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ABSTRACT. We give a necessary and sufficient condition for a positive mea-
surable kernel C(-) to satisfy

/lx FOC)dt ~ f(z) /lm Cwit (z— o)

whenever f(-) is from the class of Karamata’s regularly varying functions.

Introduction

We deal with the class of regularly varying functions introduced by Karamata
[2]. A positive measurable function f, defined on some neighborhood of infinity, is
said to be regularly varying with index p € R if it can be represented in the form
f(z) = zPl(zx), where the slowly varying function ¢(z) satisfies

L(sz) ~ £(x) (z — 00)

for each s > 0. It is supposed throughout, without loss of generality, that £(z) is
defined for x > 1.
An excellent survey on regular variation is given in [1] and [3].

Slowly varying functions have, among many others, a remarkable property of
an easy asymptotic calculation of integrals involving them. Namely, under some
conditions imposed on the kernel W (-), we have [1, pp. 198-201], [4]

B B
/ Uat)W ($)dt ~ €(z) / WH)dt  (z — o).
A A
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Analogously with those results, in this paper we shall characterize the class K
of measurable kernels satisfying the following definition.

A positive measurable kernel C(-) is said to belong to the class K if the as-
ymptotic relation

1) / " H(OC)dt ~ f(z) / “Cydt (z— o)

holds for every regularly varying function f(-) of arbitrary index.

Therefore, the class K provides an easy calculation of integrals involving regu-
larly varying functions.

For the purpose of characterization, we have to introduce the class © of positive
measurable functions p(-) satisfying

(2) /10lc p(t)dt/zp(z) - 0 (z — o0).

This class consists of rapidly growing functions and its connection with classes
MR, and R, is given in [1]. However, the structure of the class © is very
ambiguous. For example, it is not closed under multiplication (see Proposition
4, below). Our recent communication with Professors N.H. Bingham and C.M.
Goldie, the authors of [1], shows that there is no representation for this class of
functions (and M Ry, R as well).

In the first part we shall give some propositions related to the class © including
the characterization of the largest possible subclass of ® which is closed under
multiplication (Theorem 1). Finally we shall prove our main result.

THEOREM 2. A positive measurable function C(-) belongs to the class K i.e.,
the asymptotic relation (1) holds for any regularly varying function f, if and only

if .
/ C(t)dt € 0.
1

Results
We prove first some assertions concerning the class ©.

PRrOPOSITION 1. The following are equivalent:
(7)) plx) € ©; (i7) z%p(z) € O, for some/any real a.

PROOF. For the proof we need two lemmas.

LEMMA 1. If p(x) € O, then z°p(x) — oo for any fizred a € R.

PROOF. Since fff;g))dt — oo (z — 00), we can find zo > 1 such that
1

t>|a|+2, x > Zo;
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N D (log /lz p(t)dt) > (la| + 2) /=, T > To.

Integrating (1.2) over [zo, z], we get
/ p(t)dt > C(xo,a)z'**2, x>z,
1
i.e., taking into account (1.1),

xap(x) > Cl(x():a)ma_'_‘a‘_'—la T > Zo,

and the assertion of Lemma 1 follows.

LEMMA 2. If p(x) € O, then for every fized a € R,

/z t%p(t)dt ~ z* /z p(t)dt (z = 0).

PROOF. According to the preceding lemma and definition (2), we have

D(f] t°p(t)dt) 1
D(ze [ p(t)dt) — 1+a [ p(t)dt/zp(z)

-1 (z— ).

Hence, the result follows from L’Hospital’s rule.

Now the proof of Proposition 1 follows easily.
If p(z) € O, then, according to Lemma, 2,

[ tp(t)dt _ [Ip)dt [ top(t)dt
zo+ip(x) zp(z) zo [ p(t)dt

-0 (z — 00),

i.e., z%p(x) € O for every a € R.
Conversely, if 2*p(z) € © for some a € R, then

Jipdt [Tt ep®)dt a7 [ tep(t)dt [ tp(t)dt
ap(z) zp(z) zp(x) — ztip(a)

ie, p(z) € O.

57

=0 (z— o),

As we already said, the class © is not closed under multiplication. But we can

assert the following
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PROPOSITION 2. (i) If p,q € ©, then p+q € O;
(i) if p is nondecreasing and q € ©, thenp-q € ©.

ProoOF. To prove (i) note that by definition (2), for any A > 0 we can find

Z1, o9 such that

L(m)>A, T > x1; L(m)>A, T > xs.

[ p(tydt [T a(t)dt

But then, for z > max(z1,z2), we get

and, since A can be taken arbitrary large, (i) follows.
For a nondecreasing positive p(-) (not necessarily from 0), (ii) follows at once

ap(z)q(z)  _ap(@)g(x) _ _wq(z)
[ p@a®)dt = p(z) [ qt)dt [ q(t)dt

=00 (z— 00),

ie,p-q€ 0.
There is another assertion of this type.

ProrosiTiON 3. If p,q € O, then
(@) [{pt)dt € ©; (i) [ p(t)dt- [ q(t)dt € O.

ProoF. By Lemma 1, we have

D(J{ (f; p(w)du)dt) ) o
DGz [Zptydt)  1+ap(@)/ [T pldt 0 (z— o00).
Hence t
7 plu)du)dt
T o [Tpydt -0 (z—00),

ie., [ p(t)dt € ©.

