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ON THE DIFFERENCE BETWEEN
THE DISTRIBUTION FUNCTION OF THE SUM AND
THE MAXIMUM OF REAL RANDOM VARIABLES

E. A.M. Omey

ABSTRACT. Let X denote a nonnegative random variable with distribution
function (d.f.) F(z). If F(x) is a subexponential d.f. it is well known that the
tails of the d.f. of the partial sums and the partial maxima are asymptotically
the same. In this paper among others we analyse subexponential d.f. on the
real line. It is easy to prove that again partial sums and partial maxima
have asymptotically the same d.f.. In this paper we analyse the difference
between these two distribution functions. In the main part of the paper we
consider independent real random variables X and Y with d.f. F(z) and G(x).
Under various conditions we obtain a variety of O-, o- and exact (asymptotic)
estimates for D(z) = F(z)G(z) — F * G(z) and R(z) = P(X +Y > z) —
P(X > z)— P(Y > x). Our results generalize the results of Omey (1994) and
Omey and Willekens (1986) where the case X > 0, Y > 0 was treated.

1. Introduction

Suppose X and Y are nonnegative independent random variables with distri-
bution function (d.f.) F(z) = P(X < z) and G(z) = P(Y < z) and suppose
that Fi(z) < 1, G(z) < 1, Vx € R. The d.f. of max(X,Y) is given by the product
H(z) = F(z)G(x) and the d.f. of the sum S = X +Y is given by the Stieltjes con-
volution product F x G(z) = fom F(x — y)dG(y). Several authors have studied the
asymptotic behaviour as £ — 00, of the tail 1 — FxG(z) in terms of the asymptotic
behaviour of 1 — F(z) and 1 — G(z). In doing so, the class of regularly varying
functions and related classes of functions have proved to be very useful. Recall that
a positive and measurable function a(x) is regularly varying at infinity and with
index « (notation: a(z) € RV (a)) if lima(zy)/a(z) = y*, Vy > 0. Related classes
of functions are defined as follows: for a positive and measurable function a(z) we
have:

2000 Mathematics Subject Classification. Primary 60E99; Secondary 60G50, 26A12.
Key words and phrases. regular variation; subexponential distributions; O-regular variation.

63



64 OMEY

a(z) € L:Vy € R, lima(z +y)/a(z) = 1;
a(z) € OL :Vy € R, a(z +y)/a(z) = O(1);
a(z) € ORV :Vy > 0, a(zy)/a(z) = O(1).

Throughout we consider limits at co and we use the notations a(z) ~ b(x), resp.
a(z) = o(1)b(z), resp. a(z) = O(1)b(z) to indicate that lima(z)/b(z) = 1, resp.
lim a(x)/b(z) = 0, resp. limsup |a(z)/b(z)| < co. Obviously RV C ORVNL C OL
and a(z) € OL if and only if a(log(z)) € ORV.

The concept of regular variation has been introduced in 1930 by J. Karamata,
and his ideas were developed by Karamata himself and by his collaborators and
pupils. The great potential of regular variation for probability theory and its ap-
plications was realized by W. Feller (1971). Other major stimulus came from de
Haan (1970) and from the monograph of Seneta (1976). A comprehensive account
of the theory and applications of regular variation and its extensions can be found
in Bingham et al. (1987). For O-regular variation we also refer to Geluk and de
Haan (1987), Aljanci¢ and Arandelovié (1977).

If1-F(z) € RV(—a) and 1 — G(z) € RV(—a),a > 0, Feller (1971, Chapter
8.8) proved that

1-FxG(z)=1-F(z)+1—-G(z)+0o(1)(1 — F(z)) + o(1)(1 — G(z)).

On the other hand, the tail distribution 1 — H(z) of max(X,Y) is given by
1-H(z)=1-F(z)+1-G(z) — (1 - F(z))(1 — G(z)), which is of a similar form.
If 1 — F(z) € RV(—a) then Feller’s result (with F'(z) = G(x)) implies that

(1.1) 1-F%F(z) ~1=F*z) ~2(1—-F(z)).

A df. F(z) satsfying (1.1) and F(0—) = 0 is called a subexponential distribu-
tion (F'(z) € S). Properties and applications of the class S can be found in e.g.,
Chistyakov (1964), Teugels (1975), Embrechts et al. (1979, 1980) and the refer-
ences given there. It is well known that the class S contains all d.f. F(z) satisfying
1— F(z) € ORV N L. Also, from (1.1) it follows that for all n > 2,

(1.2) 1-F"(z)~1-F"(z)~n(l-F(z)),
(1.3) VyeR, 1-F(z+y)~1-F(x).

Here and in what follows, F*"(z) = P(S,, < z) and F"(z) = P(M,, < x) where S,
is the sum and M, is the maximum of n independent copies of X where X has d.f.
F(z). Relation (1.2) shows that the class S is the class of d.f. for which the tail
of the d.f. of partial sums asymptotically equals the tail of the d.f. of the partial
maxima. Relation (1.3) shows that S C L.

In the past few years, several papers have been devoted to studying the remain-
der term in (1.1) or (1.2). More precisely, for n > 2, let D,(z) = F"(z) — F*"(z)
and let R,(z) = 1 — F*(z) — n(1 — F(z)). If F(z) has a regularly varying
density f(z) € RV(—a), a > 2, then Omey and Willekens (1987) proved that
R,(z) ~ f(x)E(X)n(n —1), Vn > 2. In Baltrunas and Omey (1998), we obtained
estimates of the form R, (z) = O(1)f(z)R(z), where R(z) = [/ (1 — F(t))dt. In
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Omey (1994, 1995), we showed that a refinement in the definition of the class L
leads to a refinement of (1.2). More precisely, we used the classes OD(m) and
D(m,a) defined as follows:

OD(m) = {u: |u(z +y) — u(z)| = O(L)m(z),Vy € R},
D(m,a) = {u € OD(m) : lim(u(z + y) — u(z))/m(z) = ay,Vy € R}.

Here u(z) denotes a measurable function of z and the auxiliary function m(x) is
a positive and measurable function of z > 0. In most cases we shall assume that
m(z) belongs to one of the classes defined before. Some of the main results of Omey
(1994) run as follows.

