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TAUBERIAN RETRIEVAL THEORY

Caslav V. Stanojevié¢ and Vera B. Stanojevié

ABSTRACT. Karamata’s Hauptsatz [11] and its corollary is the main tool for
convergence recovery from Abel’s necessary conditions and the control of os-
cillatory behavior of limiting processes. By modifying the basic discovery from
[11], relaxing Abel’s necessary conditions and lightening the control of oscil-
latory behavior an extended Tauberian theory is outlined. This theory goes
beyond convergence recovery. It retrieves various kinds of moderate diver-
gence.

1. Abel’s discovery of manageable divergence

Although Abel denounced divergence as devil’s invention, he discovered [1] a
device that controls divergence of sequences u = {u,} by requiring the existence of

z—1—

(1.1) lim (1 — 2) 1i7ranukzk = A(u).
k=0

Hence the class A of all sequences for which (1.1) exist is a class of sequences whose
divergence is manageable. That is, those sequences range from convergent ones up
to not so badly divergent ones. This situation opens a new area of Analysis, namely
Analysis of Divergence. Indeed, using some devices that restrict the oscillatory
behavior of sequences or their modes of boundedness one could retrieve convergent
sequences out of A. For instance, nAu,, = n(u, — un—1) = 0o(1), n — oo is such a
device, or

n

1 ZkAuk =o0(1), n— o©

1.2 VO (Au) =
(1.2) ) (Au) P

a less obvious one, found by Tauber [2]. Thereafter there was an open season
on finding more subtle devices that would retrieve convergent sequences out of
A. Littlewood [3] found a special manner of bounding (1.2). To this end he proved
that

(1.3) nAu, = 0(1), n—= 0
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retrieves convergence of u = {un} out of (1.1). From there on it was harder to
design such devices and even harder to prove that they work. For instance, Hardy
and Littlewood [4], thought of

1 n
14 —_— Pl|Aug|P = O(1 1
(1.4) TFT 2 PAup =0, oo, p>1,

but Szasz [5] proved that (1.4) is a suitable device for the convergence recovery of
u = {un} out of (1.1). It turns out that all these devices (1.2)—(1.4) are special cases
of a truly new concept introduced by Landau [6]. His original definition of slow
oscillation as well as the later one of Schmidt [7] were cumbersome to use in the
proofs, and moreover they did not provide enough of insight into the nature of the
concept of slow oscillation. For that reason definition given in [8] and extensively
used in [9,10] is given below.

DEFINITION 1.1. A sequence u = {u,} in a normed linear space with norm || - ||
is slowly oscillating if

(1.5) lim lim
A=+ n n+1<k<[)\n]

Z Auj| =
There is a generalization of slow 0sc1llat10n.

DEFINITION 1.2. A sequence u = {u,} in a normed linear space with norm || - ||
is moderately oscillatory if for A > 1

(1.6) lim
n n+1<k< An]

z Auy;

A few lines below demonstrate how Deﬁmtlon 1.1 is easy to use. For u = {u,}
assume (1.4). Then

lim lim

, [An] /p
< U — 1] Pl|Au;|P
A=l n n+1<k<[,\n] < Jim (A —1) 1m< +1 ZJ |Auj] )

A—1+4

Z Auy;

S 1
< 1l _N\Yao\t/rfim| - D P
< Jim (A= 1)VA hrrln([)\n]_}_l j:zlj | Au| >

<C lim A-1D)Y\YP =0, 1/p+1/g=1
A—1+4

where C' comes from (1.4). This is a sufficient proof that sequences with property
(1.4) are slowly oscillating. In closing this section we shall define another important
concept of Landau [6].
DEFINITION 1.3. A real sequence u = {u,} is left onesidedly bounded if for
some C' > 0 and all nonnegative integers n
Uy = —C.

Landau [6] proved that if {nAu,} is left onesidedly bounded and lim,, (1)( )

exists, then lim,, u, = lim,, o (1 )( ).
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Hardy and Littlewood [4] improved Landau’s theorem by proving that if (1.1)
exists and {nAwu,} is left onesidedly bounded, then {u,} converges to the limit
(1.1), i.e., A(u).

