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ABSTRACT. We study cardinal invariants b, and t., the natural general-
izations of the invariants b and t to a regular cardinal k.

0. Introduction

The cardinal invariants b and t were introduced by Rothberger [Ro39], [Ro48].
They are cardinals between N; and 2% and have been extensively studied over
the years. The survey paper [Bsxx] contains much information about these two
invariants as well as many other cardinal invariants of the continuum.

The goal of this paper is to study the natural generalizations of b and t to higher
regular cardinals, namely b, and t, respectively, where k is a regular cardinal. The
results presented here are that the relationship t < b (shown by Rothberger [Ro48])
also holds for b,, and t,, and that, assuming, e.g., that k = k<* > 1, if k < p < t,
then 2% = 2#. These results are then used as constraints in the forcing construction
of models in which b, and t, can take on essentially any preassigned regular value.

The cardinal b, was studied in [CuSh:541] where it was shown that the value
of b,, does not have any influence on the value of 2* for Kk < u < by even if GCH
is assumed to hold below k. However, the same does not hold for t,; as it is shown
in Section 2.

In an earlier version, a wrong “improvement” of Section 1 was used and we
thank the referee for detecting this.

1. Conventions and elementary facts

1.1. NoTATION. 1) For cardinals A and & let [k]* = {X C k: |X| = A} and %%
is the set of functions from X to k. The symbol &* is used to denote the cardinality
of theset {f:f: A — k}.
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2) For A,B € [k]"let AC* Biff [ANB| < kand A C* Biff |[ANB| <
kA |B N Al = k. Let “A is an almost subset of B” mean A C* B. For f,g € "x
let f <* giff 38 < k Va > B(f(a) < g(a)). Then F C "k is unbounded (or
<*-unbounded) in (“k, <*) mean that Vf € "k 3g € F(g £* f).

3) For a filter D on a set A let A = Dom(D).

1.2. DEFINITION. For regular cardinal & let

b, = min{|F| : F C "k and F is <* -unbounded in "k},

t, = min{|7|: T C [&]%,|T| > &, T is well ordered by C*,
(VC e [k]*)(|c~C|=rk=>3A € T|ANC| =k))
T is with no C* -last element

and has no C* -unbounded subset of cardinality < k}.

(Observe that some of the requirements in the definition of t, follow from the
others.) In this notation b = b,, and t = t,.

An equivalent formulation of t, is obtained if D* is used instead of C*. Standard
arguments show that

1.3. FAcT. For any regular cardinal k, kT < by, tx < 2* and in the definition
of b, F may be assumed to be well ordered by <* and consisting only of strictly
increasing functions. Thus, both b, and t, are regular cardinals.

If kK > w then there exists a countable C*-decreasing sequence of elements in
[£]", which does not have a lower bound with respect to C*.

1.4. FacT. t, < bg.

PROOF. On the case k = w see, e.g., [Bsxx]. So assume k > w and by way of
contradiction assume b,; < t.. Let {f, : @ < b} C "k be <*-unbounded in (“k, <*)
and without loss of generality by 1.3 such that o < 8 = f, <* fg. Foreach o < b,
let Co ={€ < k:V( < E(fa(C) < &)} Then each C, is closed unbounded in  and
a < B Cg C* Cy. Easily, (Va < b,)(3B)(a < B < by ACg C* Cy), so without
loss of generality @ < 8 — C3 C* Cy. Since k < 3, and we are assuming that
be < tx, thereis A € [x]" such that Va < b,(A C* Cy). Let f : K — A be such that
VE < k(€ < f(£)). Fix a < by, and let iy € [£]<" be such that A\ iy C Cy \ iq-
Let £ € kN iq and ¢ = min(Cy, \ (€ +1)) and note that f,(£) < ¢ by the definition
of C,. However, AN & C Cy N& and € < f(£), so ¢ < f(€). In other words,
(V€ € kN in)(fa(€) < f(&); hence f is a <*-bound for {f, : & < b,}. Thisis a
contradiction and the lemma is proved. O .4

2. Combinatorics

The goal of this section is to show that if, e.g., k<* = k > J, then 2¢ = 2%
for any p with Kk < p < t,. Naturally we start from the scheme of the proof of
w < p<t— 2" =2¢ namely to use u < t,; to construct a binary tree in (P(k), C*)
of height p. However, when & is uncountable a difficulty arises in the construction
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at limit stages of cofinality less than k, a case which does not occur when k = Ng.
The difficulty comes from the fact that a C*-decreasing sequence in [k]* of limit
length less than x may not have a lower bound. To deal with this difficulty, a notion
of a closed subset of k with respect to a certain parameter is introduced next.