LEMMA 1.1. [Omey (1994), Corollary 4.3] Suppose F(0—) = 0 and define
Fi(z) = [y ydF(y).

(¢) If F(z) € OD(m) with m(z) € ORV, then D, (z) = O(1)m(z)Fi(z);

(i) If F(z) € D(m,0) with m(z) € ORV, then Dp(z) = o(1)m(z)Fi(z).

LEMMA 1.2. [Omey (1994), Corollary 5.2] Suppose F(0—) =0 and E(X) < 0.
If F(z) € D(m,a) and m(z) € LNORV, then D,(x)/m(z) — an(n — 1)E(X).

Since 0 < Dy(z) — Rn(z) < (5)(1— F(x))?, these results can be used to obtain
asymptotic estimates for R, (z). In the case where E(X) = oo, Omey (1994, Section
5) provides results of a similar type, see also Baltrunas and Omey (1998). Density
analogues of (1.2) and Lemmas 1.1 and 1.2 have been studied in a variety of papers
of which we mention Chover et al. (1973), Omey (1988).

For d.f. on the real line we define subexponential d.f. S in an obvious way. The
d.f. F(z) is subexponential (notation: F(x) € S) if it satisfies 1 — F'(z) € L and
lim(1 — F**(z))/(1 — F(z)) = 2. If F(0—)=0, then (1.1) implies that 1 — F(z)
€ L. In the real case it is unknown if (1.1) alone implies (1.3). To show that
the subexponential property is a one-sided property, let X* = max(X,0), and
H(z) = P(X* < 2).

LEMMA 1.3. F(x) € S if and only if H(x) € S.

PRrROOF. Let X and Y denote i.i.d.r.v. with d.f. F(z). Then X and Y are
iid.r.v. with d.f. H(z). Obviously H(z) = F(z) for z > 0 so that 1 — F(z) € L iff
1— H(z) € L. It is straighforward to prove that for z > 0 we have

0+

PXt+Y*" >2)—P(X+Y >2) =2(1-F(z))F(0) -2 / (1-F(z—y))dF(y).
—00

Assuming that 1 — F'(z) € L, one can use Lebesgue’s theorem on dominated con-

vergence to obtain that

lim(P(Xt+YT >z) - P(X+Y >2))/(1 - F(z)) = 2F(0) — 2 o dF(y) = 0.

—0o0

The result now follows. O

Also the analogue of (1.2) holds.
LEMMA 14. If F(x) € S, then for alln > 2,1 — F**(z) ~ n(1 — F(x)).
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PrROOF. Let X;, Xo,..., X, denote i.i.d.r.v. with d.f. F(z) and let X;~ denote
the corresponding nonnegative parts. Obviously we have X7 + Xo + --- + X, <
X+ X5 +---+ Xt sothat 1 — F**(z) < 1 — H*(x), > 0. Since H(0—) =0
and H(z) € S, we obtain that limsup(l — F*"*(z))/(1 — F(z)) < n. To prove
the lemma we show that b(n) = liminf(1 — F*"*(z))/(1 — F(x)) satisfies b(n) > n.
Obviously b(1) = 1. For n > 0 we have 1 — F*"t1)(g) = I + IT + I1I, where
I= [ (L= F"z~y)dF(y), IT = [* (1 - F(z ~y))dF*™(y) and IIT =
(1 — F**(z))(1 — F(0)). Using the induction hypothesis and Fatou’s lemma, we
obtain that b(n + 1) > b(n) + 1. Hence b(n) > n. This proves the result. O

In the present paper, we plan to study the analogue of Lemmas 1.1, 1.2 where
we drop the assumption that the r.v. are positive. More precisely, let X and
Y denote independent real random variables with d.f. F(z) and G(z). In the
paper we estimate the differences D(z) = P(max(X,Y) < z) - P(X+Y < z) =
F(z)G(z) — FxG(z) and R(z) = P(X +Y >2)—-P(X >z)— P(Y > z). As
a result we generalize Lemmas 1.1 and 1.2 to the real random variable case. In
the next section first we study the classes OD(m) and D(m, a). In subsection 2.2
we provide conditions under which these classes are closed under convolution. In
subsection 2.3 we study D(t) and R(t). We close the paper with some examples
and applications.

2. Main results

2.1. The classes OD(m) and D(m, ). We start our analysis by studying
the classes OD(m) or D(m,a). Clearly these classes are additive versions of the
classes of functions OII and oIl studied by Bingham et al. (1987). Let f(z) denote
a measurable function and let g(z) denote a positive and measurable functions.
Then f(z) € Oll(g) iff |f(zy) — f(z)| = O(1)g(z),Vy > 0 and f(z) € oll(g) iff
f(zy) — f(z) = o(1)g(z),Vy > 0.

If F(z) € OD(m), then f(z) € OIl(g(x)) where f(z) = F(log(z)) and g(z) =
m(log(x)). Using the same notations, F'(z) € D(m,0) implies that f(z) € oIl(g(x)).
To state our results we shall need the Matuszewska indices defined as follows, cf.
Bingham et al. (1987). For a positive and measurable function a(z), the upper
Matuszewska index a(a) is the infimum of those « for which there exists a constant
C = C(a) > 0 such that for each b > 1, limsup a(zy)/a(z) < Cy* uniformly in
1 € y < b. The lower Matuszewska index ((a) is given by «(1/a). Using these
indices we define:

a(x) has bounded increase (a(x) € BI) if a(a) <

a(x) has positive decrease (a(z) € PD) if a(a)

a(x) has bounded decrease (a(z) € BD) if 3(a
a(x) has positive increase (a(z) € PI) if 8(a) >

One can prove that ORV = BIN BD. If a(z) € BI then for each a > a(a),
there exist constants C, z° > 0 such that a(zy)/a(z) < Cy®, Vz > z° and Vy > 1.
If a(xz) € BD, a lower bound can be constructed by using ﬁ( ). Since b(z) € OL
implies b(log(z)) € ORV, the previous result implies that for each 7 > a(b(log(a:)),
there exist constants C,z° > 0 such that b(z +y)/b(z) < Ce™, Vz > z°, Vy > 0.