Note that the converse statement is not true. Namely, it is not difficult to find
a positive measurable function p such that p ¢ ©; flz p(t)dt € © (see the example
from Proposition 5).

The assertion (ii) is a consequence of the second part of Proposition 2.

The question of multiplication in the class © is not exhausted by the two
preceding propositions. Our main result concerning this problem is contained in
the next theorem.
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THEOREM 1. Let the class ¥ consist of all positive measurable functions s(-)
such that s2 € ©. Then X is the largest proper subclass of © closed under multipli-
cation.

PrOOF. We show first that ¥ C ©. Indeed, if s € X, using Cauchy’s inequality

we get
(ffS(t)dt>2 < [F s2(t)dt

zs(x) zs%(x)

=0 (z— 00),

hence s € ©.
The class X is closed under multiplication because if r,s € ¥ then also r,s € ©
and, using Cauchy’s inequality again, we obtain

(ff”?“(t)S(t)dt)2 < JEr2(tydt [T s2(t)dt

zr(x)s(x) zr2(z)  zs%(x) =0 (2 00),

ie.,r-s€0.
The next statement shows that ¥ is a proper subclass of ©.

PROPOSITION 4. There is a positive measurable function h € © such that
h? ¢ ©.

PrOOF. We shall construct h in the following way. Let h(1) := 1, h(z) :=
Q%E exp(log? z) for & > 1, except at the points z = e”, n € N where we put
h(e™) := y/nexp(n® —n). Then [ h(t)dt = exp(log? z) — 1 and it is easy to check
that h € ©. But

/ 2t > / I TTAEAN %(n —1/n)2 exp(2(n — 1/n)? — (n — 1/n))

xp(n—1/n)
=4(n + O(1/n)) exp(2n® —n — 44+ O(1/n)).

Hence np2(on
lim sup erh(e")

sy <€ /4,
n—oo [{ P R2(t)dt /

i.e., h? ¢ ©. Therefore ¥ is a proper subclass of ©.

REMARK 1. In view of Proposition 4, it will be difficult to find a representation
form for the classes © and R..

REMARK 2. As the referee notes, it is easy to give a continuous counterexample
h*.

Namely, let h* = h except on the intervals I,, := (exp(n — ¢,),expn) and
Jn := (expn,exp(n +¢y)), where the sequence c is tending to zero sufficiently fast,
and h* is linear on the closure of each of the intervals I and J. It is obvious that X
has to be the largest subclass of ©® which is closed under multiplication. If II C ©
is another subclass with this property and s € II, then s - s has to be in X; hence
IIcx.
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Now we will turn to the question of characterization of the class K and prove
Theorem 2 above.

PROOF OF THEOREM 2. The condition [;” C(t)dt € © is necessary for (1) to
hold for every regularly varying f(-). Indeed, for f ( ) =z, from (1) it follows that
[T tC(t)at

=1+0(1) (z— ),

z [ C(t)dt
ie.,
JitC)dt —x [7 Ctydt _ J) (fic du dt
z [ C(t)dt B :nfl

o(l) =

ie., [ C(t)dt € ©.

Suppose now that fl t)dt € ©. We shall prove first that (1) is satisfied for
£(z) = 1 and for arbitrary 1ndex a € R.

According to Lemma 2 and our assumption, we have

/lz t*C(t)dt — z° /lw C(t)dt = —a /lz ot (/lt C(u)du) dt
~ —az®! / ’ ( / t C(u)du) dt = o(1)z° / “Cdt (o o),

since [ C(t)dt € © implies [ ([ C(u)du)dt = o(1)z [ C (z = 00).
Therefore Theorem 2 is proved for l(z) = 1.

(z — 00),

To prove it in the general case we need the following lemma.

LEMMA 3. For some a > 0 and for every slowly varying ¢(-) we have
(1) sup(t*L(t)) ~ z*l(x); (i) l2r<1f(t*°‘€(t)) ~z YUz) (r— 00).
t<e <z
This lemma is proved in [1, p. 23].

Now, using the first part of Theorem 2 and Lemma 3, with f(z) = z2%¢(z),
a € R, we get

/ t“@(t)C(t)dtgsup(taﬁ(t))/ t“*aC(t)dtNxaé(x)/ t*C(t)dt
1 t<e 1 1
:1:)/ C(t)dt
1
and, analogously,

/ "yt > inf (1 (1)) / "t C(t)dt ~ 290(z) / "ot (@ o).

1
Therefore

| < liminf it E(th(t)dt <li Jy et )C( )dt <
T—>00 :U“E(m) fl C(t) t z—oo &L E fl
Hence, Theorem 2 is proved.

At this place it will be useful, as the referee suggests, to formulate an equivalent
theorem.
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THEOREM 2'. If the asymptotic relation (1) holds for f(t) = t, then it holds
for any regularly varying function f.

It is evident that the proof of Theorem 2’ follows from the proof of Theorem 2.
We shall conclude with the following proposition.
PROPOSITION 5. The class © is a proper subclass of K.

PROOF. For any p € O, from Proposition 3(i), it follows that flw p(t)dt € O,
i.e., by Theorem 2, p € K. Hence, O is a subclass of K.

That it is a proper subclass we shall show by the following example.
Let p(z) := €*, x > 1, except at the points x,, = n, where we put p(n) := 1.

Then liminf, % =0,ie.,p¢0.

But, Theorem 2' shows that p € K, i.e., the class © is a proper subclass of K.
Therefore ¥ C © C K.
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