From where comes the condition x > J,? From using a result from pcf theory
[Sh:460], so called “revised GCH”.

2.1. MAIN LEMMA. If k is regular, then for every pu < t, we have 2# = 2~

provided that at least one of the following conditions holds:

CND;: k > 2, and kK = K<F.

CNDy: diamond on k or at least DE,, (see below, see more e.g., in [Sh:460]).

CNDs;: there is a sequence D = (Ds, : § limit < k and v < 7;) such that:

(a) vs < & (for each limit § < k)

(b) Dys, is a filter on & to which all cobounded subsets of & belongs

(¢c) for every unbounded subset of A of k, for stationarily many ordinals § < K
we have: for some v <5, ANd € Ds,

(d) moreover, if T < k 1is regular and A; an unbounded subset of k for i < K
and for i < j < T, Aj is an almost subset of A; (i.e., A; C* A;) then for
stationarily many § < k some y < 75 satisfies: for every i < T we have
A;Nd e Ds. .

2.2. DEFINITION. Let D/, mean: k is regular uncountable and there is a
sequence (P, : a < k) such that:

(a) Py is a family of subsets of a

(b) P, has cardinality < &

(c) for every A C k the set {d < k: ANJ € Ps} is a stationary subset of «.

PRrOOF. By [Sh:460], CND; implies CND,. Easily CND, implies CNDj, so we
shall assume the latter. Let E be a club of k such that each member is a limit
ordinal and § < a € E implies (0 + 5 + w) < «a; here ¢ always denotes a limit
ordinal. The proof is preceded by a definition and some facts.

Below A, B denote subsets of &, a fix regular uncountable cardinal; unbounded
means unbounded in k.

2.3. DEFINITION. 1) A subset A of & is called (E, D)-closed when: for every
deE,if ANd € Ds,, then §+ v € A.

2) The atomic (E, D)-closure atcl(A) of A, a subset of kK is AU{§+7:48 €
E,y<vsand ANd € D5, }.

3) We define cl*(A) for A a subset of ¥ and a an ordinal, by induction on
a:c*(A) = AuJ{atcl(cl’(A)) : B < a}.

4) We define the (E, D)-closure of A, cl(A) as c1*(A) for every a large enough;
(see 2.4(3)).

2.4. Fact. (1) k is (E, D)-closed, unbounded in &.

(2) For o < 3 we have A C cl®*(A) C cI’(A).

(3) cl*(A) C cI"(A) = cP(A) if a < & < B.

(4)If § € E and A C k then cl(AN (8 + 75)) = cl(A) N (8 + vs).
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2.5. Fact. For A a subset of k

(a) cl(A) is a (E, D)-closed set

(b) cl(A) is the m1n1mal (E, D)-closed set which includes A

(¢) cl(A) is bounded (in &) if A is bounded (in fact if A is a subset of § € E

then cl(A) is a subset of § + v5)-

2.6. Fact. If A is (E, D)-closed and unbounded, and B is an unbounded,
almost a subset of A then cl(B) is an unbounded, (E, D)-closed almost subset of
A.

ProOOF. By 2.4(4).
2.7. FAcT. cl(A) is the increasing union of cl(A N a) for a < &.

2.8. Fact. If A is (E,D)-closed and unbounded (subset of ) then we can
find two disjoint (E, D)-closed unbounded subsets of it.

Proor. We choose by induction on i < k, ordinals «;, ; such that:
(¥) a;,B; are distinct members of A and larger than the supremum of the
(E, D)-closure of {a;, 3 :j < i}.
There is no problem to do it and cl({a; : ¢ < k}), cl({B; : i < k}) are two sets
as required. Oy 8

2.9. Fact. If A; is a (E, D)-closed unbounded subset of k for i < 7, T a
regular cardinal < k and for ¢ < j < 7 the set A; is an almost subset of A4; then
their intersection is a (E, D)-closed unbounded subset of .

PROOF. By the last demand in CNDj, i.e., clause (d). Os.9

CONTINUATION OF THE PROOF OF 2.1. Now let u < t,. We choose by induc-
tion on ¢ < p for every sequence 7 of zeroes and ones of length ¢, a set A, such
that:

(A) A, is a subset of & of cardinality

(B) A, is (E, D)-closed

(C) if p is an initial segment of 7 then A, \ A, has cardinality <

(D) if p € °2, e < ¢ then A,-(g), Ap-(1) are dls_]omt

If we succeed, clearly {A, : p a sequence of zeroes and ones of length u} is a
family of 2# pairwise almost disjoint subsets of k, so 2#* < 2* thus finishing.

