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THE CATEGORY
OF COMPACT METRIC SPACES
AND ITS FUNCTIONAL ANALYTIC DUALS

Branka Pavlovié

ABSTRACT. A Lipschitz algebra Lip(X,dx) over a compact metric space
(X,dx) consists of all complex valued continuous functions on (X, dx) which
are Lipschitz with respect to dx and the standard metric on the complex plane
C (absolute value). The norm on Lip(X,dx) is given by ||f|| = sup{|f(z)| :
z € X} +sup{|f(z) — f(y)|/dx(z,y) : ¢,y € X & = # y}. We show that
the category CLip in which objects are Lipschitz algebras and morphisms are
algebra homomorphisms is dual to the category CMet in which objects are
compact metric spaces and morphisms are Lipschitz maps. Let (X, d) be any
metric space, and let Y = {(z,y) € X X X : ¢ # y}. De Leeuw derivation
defined by the metric d is the operator D : Cp(X) — Cy(Y) be defined by
(Df)(z,y) = (f(y) — f(z))/d(z,y) for (x,y) € Y. We consider the category
CDer in which objects are pairs (C(X), Dx ), where (X, dx) is a compact met-
ric space and Dx is the corresponding de Leeuw derivation, and morphisms
are all homomorphisms v : C(X) — C(Y) for which f € Domain(Dx) implies
vf € Domain(Dy ). We show that CDer is equivalent to CLip, and that CDer
is dual to CMet.

1. Introduction and definitions

It is well known that the following two categories are dual: (1) the category in
which objects are compact Hausdorff spaces and morphisms are continuous maps;
(2) the category in which objects are commutative unital C*-algebras and mor-
phisms are homomorphisms. Recent work in noncommutative geometry ([2, 7])
has prompted a search for functional analytic representation of metric spaces and
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for a functional analytic characterization of their geometric properties. The goal of
this paper is to show that similar to how topological spaces have their functional
analytic counterpart in C*-algebras, metric spaces have their functional analytic
counterpart in Lipschitz algebras. We also want to show that just as there is a
connection between a metric and the underlying topological space (if X is a com-
pact Hausdorff space, metric is a continuous function on X x X satisfying certain
conditions), there likewise exists a connection between a Lipschitz algebra and the
underlying C*-algebra A via the de Leeuw derivation on A.

DEFINITION 1.1. A map f: X — Y from a metric space (X,dx) to a metric
space (Y, dy) is said to be Lipschitz if there exists a constant M such that for all
z,y in X

The smallest such constant is called the Lipschitz constant of f.

The Lipschitz constant of f, p(f), can be expressed explicitly as

p(f) =inf{M > 0:dy(f(2), f(y)) < Mdx(z,y) Vr,y € X}
= sup{dy (f(2), f(¥))/dx (z,y) : 3,y € X &z # y}.

When Y is a normed space p(f) is also called the Lipschitz norm of f (it is in fact
a semi-norm).

If (X,dx), (Y,dy), and (Z,dz) are metric spaces, and f : X - Y andg:Y —
Z are Lipschitz maps, then g o f is Lipschitz with p(g o f) < p(f) p(g). Since the
composition of two Lipschitz maps is Lipschitz, and the identity map on X is the
identity morphism in the categorical sense, it follows that compact metric spaces
(as objects) and Lipschitz maps (as morphisms) form a category. We denote it by
CMet.

Let (X,dx) be a metric space. We denote by Lip(X, dx) the set of all bounded
complex valued continuous functions on (X, dx) which are Lipschitz with respect
to dx and the standard metric on the complex plane C (absolute value). Let
1 lloe = sup{|£()| : @ € X}. Define a norm on Lip(X, dx) by |f]l = [I£llec +p()-
With respect to pointwise operations Lip(X, dx) is a self-adjoint Banach *-algebra
over X (|la*|| = ||al|, @ € the algebra, and the *-operation is complex conjugation).