2. Karamata’s Hauptsatz and its ramifications

As seen in the Section 1, the research after Tauber’s discovery has been focused
on finding more wide classes of sequences, via devices that controlled oscillatory
behavior. Very little attention was directed to the nature of (1.1). Until a young
mathematician Jovan Karamata from Beograd, made a fundamental discovery re-
garding (1.1).

KARAMATA’S HAUPTSATZ. [11] For the real sequence uw = {u,} such that

n
(2.1) lim (1~ 2)lim > upzh = Au)
k=0
exists, let
(2.2) up > —C

for some C > 0 and all nonnegative integers n. Then for every Riemann integrable
function g on (0,1)

n 1
(2.3) lim (1 —z)lim Z upg(z®)zk = A(u)/ g-
rz—1— n =0 0
PROOF. Since for o > 0, replacing 2 by 2! 7%, we have
- A(u)
. _ : ak .k — .
S -t S wattat = A,

k=0
consequently for every polynomial P on (0,1)

Tz—1—

n 1
lim (1 —z) limZukP(xk)mk = A(u)/ P.
" k=0 0

For every Riemann integrable g on (0,1) and every € > 0 there are two polynomials
p < P on (0,1) such that p < g < P on (0,1) and fol(P — p) < e. Hence (2.3)
follows. O

The parametric form of (1.1) with respect to the space R(0,1) of all Riemann
integrable functions on (0,1), i.e., (2,3), provides many opportunities by choosing
g. For instance choosing = e~ /" and

0, 0<t<e?
1/t, el<t<1

(2.4) go(t) = {

the limits (1.1) that is an iteration of a discreet and a continuous limit, becomes
quite manageable and yields the following important special case of Karamata’s
Hauptsatz.
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COROLLARY TO KARAMATA’S HAUPTSATZ. Let (2.1) and (2.

lim o (u)
n

PROOF. In the proof of Hauptsatz take go as defined in (2.4).
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2) hold. Then

SOIE

O

The two major results of the classical Tauberian theory are now examples for

the Corollary to Karamata’s Hauptsatz.

EXAMPLE 2.1. For the real u = {u,} let (1.1) exist. If (1.5) holds, then
limu, = A(u).
n

From (1.5) it follows that A% (Au) =
nonnegative integers Ve )(Au)

0O(1), n — oo. Thus for some C >
—C. From (1.1) we have that A(V () (Au))

0 and all
=0.

Therefore, applying the Corollary to Karamata’s Hauptsatz we have

Vrfl) (Au) =

Since A(c™M(u)) =

o (W (w)) yields lim, o5 (u) = A(u).

= A(u), the identity oM

1 n
] ZVk(O)(Au) =0(1), n— occ.
k=0

(w) — o (w) = VAV(AV), o) (u) =

Finally (1.5) recovers

limu,, = lim o) (u) = A(u).

EXAMPLE 2.2. For {nAu,} as in Definition of 1.3 let (1.1) exist; then lim,, u,, =

A(u). From
(2.5)

for some C
as in Example 2.1 V;{" (Au) = o(1), n

nAu,

>-C

> 0 and all nonnegative integers n, it follows V(O) (Au) > —C. Then

— oo and lim, o )( ) = A(u). For the

recovery of lim,, u,, as A(u) we have only (2.5). However, Definition 1.3 suggests

the following identities.

[An] +1

(26) un =0l (u)+ n] =7

(ot

1 n

for A\>1;andfor 1 < A <2
+1
1)n]
1

)

1)n]

Un = 0050 nm 1 () T T

From (2.6) we have

1n] (u)—

imuy, < im ol (u)

) — o () -

Z ZAuJ

[An] —n
] k=n+1 j=n+1

oy 1 (D) = o @)

=1
+1 Z Z AUj.
k=n—[(A—1)n] j=k+1

Z Z —Auy).

k n+1 j=n+1

oD (u )) +11m
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or, noticing that —Awu; < C/j and that the second term above vanishes,

[An] k
lmu, < lmof (u )+11;ln[ o —"k;m%l_ <limof)(u) + ClgA.