In stage ¢ = 0 use fact 2.4(1).

In limit stages of cofinality > k, we use the hypothesis u < t; to get an
unbounded A9, almost included in each A for e < (. Let A, be cl(AY), it is
(E, D)-closed (by fact 2.5, clause (a)) is unbounded (by fact 2.5, clause (c)) and is
almost a subset of A, for each € < { by Fact 2.6.

In limit stages ¢ of cofinality < k, we choose an increasing sequence (¢; : i <
cf(¢)) of ordinals < ¢ converging to ¢. We let A) = {4, : i < cf(¢)}. By the
Fact 2.9, A9 has cardinality x. Let 4, be the (E, D)-closure of A%, now 4, is an
unbounded (E, D)-closed subset of k (see Fact 2.5, clauses (c), (a)), it is almost
subset of each A,., by Fact 2.6, hence is as required.

Lastly, for successor stages use Fact 2.8. Oy
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2.10. REMARK. In Lemma 2.1 it suffices to assume the following variant.

CNDy: we can find a set D such that:

(a) D is a family of < & filters

(b) each filter D from D, is a filter on some a = a[D] < k

(¢) if A € [r]"then for some D € D we have! ANa[D] € D

(d) if 0 =cf(d) <k and A; € [k]" for i < kand i < j < § = A; C A; then for
some D € Dwehave j <= A; €D

(e) for each 8 < k, the set {D : BN a[D] € D} has cardinality < &.

Why? First note that for some D

(x) D =(D; :i € S*) list D with no repetitions where a[D;] < i and S* C & is
unbounded.

[Why? Note that |D| < & by clause (a) but if |D| < & then o* = |J{a[D]: D €
D} is < Kk so A =: (a, k) € [k]" but by clause (c) there is D € D, such that
AN a[D] € D easy contradiction. So together |D| = &, let (D : i < &) list D,
and let us define (i) < & strictly increasing such that a[D?] < ((i). Now let
S* ={¢(i) : i <A}, D¢(iy = D} ]

Alsolet E be {0 < A: 6 = sup(S*NJ),  limit ordinal and fornoa < § < ¢ € S*
do we have a N Dom(D¢) € D¢}, so E is a club of A, and continue as above

3. Forcing

For regular k we know that k < t, < b, both regular, so we may wonder are
there additional restrictions.

We use the previous section by which if ., 2% < 2* then t < A, so making by,
larger than some such A guarantees this.

Let x be a regular uncountable cardinal and let A, u, # be cardinals such that
k< A< p <60 with A\, g regular and cf(f) > A. This section deals with the
construction of a model for t, = A, b, = p and 2 = #. The idea behind the
construction is as follows: Start with a countable transitive model (c.t.m.) N for
ZFC+GCH. Expand N to a model M by forcing with the standard partial order
for adding T many subsets of A (see below). Then

M “VE< A28 =¢T A2) =0T,

In M, perform an iterated forcing construction with < k-supports of length
6 - p (ordinal product) with k-closed and xt-c.c. partial orders as follows: At
stages which are not of the form 8- ¢ (£ < p) towers in (P(k), C*) of height 7 are
destroyed for k < n < A. At stages of the form 6 - £ a function from k to & is added
to eventually dominate all the functions from s to x constructed by that stage.
The bookkeeping is arranged in such a way that by the end of the construction all

lwe can let D be over Dom(D) C a, no real difference
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towers of height n for Kk < 17 < A are considered so that in the final model t, > A.
However, in the final model

VE(E<h =20 =ENARSESCA= 2 =0)A2" =0t

so that, by the previous section, t, = A. By virtue of adding dominating functions
at stages of the form 8- £, the final model has a scale in (k", <*) of order type p so
that b, = p.

The rest of this section deals with the details of the construction. In showing
that the final model has the desired properties it is important to know that cardinals
are not collapsed. A standard way of proving this is to show that the final partial
order obtained by the iteration is k-closed and has the k*-cc this follows (see
[Sh:80]) but a self-contained proof is given. And to show that the final partial order
has the two properties, the names for the partial orders used in the iteration must
be carefully selected. The discussion here will be analogous to the discussion in the
final section of [Ku83] which deals with countable support iterations. Also many
proofs are omitted here since they are analogous to the proofs of the corresponding
facts in [Ku83].