DEFINITION 1.2. A commutative Banach x-algebra A is called Lipschitz if there
exists a metric space (X, dx) such that A = Lip(X,dx).

If (X,dx) is compact, then Lip(X,dx) = {f : f € C(X) and p(f) < oo},
and it is a unital, natural, regular, self-adjoint Banach function algebra over X
[1, 6, 8]. Clearly, Lipschitz algebras over compact metric spaces (as objects) and
unital*-homomorphisms (as morphisms) form a category, which we denote by CLip.

Let (X,d) be any metric space. Let Y = {(z,y) € X x X : z # y}, and let
Cy(Y) denote the space of all bounded continuous complex valued functions on Y.
For f € Cy(X) and b € Cy(Y) let f.b and b.f be defined by (f.b)(z,y) = f(z)b(z,y)
and (b.f)(z,y) = f(y)b(z,y), (z,y) € Y. Then Cyp(Y) is a Cp(X)-bimodule (for
this and the subsequent definition see [3] and [7]).
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DEFINITION 1.3. Let (X, d) be any metric space, and let Y = {(z,y) € X x X :
z #y}. Let D: Cp(X) = Cp(Y) be defined by

fly) = (=)
d(z,y)
for (z,y) € Y. We say that D is the de Leeuw derivation defined by metric d.
Tt is easy to see that D is indeed a derivation, and that Dom(D) = Lip(X,d) =
{f € Cy(X) : DIl < o0} (see [7)). Clearly | Dl = p(f), for f € Dom(D).
DEFINITION 1.4. Let (X,dx) and (Y,dy) be compact metric spaces, and let
(C(X),Dx) and (C(Y), Dy) be the corresponding algebras of continuous functions

with de Leeuw derivations defined by the corresponding metrics. We say that a
homomorphism v : C(X) — C(Y) is Lipschitz if the following condition holds:

(Df)(z,y) =

(1.1) f € Dom(Dx) implies vf € Dom(Dy).

Since the composition of two Lipschitz homomorphisms is Lipschitz, and the
identity homomorphism on C(X) is identity morphism in categorical sense, it fol-
lows that commutative unital C*-algebras with de Leeuw derivations as objects,
and Lipschitz homomorphisms as morphisms form a category. We denote it by
CDer.

NotE 1.1. All homomorphisms of algebras which we encounter here are au-
tomatically continuous, since each of them is from a Banach algebra into another
commutative semisimple Banach algebra.

The main goal of this paper is to prove the following result, which is a direct
consequence of Theorem 2.2 and Theorem 3.1.

THEOREM 1.1. The category CLip is equivalent to CDer, and CLip and CDer
are the duals of CMet.

This result shows that Lipschitz algebras are indeed a functional analytic coun-
terpart of compact metric spaces. The general direction in which this research aims
is to find a reasonable noncommutative analog of a metric space. This result shows
that we need a good definition of a noncommutative Lipschitz algebra. So we need
a functional analytic characterization of (commutative) Lipschitz algebras in the
C*-algebra setting. This characterization should be similar to the characterization
of C(X), the algebras of all continuous functions over compact Hausdorff spaces, as
the unital commutative C*-algebras. This is where the importance of the category
CDer comes from. Suppose we can find a characterization of de Leeuw derivations
in C*-algebraic terms, i.e., as derivations from commutative C*-algebras satisfying
certain conditions. Lipschitz algebras would then be characterized as domains of
such derivations. Then we can define the noncommutative de Leeuw derivation as a
derivation from any C*-algebra (not necessarily commutative) satisfying the same
conditions, and we can simply define the noncommutative Lipschitz algebra as the
domain of such a de Leeuw derivation. At the moment we do not know of such a
desired characterization of de Leeuw derivations. However, it is clear that such a
characterization would have to rely on the results of [7], which state the conditions
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which any operator from a C*-algebra, which defines a metric on the state space
of that algebra, has to satisfy.