)> —00;
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If 7 <0, it follows that b(z + y)/b(z) < C, Yz > z°, Vy > 0. A function b(z) is
called almost decreasing (b(z) € AD) if there exist constants C,z° > 0 such that
b(z +y)/b(z) < C,Vz > 2°,Vy > 0. Clearly PD C AD.

Using the results of Bingham et al. (1987) we have the following representation
theorem.

THEOREM 2.1.1. (Representation theorem for OD(m) and D(m,0)) Assume
that u(xz) € OD(m) (resp. u(z) € D(m,0)) and let g(z) = m(log(x)).
(?) If g(x) € BI, there exist constants C € R, and z° > 0 such that

(2.1.1) u(z) = C + n(x)m(z) +/ v(z)m(z)dz, = > z°,
where the measurable functions n(x) and v(xz) are bounded (resp. n(x) = o(1),

v(z) = o(1)). Moreover, |u(z + y) — u(z)] = O(1)m(x) (resp. o(1)m(x)), holds
locally uniformly in y > 0.

(4i) If g(x) € PD, then limu(z) = C exists and C — u(zx) = O(1)m(x) (resp.
C—u(z) = o(1)m(z)). Furthermore, |u(z+y)—u(z)| = O(1)m(z) (resp. o(1)m(z))
holds uniformly in y > 0.

(#i1) If g(x) € BI and xm(z) € PD, then limu(z) = C exists and C — u(z) =
O(1)zm(z) (resp. C —u(z) = o(1)zm(z)).

(iv) If g(z) € BI and zm(z) € PI N BI, then u(z) = O(l)zm(z) (resp.
u(z) = o(1)zm(x)).

ProOOF. (i) This follows from Bingham et al. (1987, Theorem 3.6.1).

(ii) The first part follows from Bingham et al. (1987, Theorem 3.6.17). To prove
the second part, observe that g(z) € PD implies that m(z+y)/m(z) < Ce™,y > 0,
xz > z°, where 7 > a(g). Since a(g) < 0, we can choose 7 < 0. The result now
follows from (2.1.1).

(iii) This follows from (2.1.1) and Bingham et al. (1987, Theorem 3.6.17).

(iv) This follows from (2.1.1) and Bingham et al. (1987, Theorem 3.6.17). O

For the class D(m,a), we can transform the representation obtained by de
Haan (1970), cf. Bingham et al. (1987, Theorem 3.6.6). Note that if a # 0, then
u(x) € D(m, ) implies that m(z) € L and g(z) € RV(0).

THEOREM 2.1.2. (Representation theorem for D(m,a)) If u(z) € D(m,a),
a # 0, there are constants C € R and x° > 0 such that

T

(2.1.2) u(z) = C + n(z)m(x) +/ v(z)m(z)dz, = > z°,

wO
where the measurable functions n(x), v(z) satisfy n(z) = o(1) and v(z) = «a.
In the next result we collect some useful upper bounds for |u(z + y) — u(z)]|.
LEMMA 2.1.3. Suppose that u(z) € OD(m) and g(z) = m(log(z)) € BI.
(i) For each T > a(g), T # 0, there exist positive constants A and x° such that
(2.1.3) lu(z +y) —u(z)| <AL +e™V)m(z), z>2° y=0.
Hence, if g(x) € PI, then |u(z +y) —u(z)| < Am(z), z > 2°, y > 0.
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(i) If m(x) € AD, then there exist positive constants A and x° such that
(2.1.4) [u(@ +1) — u@)| < AQ+g)m(), @3> ° y>0.

(7i1) If m(x) € BD, then there exist positive constants A and x° such that
(2.1.5) lu(z) —u(z—y)| < AQ+y)m(z) z>2°, 0<y <z/2

(iv) If m(xz) € BI, then there exist positive constants A and z° such that
(216)  |ule+y) —u(@)] < AQ+pm(), z>2° 0<y <.

(v) If u(z) € D(m,0), then in each of the statements (2.1.3)—(2.1.6) we can
replace the constants A and x° by an arbitrary € > 0 and by z° = z°(¢).

REMARK. If m(z) € ORV = BI N BD, then g(z) € BI and (2.1.5), (2.1.6)
hold.

PRrOOF. (i) Using (2.1.1), we can find positive constants A, B, z° such that:
Yz > z°, Vy > 0,

z+y
(2.1.7) lu(z +y) — u(z)| < Am(z +y) + Am(z) + B/ m(z) dz.

Since g(x) € BI, for each 7 > a(g), we can find positive constants C, z° such
that m(z + y)/m(z) < Ce™, Yz > z°, Vy > 0. Using this in (2.1.7), we find that
lu(z +y) —u(z)| < ACm(z)e™ + Am(z) + BCm(z)(e™¥ — 1)/7. If 7 > 0, we can
rearrange the terms and find another constant A and obtain (2.1.3). If 7 < 0, we
can find another constant A and replace (2.1.3) by |u(z + y) — u(z)] < Cm(z).
(i) This follows from (2.1.7).
(iii) From (2.1.1) we obtain

lu(z) — u(z — y)| < Am(z) + Am(z —y) + B/z_ m(z) dz.

Now observe that 0 < y < /2, and z/2 < z —y < z < z. Since m(z) € BD it
follows that m(z)/m(z) and m(z — y)/m(z) are bounded as £ — oo. Now (2.15)
follows.

(iv) and (v) Similar. O

2.2. Closure properties. In this subsection we discuss closure properties of
the classes OD(m) and D(m,a). From now on we restrict ourselves to distribu-
tion functions (d.f.). For z > 0 we define (cf. Lemma 1.1) Fi4(z) = [; tdF(t)
and Fl_(.fL’) = ffz(—t) dF(t) Note that F1+(J)) = E(XI(0<X<w)) and Fl_(.ZU) =
—E(XI(_y<x<0)). Using X* = max(X,0) and X~ = max(—X,0), we obtain
E(X*) = Fi4(00) < o0 and E(X™) = Fi_(00) < 00. In the results below, E(x)
denotes an error term satisfying 0 < E(z) < (1 - G(z))F(—z) + (1 — F(z))G(—x).

