.2) holds.
Hence Uy, = (X, — bn)/an = U where U has cgf v and Uy, = U. Note that U
is non-degenerate since +y is non-linear. Hence U has density e~¥ with ¢ € C.

We may restrict i to any interval (g, 2 ) With 2o < Zo without affecting the
asymptotic behaviour of K. Hence assume i lives on D = {¢ < oo} and write

dfi = e ?dp.
Then djix = e~#*dp with ¢x(z) = ¢(z) — Az. Let p, be the image of p/a, under
the affine map z +— (2 — by)/an and 7% the probability distribution of Uy, , e~ %=

the density of Uy,. Then

Cnditd = e_“’:dpn, Cpn = I~((/\n)/K(/\n)
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We claim that p, — A weakly, where X is Lebesgue measure.
Let x be continuous with compact support contained in {¢) < oo}. Then
cne$n — e¥ uniformly on the support of x and ye? is continuous. Hence 70 —

e~¥Yd\ weakly implies
/Xdpn = /cne“’zxdﬁ'g - /Xd)\.

This implies p,[0,u] = u for 0 < u < ag. Hence (7.1) holds for the sequence (by).
By compactness of £Cyo; it holds for x — . O

COROLLARY. 62()\) ~ 02()) for A = A, and hence a(x) ~ a(zx) for z — z.
For the second part we need two lemmas.

LEMMA 10. Let ¢ be convex with domain D = {p < oo}. Let £, = sup D.
Suppose c € D and ¢¥'(c+0) > 0. Let a: D — (0,00) be continuous and let p be a
measure on D. Suppose

ple,y] < 2(y — ¢) + 2qo, y>cy€D.

(7.2) / e Ydp <2 / e~ ¥@) dy + 2gpe=¥(©).
[Cawoo)

C

Proof. By partial integration
oo
/ e Vdp = / ¢ (y)e™?W ple, y]dy.
[e,00) c

Let o be the measure on [¢, ) with density 2 on (¢, Zs) and point mass 2gp in c.
A similar equality holds for o. Then ple,y] < ole, y] gives (7.2). O

LEMMA 11. Suppose p € LC. Then

(7.3) plz,y] <y — = + 2a0(a(z) A a(y)), =,y €D.

Proof. Define 2o = x and zp41 = 2, + aoa(zy,). Let £y <y < Tmi1. Then
a(y) = a(zm)/2 gives the inequality with a(y). Now increase zo until z, = y.
Then a(zo) < 2a(z) gives the inequality with a(z). O

PROPOSITION 12. Let pp € LC have density e ¥ and mgf K. Let p on D =
{¢ < oo} satisfy (7.1). Set dji = e=“dp. Then the mgf K of ji is finite on [0, A)
and K ~ K in A.

Proof. First note that by (7.1) we may assume that

(7.4) plz, x + aga(z)] < 2apa(z), x €D
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replacing D by a cofinal interval (xg, ) if necessary.

Relation (7.1) also holds for the affine transforms p,,, D,, and «,, corresponding
to the functions ¢%. Now assume ¢} — 1. The normalization implies a,(0) = 1,
and |a),| € 2/ag gives agan(v) <1+ 2|v|.

Set J, = [ e ¥ndp,. Then as in (6.3) and (6.4)

Jo = / AT dfin K (M) = K (An) /K (A).

We have to prove that J, — 1.

We first look at the tails of the integral. Let € > 0 be arbitrary. Choose C' > 0
large and let (u,,v,) be the open interval where ¢¥ < C. Lemma 10 applied with
go = aga(vy) gives

o0
/ e_‘p:dpn < 2/ e~ @)y + 2(1+ Un)e_c.
[Unvoo)

Un

A similar result holds for the left tail. Proposition 7 now shows that the tails of
the measures i, u* and of the limit measure 7 may be neglected uniformly.
Now consider the central part

Jn(C) = / e %ndpy.
(un,vn)

We first assume that b, + upa, — To. Since u, — u and v, — v where (u,v) =
{p < C} the functions «,, are uniformly bounded on the intervals (u,,v,) and
L(up,vn)@Pn = l(up)dX weakly where X is Lebesgue measure. Hence J,(C) —
[ e v®at.

It is possible that b, + u,a, does not converge to Zoo. If this occurs then
¢'(z) is bounded and ¢(z) — Aoz has a finite limit for z — oo. In this case
e~ % ~ fo(z) = e~¢"*=%  Our result now follows from Karamata’s theory: The mgf
Ky of fo has the form Ky(Aso — &) = € ¢/£. Since K ~ K ~ Kj in Aso Karamata’s
Theorem states that dji(z) = e *<%dpy(z) where

(7.5) Ro(z) = po(—o00,z] ~ Ko(Aeo — 1/2) =€ ‘2 T — 0.

In this case ap(z) = z (for the exponential distributions expectation and standard
deviation agree), a(x) ~ z and hence the asymptotic relation (7.5) is equivalent to
our relation (2.1). O
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