2. The categories CMet and CLip

We will use the following relation between two metrics on a space.

DEFINITION 2.1. Two metrics d; and d» on a space X are said to be boundedly
equivalent metrics if there exist constants C7 > 0 and Cy > 0 such that

Cldl(.’l}',y) S d2($7y) S Cle(:L.Jy)
for any =,y € X.

Note that this is the same as saying that the identity map on X, Iy, is Lipschitz
both as a map from (X,d;) to (X,dz) and as a map from (X, ds) to (X,d;). It is
easily seen that the topology on X induced by ds is the same as the one induced
by di. The Lipschitz algebras over (X, d;) and (X, d») are also similarly related.

PRrOPOSITION 2.1. [8, Corollary 3.5] Let di and da be bounded metrics on X.
Then Lip(X,d;) and Lip(X,ds) have the same elements if and only if di and do
are boundedly equivalent.

Similar relationship holds for their norms.

PROPOSITION 2.2. Let di and d> be bounded metrics on X. The norms on
Lip(X,d1) and on Lip(X,dz) are equivalent if and only if d; and da are boundedly
equivalent.

PROOF. Suppose that d; and dy are boundedly equivalent. Then for f €

:sup{lfz)mgy :U,yEX&a:;éy}
:sup{|f2$£§y|jfg g:m,yEX&m#y}
\sup{lf;)(w gy x,yGX&m;éy}x

up{zlg y; tx,y € X&méy} =pa(f) P12(Ix)

where py5(Ix) is the Lipschitz constant of Ix as a map from (X,d;) to (X,ds).
Similarly, po(f) < p1(f) P21 (Ix), where pyy (Ix) is the Lipschitz constant of Ix as
a map from (X, dz) to (X,d;). Hence

171l = [[flleo +P1(f) < Iflloc +P1(F) Pra(Ix)
< max{1, pyo(Ix) }([[flloo + P2(f)) = max{1,pi5(Ix)} [ fl2-

Similarly, | f||2 < max{1, ps1 (Lx )} f]|1-

Conversely, suppose that the norms are equivalent, that is, there are constants
C and K such that for any f € Lip(X,di) we have p; (f) < Cp,(f) and po(f) <
Kp,(f). Let z,y € X. Let the function f; be defined by fi(z) = di(z,y), and
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let the function f2 be defined by f2(2) = da(z,y). Then p,(f1) = 1, py(f1) < K,
D5 (f2) =1 and p,(f2) < C. We obtain

d@y) _A@ - h@l ey g

dz(él?,y) d2(.’IJ,y)
and
dy(z,y) _ |fo(z) — f2(y)]
= < < Ca
dl (Z‘,y) dl(x7y) pl(fz)
which shows that the two metrics are boundedly equivalent. O

In order to show that CMet is dual to CLip we also need the following result
which we quote from [8].

THEOREM 2.1. [8, Theorem 5.1] Let A; = Lip(X;, d;) where (X;, d;) is compact,
i = 1,2. Then every homomorphism v : A1 — Ay is of the form

(2.1) Wf)(z) = f(F(z) fe€h, z€Xs
where F' : Xo — X7 satisfies
(2.2) di(F(z), F(y)) < Kda(z,y) z,y € Xz

for some positive constant K. Conversely, if v is defined on A; by the equation
(2.1) where F : Xo — X satisfies the condition (2.2), then v is a homomorphism
of Ay into As. v is one-to-one if and only if F(X3) = X1. v takes Ay onto As if
and only if F satisfies the additional condition

K'dy(z,y) < di(F(2), F(y)) =,y € X

for some positive constant K "
We single out the following easy fact which we need later.