LEMMA 2.2.1. Assume that m(z),n(z) € ORV and let h > 0.

(?) If F(x) € OD(m), G(x) € OD(n), then FxG(z+h)—FxG(x) = O(1)m(x)+
O(1)n(z) + E(z).

(4¢) If F(z) € D(m,a), G(x) € D(n,f), then F xG(x + h) — F x G(z) =
Bhm(z) + ahn(z) + o(1)m(z) + o(1)n(z) + E(z).
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ProOF. For z > 0, write

z/2
F*G(w):/ Flo - / Gla — 2) dF () — F(z/2)G(x/2).

— 00

It follows that F xG(z + h) — FxG(z) = I + IT + III + IV where

z/2
1= [ (Ga+h-2)-Ga-2)dre)
o2
= / (F@ + h—2) = F(z — 2)) dG(2);
Y
IIT = / (G(z + h— z) — G(z/2)) dF (2);

v = / T e h— 2 - Pl + h)/2)] dO(2).

Proof of (i). In I we split the region of integration into the two parts: z < —z and
—z < z < z/2. The corresponding integrals will be denoted by I(a) and I(b). In
I(a), we have 0 < G(z + h—2) —G(z —2) < 1 = G(z — 2z) < 1 — G(z) so that
0< I(a) £ 1—G(z))F(—x). In I(b) we have /2 < x — 2z < 2z. Using G € OD(n)
and n € ORV it follows that 0 < G(z —z+ h) — G(z — 2) = O(V)n(z — 2) =
O(1)n(z). We obtain I(b) = O(1)n(z)(F(z/2) — F(—=z)) and consequently that
I(b) = O(1)n(z). In a similar way, we obtain 0 < II(a) < (1 — F(z))G(—=z) and
II(b) = O(1)m(z). In III we have /2 < z < (z + h)/2 so that (z + h)/2 <
xz+h—z. Using first G(z+h—2) — G(x/2) = o(1) and then F' € OD(m) we obtain
IIT = o(1)(F((z + h)/2) — F(x/2)) = o(1)m(z/2). Since m € ORV, we find that
IIT = o(1)m(z). In a similar way we find that IV = o(1)n(z). This proves (i).
Proof of (11) We only have to reconsider I(b) and I1(b). Choose an arbitrary
€ > 0. In I(b) we have /2 < z — z < 2z. Since G € D(n,3), we can find
constants A, z° such that for z —z > 2°, n(z —2) /n(z) < A and (Bh—e)n(z—2) <
G(z—2z+h)—-G(z—2) < (Bh+e)n(z—z). It remains to estimate ffg/cz n(z—z) dF(z).
If 8 =0, weuse n(z—2z) < An(z) to see that 0 < I(b) < eAn(z). If 8 # 0, it follows
from G(z) € D(n, B) that n(z) € L. Since n(z—2z) < An(z) and n(z—z2)/n(z) — 1,
we obtain fféz n(xz—2z)dF(z))/n(z) — 1. We conclude that I(b) = (Bh+o0(1))n(z).
The term II(b) can be treated in a similar way. O

For the error term in Lemma 2.2.1 we have 0 < E(z) < (1 — G(x))F(—z) +
(1 — F(z))G(—z). Hence 0 £ E(z) < P(|X| > z)P(|Y| > z). Alternatively, if
F(—z) = 0(1)(1—F(z)) and G(—z) = O(1)(1—-G(z)), then E(z) = O(1)(1—F(x))
x (1 — G(z)). If we assume more about the auxiliary functions m(z) and n(z) or
about the d.f. F(z) and G(z), the error term E(z) becomes negligible.

LEMMA 2.2.2. Assume that m(z),n(z) € ORV.

(?) If F(z) € OD(m), G(z) € OD(n) and if either one of the following condi-
tions (a), (b) or (¢) holds, then Vh € R, FxG(zx + h) — F xG(z) = O(1)m(z) +
O(1)n(z).
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(a) 1 —G(2)F(-z) = O()n(z) and (1 - F(2))G(-z) = O(1)m(z);

(b) m(z) € AD and n(x) € AD;

(¢) there exists § > 0 such that E((X )W+ 4 (Y )M+ < oo,

(4) If F(z) € D(m,a), G(x) € D(n,B) and if either one of the following
conditions (a), (b) or (c) holds, then

VheR, FxG(z+h)—F*xG(z)=(Bh+o(1))m(z) + (ah + o(1))n(x)

(a) A = G()F(—t) = o(1)n(t) and (1 — F(t))G(—t) = o(1)m(t);
() m(z) € AD and n(z) € AD;
(¢) there exists § > 0 such that E((X )W+ 4 (Y —)a(m+9) < o0,

Proovr. (i) First consider h > 0. Under condition (a), the result is obvi-
ous. Under condition (b) we have to reconsider I(a) and II(a). Using G €
OD(n), we can find positive constants A and z° such that I(a) < A f__:O n(x — z)
dF(z), z > z°. Since n(z) € AD, we find that I(a) < An(z)F(—z) and con-
sequently also that I(a) = o(1)n(z). In a similar way we obtain that II(a) =
o(1)m(z). Finally assume that (c) holds. As before we can find positive con-
stants A and z° such that I(a) < A[ [ n(z — 2z)dF(z), = > z°. Now ob-

serve that =" =9 (z) € PD and we can find constants B and z' such that
n(z — 2)/n(z) < B((z — 2)/z)*™+ > 2', 2 < —x. Using another constant
A, it follows that I(a) < An(x) f:;(—z/a:)a(")HdF(z) and I(a) = o(l)n(z).
In a similar way it follows that II(a) = o(z)m(t). In the three cases we ob-
tain that F x G(z + h) — F xG(z) = O(1)m(z) + O(1)n(z). If h < 0 we write
FxGz)— FxG(xz+h) = FxG(x+h—h)— FxG(z+ h). Using the previ-
ous result, we obtain F'x G(z) — F xG(z + h) = O(1)m(z + h) + O(1)n(z + h).
Since m(z),n(z) € ORV C OL, we finally have m(z + h) = O(1)m(z) and
n(z + h) = O(1)n(z).