Finally letting A — 1+ we obtain
lim u, < limo(® (u).
n n
In a similar way from the identity (2.7) we have
limu, > limof!) (u) - Clg A

and

lim u,, > lim a%l)(u).
n n

For a different set of identities (2.6) and (2.7) see [9]. Thus
lim u,, = lim o{) (u).
n n

Example 2.2 is celebrated Hardy-Littlewood theorem. These two examples
demonstrate the power of Karamata’s discovery and its methodology. In the next
section we shall use this methodology to expend classical and neoclassical Tauberian
theory into Tauberian retrieval theory.

3. Tauberian Retrieval Theorems

In this section we will extend the classical Tauberian theory that recovers con-
vergence of sequences out of the existence of (1.1) and certain additional conditions
that control the oscillatory behavior of sequences. Instead u = {u,} we shall con-

sider sequences that are related to u = {un} such as o™ (u) = o) (0™ (u)),

> 1, where o )( ) = u, and 0(1)( )= P E ug; and

V™ (Au) = oD (V=D (Aw)), m < 1.

In our main theorem we shall show that assuming the existence of A(V®)(Au)) and

left onesided boundedness of {nA (nAVTEU (Au)) } with respect to some nonnegative
sequence M = {M,}, the sequence {u,} will be retrieved as slowly oscillating. As
a corollary to this theorem we have the classical convergence recovery of {u,}.

THEOREM 3.1. For the real sequence u = {u,} let there exist a nonnegative
sequence M = {M,} such that

(3.1) {g %}

is slowly oscillating, and

(3.2) nA(nAVY (Au)) > —M,
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for all integers n > 1. If

(3.3) lim (1 - 2)lim 2”: Vi (Au)z* = AV (Aw))

rz—1—
k=0

exists, then u = {uy,} is slowly oscillating.

PrOOF. The condition (3.1) implies that 0(1)( M) = E Mj, is bounded.

n+ 1 =
N (NG (Au)) > —C for
1 k=0

Hence there is a constant C' > 0 such that
all integers n > 1. Thus

VIV (Au) = VP (Au) — (VP (Au) - VP (Auw)} > -C.
The existence of the limit (3.3) implies that

1 2 2 3
zl_l}r{lﬁ(l —x hmz [ 1A ) (Au) — Vk( )(Au) — (Vk( )(Au) - Vk( )(Au))] zF = 0.

Hence by the corollary to Karamata’s Hauptsatz

kA (vk(?) (Au) — V) (Au)) = o(1), n— oo
k=0

and consequently both {Vi*(Au)} and {V\*(Au)} are vanishing as n — oo.
Therefore

VO(Au) — VIV (Au) = nAVV (Au) > —C.
Applying the identities and inequalities from Example 2.2 for the pair {Vrgl)(Au)}
and vanishing {Vn(2) (Au)} we obtain that VY (AU) = o(1), n = oo. Recalling
that
nA(nAVY (Au)) = nAVO (Au) — (VD (Au) — VIV (Aw)) > - M,
and that
Vi (Au) = VP (Au) > -C
we get
nAVO(Au) > — M,
Applying identities and inequalities from Example 2.2 to {V,SO) (Au)} and vanishing
{V,gl) (Au)} we have V% (Au) = o(1), n — co. Finally from

n (O)A
= VO (Aw) +Z%+“O

k=0

it follows that {u,} is slowly oscillating, and for some slowly varying {L(n)}

un, = O(L(n)), n — oo. O
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As a corollary to above observation we obtain that there exists a finite interval I

. Un (r) . Un(r) _
such that for every r € I there is a subsequence { L(n(r))} such that ll(II; m =
n\r

r. For more details of this kind of results see [10].
COROLLARY 3.1. In Theorem 3.1 replace (3.3) by the existence of lim (1 —z)

n Tz—1—
x lim 3 oV (u)e™ = A(eW(u)). Then limu, = A(c® (u)).

As an example to this we have the classical Tauberian theorem. That is, replace

n
(3.3) in Corollary 3.1 by the existence of lim (1 —z)lim 3 ugz® = A(u). Then
lim,, u, = A(u). e " k=0

Notice that Theorem 3.1 can be generalized by replacing (3.1) with requiring
that {3p_, My/k} is moderately oscillatory. In this case we retrieve {u,} as
moderately oscillatory sequence.
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