PROPOSITION 2.3. Let (X,dx) be a metric space and let Y be a topological
space homeomorphic to X via 7 : X — Y. Then dy defined by dy(y1,y2) =
dx (77 (y1), 7 1(y2)) is a metric on'Y such that the metric and the original topology
on'Y coincide. Furthermore, both 7 and 7= are Lipschitz maps between (X,dx)
and (Y, dy) of Lipschitz constants p(7) = p(t— 1) = 1.

PROOF. Let U be any open subset of Y. Then 7=1(U) is open in X and there
exists an open ball B(zg,7) = {z € X : dx(wo,z) < 7} C 7 '(U). Moreover,
7(B(zg,r)) = {7(x) : * € B(wo,r)} = {7(z) : v € X & dx(z0,7) <7} ={y €Y :
dy (y,7(z9)) < r} = B(1(x0),r) is an open ball which is contained in U.

Conversely, by the same argument as above, any open ball in (Y,dy) is the
image of an open ball in (X,dx) which is an open set in X, and thus so is its
T-image in Y. O

We denote by 14 the identity map (morphism) on an object A. For example:
ToMmes is the identity functor on the category CMet; Ix is the identity map on the
set X, i.e., Ix(xz) = z for all z € X; and I is the identity automorphism of an
algebra A, i.e., 14 f = f for all f € A.
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THEOREM 2.2. Let (X,dx) and (Y,dy) be compact metric spaces, i.e., objects
in CMet, and let F : (X,dx) — (Y,dy) be a Lipschitz map, that is a morphism
in CMet, i.e., F € Hom((X,dx),(Y,dy)). Let T : CMet — CLip be defined
by T(X,dx) = Lip(X,dx), and let TF : Lip(Y,dy) — Lip(X,dx) be defined by
(TF)g=goF for g € Lip(Y,dy).

Let A =Lip(X,dx) and B = Lip(Y,dy) be objects in CLip, and letv: B — A
be a homomorphism, i.e., v € Hom(B, A). Let S : CLip — CMet be defined by
SA = (Xsa,dsa), where Xsa is the character space of A, and dsa is a metric on
Xsa defined by

(2.3) dsa(§,m) =sup{|{f —nf|: fe A& fll <1},

for&,m € Xga; let Sv: SA — SB be defined by (Sv)(€)g = &(vg) for £ € Xga and
g € B =Lip(Y,dy). Then:

(a) T is a contravariant functor from CMet to CLip;
(b) S is a contravariant functor from CLip to CMet;
(c) SoT is naturally isomorphic to Icmer and T o S is naturally isomorphic to
Tovip-

We conclude that CMet and CLip are dual categories.

PROOF. (a) By the quoted Theorem 2.1, TF € Hom(Lip(Y,dy),Lip(X,dx))
for every F' € Hom((X,dx), (Y,dy)). Clearly TIx =Irx,since (T'Ix)f = folx =
f, for all f € Lip(X,dx). Let G € Hom((Y,dy), (Z,dz)). Then for h € Lip(Z,dz)
we have

(T(GoF))(h)=ho(GoF)=(hoG)oF
=TG(h)o F =TF(TG(h)) = (TF oTG)(h),

which means that T(G o F) =TF o TG. So T is indeed a contravariant functor.

(b) Since A = Lip(X,dx) € CLip is a unital natural commutative Banach
algebra, by Gelfand theory Xg4 is a compact Hausdorff space homeomorphic to
X via 7x : X — Xgg4 defined by (rx(z))f = f(z) for z € X and f € A. Let
&,n € Xga be such that £ = 7x(z) and n = 7x(y) for some z,y € X. Then
dsa(§,m) = dsa(rx(z),7x(y)) and so

(2.4) dsa(§n) =sup{|¢f —nf|: fe A& |fll <1}
= sup{|(rx(2))f — (=x W) f| : f e A& ||Fl| <1}

) _ dX (SU, y)

=sup{|f(z) = f(W)|: fe A&|fl| <1} = T+ dx(z.y)