(#4) The proof of (iz) is similar. O

In the special case where F(z) € OD(m) with m(z) = (1 — F(x))/z, it was
shown in Omey (1995, Proposition 2.1.2) that 1 — F(z) € ORV and hence also that
m(z) € ORV. Note that in this case m(x) is nonincreasing. The next corollary
follows immediately from Lemma 2.2.2.

COROLLARY 2.2.3. Suppose m(z) € ORV N AD.

(?) If F(x),G(x) € OD(m) then F xG(x) € OD(m).

(4¢) If F(z) € D(m, o) and G(x) € D(m,3) then F xG(x) € D(m,a + 3).

REMARK. The same conclusion holds under the conditions (a) or (¢) of Lemma
2.2.2.

For n-fold convolutions we have the following result.

THEOREM 2.2.4. Suppose m(z) € ORV and n > 2.

(?) If F(z) € OD(m) and (1 — F(z))F(—z) = O(1)m(x) or m(z) € AD, then
(z) € OD(m).

(4¢) If F(z) € D(m,a) and (1 — F(z))F(—x) = o(1)m(x) or m(z) € AD, then
F*(z) € D(m,na).

F*n
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PRrOOF. (i) For n = 2, we have F*?(z) = FxF(r) and Lemma 2.2.2.(i) is appli-
cable. We proceed by induction on n. Suppose the result holds for G(z) = F*"(x).
We shall use Corollary 2.2.2(i) to prove the result for F x G(z) = F*"+1)(z). In
the case where (1 — F(z))F(—xz) = O(1)m(z) we have to check the conditions for
G(z). Note that (1 — G(z))F(—z) < n(l — F(z/n))F(—z/n) = O(1)m(z) since
m(z) € ORV. Similarly, we have (1 — F(z))G(—z) < n(l — F(z/n))F(-z/n) =
O(1)m(z). Lemma, 2.2.2(i) is applicable and yields F*("t1)(z) € OD(m).

(4¢) Similar. O

2.3. Estimation of D(t) and R(t). Now we turn to the problem of estimating
D(z) = F(z)G(z) — F x G(x). For x > 0 we rewrlte D( ) as D(z) = I(a) +
I(b)+II( )+ I1(b) + III, where I(a) = f F(z — z) — F(x))dG(2); I(b) =
—f G(z — 2) — G(z))dF(2); II(a ) = Ow/Z(G(:U) — G(z — 2))dF(z); 11(b) =
fowﬂ(F(:c) — F(xz — 2))dG(z) and IIT = (F(z) — F(2/2))(G(z) — G(z/2)).

We estimate the different terms in this expression.

LEMMA 2.3.1. Assume that m(x),n(z) € ORV. (i) If F(z) € OD(m), G(z) €
OD(n), then

II(a) + II(b) + 111 = O(1)m(z)G1+(z) + O(Q)n(z) Fi4(z).
(i¢) If F(x) € D(m,0), G(z) € D(n,0), then
II(a) + II(b) + I1I = o(1)m(z)G14(z) + o(1)n(z) F1 ().

(#4i) If F(z) € D(m,a), G(z) € D(n,B), where a #0, 3#0, E(Xt +YT+) <
00, then II(a) + I1(b) + II1 = BE(X™T) + aE(Y™") + o(1)m(z) + o(1)n(x).

PROOF. (i) First consider II(a) + II(b). Using (2.1.4), we see that there are
constants A, B and z° such that

0< II(a)+11(b) < An(x) /w/2(1+z) dF(z)+ Bm(z) /w/2(1+z) dG(z), Yz > z°.
0 0

We find that II(a) + I1(b) < An(z)(1 + Fi(2/2)) + Bm(z)(1 + G14+(2/2)), Vx
z°. It follows (possibly with new constants A and B) that 0 < II(a) + I1(b)
An(z)Fi4+(z) + Bm(z)G14+(x), V& > z°. Next consider I7I. Using (2.1.4), w
can find constants A, B and z° such that 0 < F(z) — F(z/2) < Azm(z) and
0 < G(z) — G(z/2) < Bzn(z), Yz > z°. On the other hand, from the definition
of Fi+(z) we have z(F(z) — F(2/2))/2 < Fi+(z) — Fi4(z/2). It follows that
0 < IIT € Bn(z)(Fi+(z) — Fi+(z/2)) < Bn(z)Fi4(x). Alternatively, but in a
similar way we obtain that 0 < IIT < Am(z)G14 ().

(4¢) Similar now using Lemma, 2.1.3(v).

(4i1) First consider ITI. In (i) we showed that

0 < 1T < Bn(z)(Fiy () — Fiy(2/2)).

Since E(Xt) < oo, it follows that ITT = o(1)n(z). Next consider II1(a). Since
B # 0 we have n(z) € L, and for each z, we have (G(z)—G(z—2z))/n(z) = Bz. Also,
from (2.1.4) we can find constants A and z° such that 0 < (G(z) —G(z—2))/n(z) <
A(l+2z),for 0 < z < x/2, z > x°. Since E(X™) < 00, an application of Lebesgue’s

2
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theorem on dominated convergence gives II(a)/n(z) — BE(X™). In a similar way
we obtain that IT(b)/m(z) — aE(YT). O

In our next result we consider I(a) and I(b). In the result below E(x) denotes
an error term satisfying 0 < E(z) < (1 — F(z))G(—z) + (1 — G(z))(F(—x).

LEMMA 2.3.2. Assume that m(z),n(z) € ORV.

(?) If F(z) € OD(m), G(z) € OD(n), then I(a) + I(b) = O(1)m(z)G1-(z) +
O()n(x)Fi1_(z) + E(x). Moreover, if m(x), n(z) € AD and if E(X~ +Y ™) < o0,
then I(a) + I(b) = O(1)m(z) + O(L)n(z).

) € 0), G(z) € D(n,0), then I(a) + I(b) = o(1)m(z)G1_(z) +
o()n(x)Fi_(x) + E(x). Moreover, if m(x), n(z) € AD and if E(X~+Y ™) < o0
then I(a) + I(b) = o(1)m(x) + o(1)n(z).