3.1. DEFINITION. Let P be a partial order and 7 a P-name for a partial order.
w is full for < k-sequences iff whenever o < k, p € P, p¢ € dom(w) (£ < o) and for
eaché < (<a
plk“p¢,pe € A pe < pe”
then there is a o € dom(r) such that p - “o € 7” and p I+ “o < p¢” for all € < a.

The reason for using names which are full for < x-sequences is because of the
following

3.2. LEMMA. Let M be a c.t.m. for ZFC and in M let

(Pg: &< a),(me : € < a))
be a < k-support iterated forcing construction and suppose that for each &, the
P¢-name ¢ is full for < k-sequences. Then P, is k-closed in M.

The next few paragraphs show how to select names for partial orders in the
construction so that they are full for < k-sequences. First consider the partial order
which destroys a tower in (P(k), C*). Let € be a regular cardinal with k < e < A
and a = (as : £ < €) a tower in (P(x),C*). In the following subsets of k are
identified with their characteristic functions.

3.3. DEFINITION. T, = {(s,z) : sis a function A dom(s) € kAran(s) C 2Az €
[€]<n} with (52,1172) g (817261) iff
(1) s1 Cs2 Az C o, (2) V€€ z1Vn € dom(se) \ dom(sq)(ag(n) < s2(n)).

Then T, is a partial order and it is k-closed and x™-c.c. (assuming K< = k).
Let G be T,-generic over M and b = |J{s : Jz((s,z) € G)}. Since G intersects
suitably chosen dense subsets of T, in M, then b C k,|b| = |& N\ b = k and
V& < e(ag C* b) so that a ceases to be a tower in M[G].

Since the < k-support iteration is sensitive to the particular names used for
the partial orders, a suitable name for T, is formulated next.
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3.4. DEFINITION. Assume that P € M, (P is k-closed) and
11k “r is an étower in (P(k),C*)”.
A standard name for T, is (o, <4, 1,), where

o = {{op(5,p),1p) : s is a function A dom(s) € k Aran(s) C 2A

11k “pC7A|p| <K’ Apis anice name for a subset of 7}

and 1, = op(0,0).

Here op is the invariant name for the ordered pair and p is a nice name for a
subset of 7 if p = |J{{n} X A; : # € dom(7)} and each A, is an antichain in P. It
is irrelevant what type of name we use for <, as long as it is forced by 1p to be
the correct partial order on T...

In M, let P, 7, and o be as in the definition above. Let G be P-generic over M
and a = 7. Then in M[G], og = T,. In addition, o is full for < k-sequences.

The dominating function partial order is considered next. Let F' C k*. In the
final construction F' will be equal to k*, but for the general discussion F' is any
subset of k".

3.5. DEFINITION. Dr = {(s,z) : s is a function A dom(s) € kA ran(s) C
k Az € [F]<*} where (s2,z2) < (s1,21) if

(1) s1 Cs2 Amy C ma,

(2) Vf € r1Va € dom(sz)\ dom(s1)(f(a) < sa(a)).

Then D is a partial order and is s-closed and x*-c.c. (assuming x<* = k).
Let G be Dp-generic over M and g = U{s : 3z((s,z) € G)}. Then since G
intersects suitably chosen dense subsets of Dg in M, g is a function from k to k
which eventually dominates every function in F', i.e., Vf € F(f <* g).

3.6. DEFINITION. Assume that P € M, (P is s-closed)™, and 1 IF “p C k*”.
The standard P-name for D, is (¢, <y, 1y), where

1 = {({op(3, ), 1p) : s is a function A dom(s) € k Aran(s) C kA
Iplk“¢ CpAld| <K A

¢ is a nice name for a subset of ¢}

and 14 = op(0,0).

The choice of the P-name <y is, once again, irrelevant as long as it is forced
by 1p to be the correct partial order on I, .

In M, let P, @, 1, be as above. Let G be P-generic over M and F' = ¢g. Then,
in M[G], ¥¢ = Dr. In addition, ¢ is full for <k-sequences. The use of full names
for < k-sequences will guarantee, as indicated earlier, that the iteration is k-closed.
The use of standard names will imply that the iteration also satisfies the k™ -cc so
that all the cardinals are preserved in the final model.