To check the validity of last equality in the above equation, note that the value
dx(z,y)/(1+dx(z,y)) is achieved by the function f defined by f(2) = min{d(z, 2),
d(z,y)}/(1 + dx(z,y)). On the other hand, if f(z) = 0 and f(y) > dx(z,y)/
(1+dx(z,y)), then p(f) > 1/(1 + dx(z,y)) and ||fllec > dx(z,y)/(1 + dx (z,¥)),
so that || f]| > 1, which should not happen. The important thing is that the metric
dix on X defined by dix(z,y) = dsa(r(z),7(y)) = dx(z,y)/(1 + dx(z,y)) is
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boundedly equivalent to dx. In fact, we have

dX(x7y) dX('Z-Jy)

<d =——-""" _<d

1+Diam(X,dX) X lX(xay) ]-+dX(IL',y) X X(xay)

for all z,y € X, where Diam(X,dx) = sup{dx(z,y) : z,y € X}. By Proposition
2.3 the metric ds4 defined by (2.3) defines a topology on Xg4 agreeing with the
Gelfand topology. Thus (Xga,dsa) € CMet. To prove that Sv is a morphism in
CMet, we need to show that it is a Lipschitz map. For £, 7 € Xg4 we have

dsp(Sv€, Svn) = sup{|(Sv€)g — (Svn)g| : g € B & ||g]| < 1}
= sup{|{(vg) —n(vg)| : g € B & |lg]l < 1}
sup{|¢f —nf|: fevB & |fll < v}
Wl sup{|Ef —nfl: f e A& |fll <1} = [lv[ldsa(é;n).

This shows that p(Sv) < ||v||. Clearly SI4 = Ix,,, sincefor £ € Xga (STa(§))f =
Edaf)=¢&fforall f e A, soSIx(€) =¢&. For v e Hom(B, A), u € Hom(C, B),
£ € Xsa and h € C we have

(S(vou)(E)h = &((v o p)h) = E(v(uh))
= (Sv(&))(wh) = (Su(Sv(€))h = (Spo Sv)(§)h,

which means that S(vou) = Spo Sv. So S is indeed a contravariant functor.

(c) To see that S o T is naturally isomorphic to Ionmet, let (X,dx) € CMet,
A =T(X,dx) = Lip(X,dx) and (S o T)(X,dx) = TA = (Xs4a,dsa), and let
7x : X = Xga be as in (b). We show that 7x is a natural isomorphism, i.e.,
that 7x is an invertible morphism in CMet. Since by Gelfand theory, as pointed
out in (b), 7x is a homeomorphism, we only need to show that 7x and T)}l are
both Lipschitz. But, that clearly follows from (2.4) and (2.5), and in fact p(7x) =
sup{dix (z,y)/dx (z,y) : z,y € X & = # y} = sup{1l/(1 +dx(z,y)) : =,y €
X &z #y} =1 and p(r") = sup{dx(z,y)/dix(z,y) : 7,y € X & = # y} <
1+ Diam(X,dx). Thus 7x is an invertible morphism in CMet, therefore Igpet is
naturally isomorphic to S o T'.

To see that T o S is naturally isomorphic to Icrip, let A = Lip(X,dx) € CLip.
Define amap o4 : A — (T0S)A = Lip(Xsa,dsa) by oaf = fory', for f € 4, ie.,
(0af)(€) = f(rx'(€)) for £ € Xsa. Clearly, g = 0af € C(Xs4) and [loaflloc =
| flloo- Since by Proposition 2.3 75" is Lipschitz with p(75") = 1 + Diam(X, dx),
we have that ¢ = f o 7,' is Lipschitz, and p(g) = p(f o 7x") < p(f)p(x?)
=p(f) (1 + Diam(X,dx)). Clearly, o4 is one-to-one. It is also onto, since for any
g € Lip(Xs4,ds4), by the same arguments as above f = go7x € Lip(X,dx), and
o4 f = g- Note that the situation is similar to the one in Proposition 2.2. Thus o4
is an invertible morphism in CLip, which means that o 4 is a natural isomorphism.
Therefore T o S is naturally isomorphic to Icrip. O

(2.5)

<
<

Some remarks concerning the functors 7' and S are in order.