(4i7) If F(x) € D(m,a) and G(z) € D(n, ), where E(X~+Y ™) < 00, a #0,
B #0, then I(a)+1(b) = =BE(X™)—aE(Y ~)+o(1)m(z)+o(1)n(z)+E(x). More-
over, if m(z), n(xz) € AD, then I(a) + I(b) = —BE(X™) —aE(Y ™) + o(1)m(z) +
o(1)n(x).

PROOF. (i) We write —I(a) = T(1) + T'(2), where

—z 0
T(1) = /_ (F(z —2) — F(z))dG(z) and T(2) = /_ (F(z — z) — F(z)) dG(%).

For T'(2), we use (2.1.5) to obtain

(
(i) If F(x) € D(m,

T(2) < Am(z) /_ (1= 2)dG(2) < Am(z)(1 + G1_(z)).

Next consider T'(1). Using F(z — z) — F(z) < 1 — F(z), we always have T(1) <
(1 - F(x))G(—z). We conclude that 0 < I(a) < (1 — F(z))G(—x) + Am(z)G1—_(z).
If m(z) € AD and E(Y ™) < o0, (2.1.4) can be used to see that 0 < —I(a) <
Am(z) f_ooo(l —2)dG(z) = O(1)m(z). The term I(b) can be treated in a similar
way.

(4¢) Similar.

(791) Again we write —I(a) = T'(1) +T'(2). As to T'(2) we can use (2.1.5) and
Lebesgue’s theorem to obtain lim T'(2) /m(z) = aE(Y ~). As before we have T'(1) <
(1 - F(x))G(—x). If m(x) € ADN L, we can use (2.1.4) and Lebesgue’s theorem
to obtain lim(—1I(a)/m(z)) = aE(Y ™). For I(b) we use similar arguments. O

Combining the two lemmas, we have the following theorem. For convenience we
define Up(z) = Fi(z)+ Fi_(z) and define Ug (%) in a similar way. As before, E(x)
denotes an error term satisfying 0 < E(z) < (1— F(2))G(—z) + (1 — G(z))(F(—x).

THEOREM 2.3.3. Assume that m(z),n(z) € ORV.

(¢) If F(z) € OD(m) and G(z) € OD(n), then D(z) = O(1)m(z)Ug(x) +
O)n(z)Ur(z) + E(x). Moreover, if m(z), n(z) € AD and if E(X~ +Y ) < oo,
then D(z) = O(1)m(z)G14(z) + O(1)n(z) Fi4 ().

b/\

(ir) If F(x) €
o()n(z)Ur (z) +
then D(x) = o(1)m

(m,0) and G(z) € D(n,0), then D(z) = o(1)m(z)Uqg(z) +
E(x). Moreover, if m(z), n(x) € AD and if E(X~ +Y ™) < oo,
)Gy () + o(L)n(z) Fi ().

/\A
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(7i1) If F(z) € D(m,a) and G(z) € D(n,f), where E(|X|+ |Y|) < 00, a # 0,
B #0, then D(z) = BE(X) + aE(Y) + o(1)m(z) + o(1)n(z) + E(z). Moreover, if
m(z), n(z) € AD, then D(z) = BE(X) 4+ aE(Y) + o(1)m(z) + o(1)n(z).

REMARKS. 1) In Theorem 2.3.3 the error term E(x) disappears if we as-
sume that m(z), n(z) € AD together with a moment assumption. Alternatively
(cf. Lemma 2.2.2), if in Theorem 2.3.3(1) we assume that (1 — G(z))F(-=z) =
O(1)n(z)Ur(z) and (1 — F(z))G(—z) = O(1)m(z)Ug(x), then we obtain that

D(z) = O(1)m(z)Ug(z) + O(1)n(z)Up (z).

If in Theorem 2.3.3(ii) we assume that (1 — G(z))F(—z) = o(1)n(z)Ur(z) and
(1 — F(2))G(-z) = o(1)m(x)Ug(x), then we have D(z) = o(1)m(z)Ug(z) +
o(V)n(z)Ur(x).

2) Note that Up(z) < Vp(z), where Vp(z) = [ P(|X| > z) dz. It readily fol-
lows that Up,g(z) < Visag(z) < 2VF(2w)+2Vg(2w) and that Vi (z) < n2Ve(nz).

The previous results can be used to obtain information about the asymptotic
behavior of R(z), where R(z) = P(X +Y > z) — P(X > z) — P(Y > z). Note
that 0 < D(z) — R(z) = (1 — F(2))(1 — G(z)). In the next result, C'(z) denotes an
error term satisfying |C(z)| < E(z) + (1 — F(z))(1 — G(x)).

COROLLARY 2.3.4. Assume that m(z),n(xz) € ORV .

(?) If F(z) € OD(m), G(z) € OD(n), then

R(z) = O()m(x)Uqg(z) + O(1)n(z)Ur (z) + C(x).
(#3) If F(z) € D(m,0), G(z) € D(n,0), then

R(z) = o(1)m(z)Uq(z) + o(1)n(z)Ur (z) + C(x).
(i11) If F(z) € D(m,a), G(z) € D(n,p), where E(|X| + |Y]) < o0, a # 0,
B #0, then R(z) = BE(X) + aE(Y) + o(1)m(z) + o(1)n(z) + C(z).
(iv) Moreover, if zm(z),zn(z) € PD and E(|X|+ |Y]|) < oo, in each of the
results (1), (i1) and (i1i) we have C(z) = o(1)m(z) + o(1)n(x).

PROOF. Only part (iv) needs some clarification. If zm(z),2zn(z) € PD, The-
orem 2.1.1(iv) shows that 1 — F(z) = O(1)zm(z) and 1 — G(z) = O(1)zn(z).
Hence (1 — F(z))G(—z) = O(1)zm(z)G(—z). Since E(]Y|) < oo, we obtain
(1 - F(2))G(—z) = o(1)m(x). In a similar way we obtain (1 — G(z))F(—z) =
oggn((x))and (1-F(z))(1—G(x)) = o(1)n(z). This shows that C(z) = 0(1)n(w)$

Now we are ready to prove the analogue of Lemmas 1.1 and 1.2 in the real case.
For n > 2, let D,(z) = F™(z) — F*"(z) and R,(z) = 1 — F*"(z) — n(1 — F(z)).
Note that |D,(z) — Ra(2)| < (3)(1 — F(z))>.