Now follows the main result of this section.
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3.7. THEOREM. Let N be a c.t.m. for ZFC + GCH and, in N, let K < A <
u < 6 be cardinals such that k, A\, u are regular and cf(8) > X. Then there is a
cardinal preserving extension M[G] of N such that

MG | “4a = AAb, = uA 25 =0

PRrROOF. Let a, 3 be cardinals with a regular, o < 8, and cf(8) > a. Then
Fn(B8 x a,2,a) is the standard partial order for adding S-many subsets of a (see
[Ku83]). It is a-closed and a™-c.c. (assuming a<* = @), so it preserves cardinals.

Let N be a c.t.m. for ZFC + GCH. In N, let K < A < p < 0 be cardinals
such that &, A\, u are regular and cf(6) > k. The goal is to produce an extension of
N in which t, = A, b, = p and 2 = . Let H be Fn(8T x A,2, \)-generic over N
and let N[H] = M. Then

M= “ZFC +VE < A28 =¢F) + 22 =017

K, A\, p are still regular and all the cardinals are preserved. Now, in M, perform an
iterated forcing construction of length 6 - p (ordinal product) with < k-supports,
i.e., build an iterated forcing construction

((Pe: €< 0-p), (me - £<0-p))

with supports of size less than x each IP¢ having cardinality < A.

Given P¢, if £ is not of the form 6-¢, list all the Pg-names for towers in (P (k), C*)
of size 7 for all £ < n < X; for example, let (0§ : v < #) enumerate all P¢-names o
such that for some 7, with K < n < A, ¢ is a nice Pc-name for a subset of (7 x k)
with the property that there is a name T,§ such that

Lk “rf ={z Cr: 3 <nlz) ={v: ((v) € of}

is a tower in (P(k), C*) of size n}”.

Let © = (@-p)N{6-&: &£ <p}andlet f:0 — (8- pu) x 0 be a bookkeeping
function such that f is onto and V¢, 8, v(f(§) = (B,7) = B < ). If f(&) = (B,7),
let 7¢ be a Pg-name for the same object for which 77 is a Pg-name. Let m¢ be the
standard Pg-name for T,,. And if £ is of the form - (, let ¢¢ be a P¢-name for "
and let m¢ be the standard P¢-name for D, . This finishes the iteration.

By Lemma 9 Py.,, is k-closed in M. In fact, Py., has the property that each
decreasing sequence of length < x has a greatest lower bound so that the set
P" of elements p € Py., with the property that the first coordinate of p(vy), for
v € dom(p), is a real object and not just a P,-name, is dense in Py.,,. Therefore,
to show that Pg., also has the xt-cc in M it suffices to show that P’ has the
kt-ccin M. So, in M, let p* € P! for v < kT. By k<* = k, the A-system
lemma (see Theorem I1,1.6 in [Ku83]) implies that there is an X € [k+]*" such
that {support(p?) : v < x*} for a A-system with root r. Let p” = (p/ : £ < 8- p),
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and let pz = op(§g,ag). By k< = k, thereis a Y € [X]"Jr such that for all £ € 7,
the s{ for v € Y are all the same; say s{ = s¢ for { € 7 and v € Y. But then the
pY for v € Y are pairwise compatible; to see this observe that if v,0 € Y, then p7,
p° have as a common extension (p¢ : £ < 6 - u), where pg is

(a) p7 if & & support(p®),  (b) pf if & & support(p?), (c) op(3¢,0¢) if € €,

where o¢ is a nice name which satisfies 1¢ I- “o¢ = o/ U O'g”. So Py.,, has the
kT-c.c. and together with being k-closed preserves all the cardinal numbers. Let
G be Py.,-generic over M. Since at each stage of the form 6 - ¢, a function from
k to k is added which eventually dominates all the functions in k* constructed by
that stage, it follows that, in M[G], there is a scale in (k", <*) of order type u so
that b, = p. In addition, since at each stage of the iteration a new element to *
or P(k) is added, it follows that M[G] | “2% = |8- u| = 6”. Finally, M[G] contains
no towers in (P(k), C*) of order type 1 for K < n < A since by the bookkeeping
device all such towers are considered and eventually destroyed at some stage of
the iteration, so that t, > A. However, M[G] E “V&é(k < £ < A — 28 = 6)” and
M[G] | “2* = 0% since M | “2* = §1” and clearly ¢, holds (e.g., without loss
of generality M[G] = ¢k and k-closed forcing preserve it so that by the previous
section t, = A. This finishes the proof of this theorem. O
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