REMARK 2.1. Since every Lipschitz algebra A is Lip(X, dx) for some (X, dx),
T is onto as a map of objects. Let F,G € Hom((X,dx), (Y,dy)), and suppose that
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TF = TG. That means that for all g € Lip(Y,dy), TF(g) = TG(g), i.e., that
goF =goG. If F # @G, then there exists x € X with F(z) # G(x). But then
there exists g € Lip(Y,dy) with g(F'(z)) = 1 and ¢g(G(x)) = 0, so that we get
goF # go(@. Contradiction. Thus T is one-to-one on morphisms. It is also onto
on morphisms, since by the quoted Theorem 2.1 every homomorphism of Lipschitz
algebras arises from some Lipschitz map. However, we cannot still claim that CMet
and CLip are in fact contravariantly isomorphic categories, since we do not have
an explicit inverse for T'. Note that the functor S (the would-be inverse of T') does
not map Lip(X,dx) to (X,dx) but to (Xsa,dsa).

REMARK 2.2. There are other choices for defining metric dg4 than the one
given by (2.3). For example, one can define dg4 by

(2.6) dsa(&m) =sup{l{f —nf|: fe A& p(f) <1},

for £,m € Xga. The difference between (2.3) and (2.6) is that in (2.6) we are taking
p(f) < 1 instead of ||f|| < 1 as in (2.3). However, we have to be sure that we can
compute p(f) from the given data. This can be done using the following two steps:
(1) obtain ||llec by [Iflleo = sup{IEf| : € € Xsa}; (2) take p(f) = ]l = -
This approach has the advantage that when the metric dyx on X is defined by
dix(z,y) = dsa(7(z),7(y)), we obtain that d;x = dx, that is, we get back our
original metric. This also means that we do not need to use the results concerning
boundedly equivalent metrics. We leave it to the taste of the reader to decide which
of these two choices we have given is the more suitable one.

3. Category CDer and its relation to CLip and CMet

We now turn our attention to the category CDer.

THEOREM 3.1. Let (X,dx),(Y,dy) € CMet, and F € Hom((X,dx), (Y,dy)).
Let R : CMet — CDer be defined by R(X,dx) = (Arx,Dgrx), where Agx =
C(X) and Dgx is the de Leeuw derivation defined by dx, i.e., (Drx f)(z,y) =
(fly) = f(x)/dx(z,y) for z,y € X, z #y, and f € Dom(Dgrx) = {f € C(X) :
|Drx flloo < 00}. Let RF : Agy = C(Y) = Arx = C(X) be defined by (RF)g =
goF for ge C(Y).

Let (A,Dy4),(B,Dg) € CDer, and let v € Hom((A, D4),(B,Dg)). Let Q :
CDer — CLip be defined by QA = Dom(D4) equipped with the norm ||flloa =
Il + |1 Daf]l and let Qv : QA — @B be defined by Qv = v|ga. Then:

(a) R is a contravariant functor from CMet to CDer;
(b) Q is a covariant functor from CDer to CLip;
(¢c) P=Ro S :CLip — CDer is a covariant functor;

(d) P o Q is naturally isomorphic to Icper and @Q o P is naturally isomorphic
to ICLip~

We conclude that CDer is equivalent to CLip and that it is dual to CMet.

ProoF. (a) Clearly, (Agx,Dgrx) is an object in CDer. Since Dom(Dgx) =
Lip(X,dx), by (a) of Theorem 2.2, RF is a morphism in CDer, and everything else
is as for the functor T



THE CATEGORY OF COMPACT METRIC SPACES AND ITS DUALS 37

(b) Clear, since if A = C(X) and D4 = Dg,, the derivation defined by dx,
QA = Lip(X,dx), and by the condition (1.1) in Definition 1.4, (Qv)f € Lip(Y,dy),
so that Qv is a homomorphism from Lip(X,dx) into Lip(Y, dy).