THEOREM 2.3.5. Assume that m(z) € ORV and that E|X| < oo.

(¢) If F(x) € OD(m) and if either m(z) € AD or (1 — F(z))F(—=x
O(1)m(z), then Dy(z) = O(1)m(z) and Rn(x) = O(1)m(z) + O(1)(1 — (96))2

(4¢) If F(x) € D(m,0) and if either m(z) € AD or (1 — F(x))F(-z) =
o(lym(x), then Dy(x) = o(Lym(x) and Ra(z) = o(1)m(z) + O()(1 — F(2))*.
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(791) If F(z) € D(m, ), a # 0, and if either m(z) € AD or (1—F(z))F(—z) =
o(1)m(z), then Dyp(z)/m(z) - aE(X)n(n—1) and Ry (z) = aE(X)n(n—1)m(z)+
o(1)m(z) + O(1)(1 — F(z))2.

(iv) Moreover, if also zm(z) € PD, then in (i), (ii) and (iii) we have (1—F(z))?
= o(1)m(z).

Proor. (i) First suppose that m(z) € AD. For n = 2 the result is the content
of Theorem 2.3.3(i) with F(z) = G(z). For n > 2 we proceed by induction on n.
For n > 2, let G(z) = F**(x). In Theorem 2.2.4 we proved that G(z) € OD(m)
Theorem 2.3.3(i) can be applied again and we obtain F(z)G(z) — F « G(z) =
O(1)m(z). Since Dpy1(x) = F(x)Dy(z) + F(2)G(x) — F * G(x) the first result
follows by our induction hypothesis. If (1 — F(z))F(—z) = O(1)m(x), we use
Theorem 2.2.4 and Remark 1) following Theorem 2.3.3. The result for R, (z)
follows at once.

(4¢) and (447) Similar.

(iv) If zm(x) € PD, as before we have 1— F(z) = O(1)zm(z) and (1-F(x))? =
o(l)ym(x). O

REMARKS. 1. If E(X) = 0, it should be possible to refine part (iii) of the
previous result. This will be done in a forthcoming paper.

2. The case where E|X| = oo is more complicated. In this case it seems
appropriate to replace the estimate of Theorem 2.3.3(i) by D(¢t) = O(1)m(t)Va(t) +
O()n(t)Ve(t) + E(t). As an example we consider D, (z) in the OD(m)-case.

PROPOSITION 2.3.6. Suppose that F'(z) € OD(m) where m(z) € ORV and
suppose that (1—F(z))F(—z) = O(1)m(z). Then Dy(z) = O(1)m(z)Vr((n—1)z).

PRrOOF. If n = 2, this follows from Theorem 2.3.3(i). For n > 2 we proceed by
induction on n. Let G(z) = F**(z). As before we have

(1-F@#)G(-t)+ (1 - G@®)F(-t) = O(1)m(t), and G(z) € OD(m).
An application of Theorem 2.3.3(i) gives G(z)F(z) — Gx F(z) = O(1)m(z)Va(z) +
O(1)m(z)Vr(z) so that G(z)F(z)—GxF(x) = O(1)m(z)Vg(nz). Since Dy y1(z) =
F(z)D,(z)+G(z)F(x)—G*F(z), by our induction hypothesis we obtain D,, 1 (z) =
O(Yym(z)VE (nz).

O

The previous results can also be used to determine for example the asymptotic
behavior of P(X +Y < —z)— P(min(X,Y) < —z). To see this replace X by —X and
Y by =Y and consider the d.f. F*(x)=P(—-X <z), G*(z)=P(-Y <z). In this case
we have Up+(t) = Ur(t), Ug~(t) = Ug(t). For t > 0, we have (1 — F*(t))G*(—t) =
P(X < —t)P(Y > t). If X and Y are continuous r.v. this gives F(—t)(1 — G(¢))
and the error function E(t) is the same for (X,Y) and for (—X,-Y). Assuming
that F*(z) € OD(m*), G*(z) € OD(n*), Theorem 2.3.3 gives

F*(#)G*(t) — F* xG*(t) = O()m*(t)Ug(t) + O(1)n* (t)Ur(t) + E(t).
Hence

P(X +Y < —t) — P(min(X,Y) < —t) = O(1)m* ($)Uq(t) + O)n* (t)Ur (£) + E(t)
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and
P(X+Y <—t)-P(X<—t)—-P(Y <—t) = O(1)m*(t)Ug (t)+O0(1)n* (t)Ur (t)+C(t).

3. Examples and applications

3.1. Suppose that F( ) has a den51ty f(z) € L. In this case, for z, y > 0
we have F(z +y) — = [J f(z + 2z)dz and F(z) € D(f,1). If E|X| < oo,
f(z) € ADNORV and ( F(z))? = o(1)f(z), then Theorem 2.3.5 shows that
R,(z) = E(X)n(n—1)f(z)+0(1)f(z) and D,(z) = E(X)n(n—1)f(z)+o(1) f(z).
Suppose for example that X has a Student-distribution. In this case X is
symmetric and has a density of the form f(z) = C(1+22/a)~(**1)/2 2 € R, where
a and C are positive constants. Clearly f(z) € RV(—a — 1) If a > 1, we obtain
that R, (z) = o(1) f(z) and D, (z) = o(1) f(x).
3.2. Suppose that F(z) € D(m,a),with E|X| < oo, m(z) € RV (4), 6 < 0,
and (1 — F(z))?> = o(1)m(z). Under these conditions we obtain that R,(z) =
(1+0(1))aE(X)n(n — 1)m(z). Replacing z by nz we obtain

P(X > z) —nP(X > nz) = aBE(X)n(n — )nm(z) + o(1)m(x).

It follows that the d.f. of X belongs to D(m,an?*?).

3.3. Take F(z) as in Example 3.2. Let a > 0 and consider F,(z) = P(aX <x)
= F(x/a). Tt easily follows that F,(z) € D(m,aa'~%). Now suppose that X and
Y areiid. with d.f. F(z) and take a > 0, b > 0. Under the present conditions it
follows from Theorem 2.3.3 that

P(aX+bY >z)—P(aX >z)+P(bY >z) = aE(X)(ba™' 2 +ab™' ~%)m(z)(14+0(1)).

This in turn implies that the d.f. of aX +bY is in the class D(m, a(a= 170 +b7179)).

More generally, let X (7), i = 1,2, ...,k denote i.i.d. random variables with d.f.

F(z). Using weights w(i) > 0,4 =1, 2 .k weset W = Zle w(i)X (7). Under
the present conditions, we have

k
P(W>m)—z Pw(i)X(i)>z) = aB(X Z (Zw —1-m (w)(l—}-o(l)).

=1 N i#y

Also, the d.f. of W belongs to D(m o) Z( (@)t 5). If w(i) = 1/k, this is the
result of Example 3.2.

3.4. In the so-called CAPM model (see e.g., Block and Hirt (1994) or Sharpe
(1964)) the return R(i) of the asset 4 is related to the risk free return r(f) and
the return R on the market portfolio: R(7) = r(f) + b(i)(R — r(f)) — Q(¢). Here
Q (%) measures the unsystematic risk or specific risk of asset 7. If we construct
a portfolio of k assets using weights w(i) > 0, w(l) + w(2) + --- + w(k) = 1,
then the return of the portfolio is R(p) = r(f) + b(p)(R — 7(f)) — Q(p), where
b(p) = Y w(i)b(i) and Q(p) = YF w(i)Q(i). Being interested in an estimate for
P(R(p) —r(f) < —z) = P(z < b(p)(r(f) — R) + Q(p)), we can use our results with
X =b(p)(r(f) — R) and Y = Q(p). Linear combinations of the form @Q(p) have
been considered in Example 3.3. For simplicity we take w(i) = 1/k and assume that
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the Q(i) are i.i.d. with d.f. F(z) satisfying the assumptions of Example 3.3. Let
G(z) = P(X < z) and suppose that F(z) € D(n, ). Under appropriate conditions
we obtain that

P(R(p) —r(f) < —=z) — P(b(p)(r(f) — R) > =) — P(Q(p) > z)
= BE@Q®)(1 + o(1))m(z) + ak®b(p)(r(f) — E(R))(1 + o(1))n(z) + E(x).
If the Q(i) have mean E(Q(i)) = 0, then we have
P(R(p) —r(f) < —=z) = P(b(p)(r(f) — R) > ) — k(1 — F(kz))
= o()m(z) + ak**°b(p)(r(f) — E(R))(1 + o(1))n(z) + E(x).

If k is large, usually one approximates P(Q(p) > ) using a normal distribution.
In this case the expression involves the square root of k.

References
S. Aljanéi¢ and D. Arandelovié (1977), O-regularly varying functions, Publ. Inst. Math.
(Beograd) (N.S.) 22(36), 5-22.
A. Baltriinas and E. Omey, (1998), The rate of convergence for suberponential distribu-
tions, Liet. Mat. Rink. 38(1), 1-18.
N. H. Bingham, C. M. Goldie and J.L. Teugels, (1987), Regular Variation, Encycl. Math.
And Appl., Cambridge University Press, Cambridge.
S.B. Block and G. A. Hirt, (1994), Foundations of Financial Management (7th edition),
Irwin Series in Finance, Sydney, Australia.
V.P. Chistyakov, (1964), A theorem on sums of independent positive random variables
and its application to branching processes, Theory Prob. Appl. 9, 640-648.
N. Chover, P. Ney and S. Wainger, (1973), Functions of probability measures, J. Anal.
Math. 26, 255-302.
P. Embrechts, C. M. Goldie and N. Veraverbeke, (1979), Subexponentiality and infinite
divisibility, Z. Wahrsch. Verw. Geb. 49, 335-347.
P. Embrechts and C. M. Goldie, (1980), On closure and factorization properties of subez-
ponential and related distributions, J. Austral. Math. Soc. Ser. A 29, 243-256.
W. Feller, (1971), An Introduction to Probability Theory and its Applications, Vol. 2, J.
Wiley, New York.
J. Geluk and L. de Haan, (1987), Regular Variation, Extensions and Tauberian Theorems,
CWI tract 40, Mathematical Centre, Amsterdam.
L. de Haan, (1970), On Regular Variation and its Applications to the weak Convergence
of Sample Extremes, M. C. Tracts 32, Mathematical Centre, Amsterdam.
J. Karamata, (1930), Sur un mode de croissance réguliére des fonctions, Mathematica
(Cluj) 4, 38-53.
E. Omey and E. Willekens, (1986), Second order behaviour of the tail of a subordinated
probability distribution, Stoch. Proc. Appl. 21, 339-353.
E. Omey and E. Willekens, (1987), Second order behaviour of distributions subordinate to
a distribution with finite mean, Comm. Stat. Stoch. Models 3, 311-347.

E. Omey, (1988), Asymptotic properties of convolution products of functions, Publ. Inst.
Math. (Beograd) (N.S.) 43(57), 41-57.



DIFFERENCE BETWEEN PRODUCT AND CONVOLUTION PRODUCT 77

E. Omey, (1994), On the difference between the product and the convolution product of
distribution functions, Publ. Inst. Math. (Beograd) (N.S.) 55(69), 111-145.

E. Omey, (1995), On a subclass of reqularly varying functions, J. Stat. Planning Inference
45, 275-290.

E. Seneta, (1976), Functions of Regular Variation, Lecture Notes in Mathematics 506,
Springer-Verlag, New York.

W.F. Sharpe, (1964), Capital Asset Prices: a theory of market equilibrium under condi-
tions of risk, J. Finance 19, 425-442.

J.L.T. Teugels, (1975), The class of subexponential distributions, Ann. Prob. 3, 1000-
1011.

E. Willekens, (1986), Hogere orde theorie voor subezponentiéle verdelingen, Ph.D. thesis
(in Dutch), Catholic University Leuven.

EHSAL
Stormstraat 2
1000 Brussels
Belgium