(c) Clear.

(d) To see that Po@Q = RoSo( is naturally isomorphic to Igper, let (A, D4) €
CDer where A = C(X) and Dy = D4,. Then QA = Lip(X,dx), (ScQ)A =
(XSA,dSA), and (RO S o Q)A = (C(XSA);DdSA)- Define 04 : A — C(XSA)
by Oaf = f o1y, e, (04f)(&) = f(rx'(€)) for £ € Xsa. Note that 64 is
defined similarly as o4 from the part (c) of the proof of Theorem 2.2. Clearly,
g =0af € C(Xsa) and ||04f|lcc = ||f|loc, and 64 is an isomorphism of A and
C(Xs4). We need to show that §4 and 8" are Lipschitz homomorphisms, that is,
that they satisfy the condition (1.1) in Definition 1.4. But, Dom(D4) = Lip(X,dx)
and Dom(Dy,,) = Lip(Xsa,dsa), so by the proof of (c) of Theorem 2.2, this is
satisfied. Hence 04 is an invertible morphism in CDer, which means that 64 is a
natural isomorphism. Therefore Icper is naturally isomorphic to P o Q).

To see that ) o P = @ o Ro S is naturally isomorphic to Icrip, it is enough to
observe that Q o R =T. Thus Q o P = T o S, which we already know from (c) of
Theorem 2.2 to be naturally isomorphic to Icpip- O

REMARK 3.1. A similar remark holds concerning the functors @}, P and R as
for the functors T and S as in Remark 2.1. The functor @ is almost an isomorphism
of CDer and CLip, but we do not have its explicit inverse, as the functor P is not
the one. Likewise, the functor R is almost a contravariant isomorphism from CMet
to CDer, but the functor S o ) is not its inverse.

Here is an easy, but interesting consequence of the above considerations.

PROPOSITION 3.1. Let A = Lip(X,dx) and B = Lip(Y,dy) be Lipschitz alge-
bras over compact metric spaces, and let v: B — A be a homomorphism. Then v is

continuous as a map from C(Y) to C(X) and there exists a unique homomorphism
v : C(Y) = C(X) such that v = 11|B.

PROOF. Let F : X — Y be defined by F = ;' 0 Sv o 7x, where 7x, 7v and
S are defined in Theorem 2.2. Clearly, F' is a continuous map, and so v4 : C(Y) —
C(X) defined by v1g = go F for g € C(Y) is a homomorphism. We need to show
that v1|p = v. So let g € B. Then

(19)(z) = g(F(2)) = g(15" 0 Sv 0 7x(2))
= (Svotx(x))g = 7x(2)(vg) = (vg)(2),

since by definition g(r5' (1)) = ng for n € Xsg and 7x (z)f = f(z).

To prove the uniqueness of the extended homomorphism vy : C(Y) — C(X),
note first that »; is automatically continuous. Furthermore, B = Lip(Y, dy) is dense
in C(Y), since it is a point-separating, self-adjoint subalgebra of C(Y). Thus, if
there existed another extension v2 : C(Y) — C(X) of v, it would also be continuous
and it would coincide with v; on the dense subalgebra B = Lip(Y, dy). Obviously,
it then has to be equal to vy. O
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In other words, every homomorphism of Lipschitz algebras is a restriction of
some Lipschitz homomorphism of the underlying algebras of continuous functions.
To prove the existence of the extension v; of v without using the approach taken
here, one would have to show that the homomorphism v is continuous as a map
from continuous functions on Y to continuous functions on X. Then, one could
get the extended homomorphism »; by continuity, using the fact that Lip(Y, dy) is
dense in C(Y).
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