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ABSTRACT. We investigate curvature properties of semi-Riemannian manifolds
(M, g), n > 4, whose Weyl curvature tensor C can be expressed by a Kulkarni-
Nomizu square of the tensor S — ﬁ g. We investigate also the problem of
isometric immersion of such manifolds into space forms.

1. Introduction

We investigate semi-Riemannian manifolds (M, g), n > 4, whose Weyl curva-
ture tensor C is expressed by the square, in the sense of the product of Kulkarni—
Nomizu, of the tensor S — "5 g. More precisely, we investigate curvature properties
of semi-Riemannian manifolds (M, g), n > 4, satisfying on U = Us NUc C M the
condition

» c= b5 E )5 )

n—1

For the definitions of the symbols used, we refer to Section 2. Clearly, if the scalar
curvature  of a manifold (M, g) satisfying (1) is zero, then (1) reduces to

2) czgsv\s.

Some essentially conformally symmetric manifolds, as well as manifolds admitting
some Akivis-Goldberg metrics, satisfy (2). In Section 2 we present curvature prop-
erties of these classes of manifolds. There are also manifolds with nonzero scalar
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curvature & satisfying (1) (see Section 3). In Section 3 among other things we state
(Proposition 3.1) that (1) is equivalent on U to the following four relations:

3) R-R=0,

K

4 G C-C=o0, (i) S?= S, (i) rank(S—%g)>I.

n—1"
Using this we prove (see Theorem 3.1) that if n = 4, then on I we have (2) and
(5) (i) k=0, (i) S*=0, (iii) rankS=2.

In Section 4 we consider the problem of isometric immersion of manifolds satisfy-
ing (1) in a semi-Riemannian space of constant curvature N7*1(c) with constant
curvature ¢ = ﬁ and signature (n + 1 — s,s), n > 4. In Proposition 4.1 we
present necessary and sufficient conditions for realization of such immersion into
a semi-Euclidean space E?*! n > 4. A consequence of Proposition 4.1 is that
manifolds satisfying (2), i.e. (1) with x = 0, cannot be immersed isometrically in
E*1 . n > 4, (Theorem 4.1). In particular, this means that essentially conformally
symmetric manifolds satisfying (2) cannot be realized as a hypersurface in EM+1,
n > 4, (Corollary 4.1(i)). From Theorem 4.1 it follows also that the metrics g;
and g2 defined in Examples 3.14 and 3.16 of [2] cannot be realized on a hyper-
surface M in E3 as a metric induced on M from the metric of the ambient space
(Corollary 4.1(ii)). In Proposition 4.2 we present necessary and sufficient condi-
tions for realiazation of the isometric immersion of manifolds satisfying (1) into a
semi-Riemannian space N"*1(c), n > 4.

The author would like to express her thanks to Professor Dr. Ryszard Deszcz
for his help during the preparation of this paper, as well as to the referee for hints
and comments.

2. Curvature properties of Akivis-Goldberg metrics

Let (M, g) be a connected n-dimensional, n > 4, semi-Riemannian manifold of
class C* and let V be its Levi-Civita connection. We define on M the endomor-
phisms X A4 Y, R(X,Y) and C(X,Y) by

(XAaY)Z=AY,2)X — A(X, 2)Y,
R(X, Y)Z = VXVyZ —_ VYVXZ - V[X,Y]Zy

C(X,Y) = R(X,Y) — %(XA98Y+SX/\9Y— ’j1X/\g Y),

n
respectively, where S, S, and k are the Ricci tensor, the Ricci operator and the
scalar curvature of (M, g), respectively, g(SX,Y) = S(X,Y), X,Y,Z € E(M) and
Z(M) is the Lie algebra of vector fields of M. The tensors: S%, G, the Riemann-
Christoffel curvature tensor R and the Weyl conformal tensor C of (M,g) are
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defined by

S?(X,Y) = S(SX,Y),
G(X1, X2, X3,X4) = 9((X1 Ay X2) X3, X4),

R(X1, Xs, X3, X4) = g(R(X1, X2) X3, X4),

C (X1, X2, X3, X4) = g(C(X1, X2) X3, Xy),
respectively. For (0,2)-tensors A and B their Kulkarni-Nomizu product A A B is
given by

(AAB)(X1,X2; X,Y) = A(X,,Y)B(X2, X) + A(X2, X)B(X1,Y)
— A(X1,X)B(X2,Y) — A(X2,Y)B(X1, X).

We note that G = 1g A g.
We define the subsets Ug, Us and Uc of M by
K
UR—{$€M|R—WG#OatZ‘},
K
Z/{5={x€M|S—Eg7é0atx},
Uc={z e M |C #0 at z},

respectively. We note that Us C Ur and Uc C Ur on M. In this paper we restrict
our considerations to the set U = Us NUc C M. Evidently, we will asume that U/
is a nonempty set.

Further, for a symmetric (0,2)-tensor A and a (0, k)-tensor T', k > 1, we define
the (0, k)-tensor A - T and the (0, k + 2)-tensors R -T and Q(A,T) by

(A-T)(X1,...,Xp) = —T(AX1, Xs, ..., Xg) — - = T(X1, ..., Xp_1, AX%),
(R-T)(Xy,...,Xi; X, V) = (R(X,Y) - T)(Xy,. .., Xz)
= —T(R(X,Y) X1, Xo, ..., Xp) =+ = T(X1, ..., Xp_1, R(X,Y)Xp),
QA T)(X1,..., X X,Y) = (X AaY)-T)(X1,...,Xs)
=—TUXAAY)X1, X0, o, Xi) — oo = T( X1, .o, Xio1, (X AaY)XR),

respectively, where A is the endomorphism of Z(M) defined by g(AX,Y) = A(X,Y).
Setting T =R, T =S5,T=C, A=gor A=S5 in the above formulas we obtain
the tensors: 527 R- RJ R 'SJ R- Ca Q(g7 R)J Q(ga S): Q(ga C)a Q(S> R)7 Q(S7 C) and
S - C. The tensor C - C is defined in the same way as the tensor R - R.

A semi-Riemannian manifold (M, g), n > 3, is locally symmetric if VR = 0 on
M. There exist many various possibilities to obtain curvature conditions weaker
than the last one. A semi-Riemannian manifold (M,g), n > 3, is said to be
semisymmetric if it satisfies R(X,Y) - R = 0, for all vector fields X,Y. The
last relation will be shortly denoted by (3). It is well known that any locally
symmetric manifold is semisymmetric. The converse statement is not true. A semi-
Riemannian manifold (M, g), n > 3, is said to be pseudosymmetric [6, Section 3.1]
if at every point of M the following condition is satisfied:

*) the tensors R - R and Q(g, R) are linearly dependent.
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Thus (M, g) is pseudosymmetric if and only if R- R = LrQ(g, R) on Ug, where Lg
is a function on Ug. It is clear that every semisymmetric manifold is pseudosym-
metric. The converse statement is not true (see e.g., [6, Section 3.6, Example 3.1].
It is known [6, Section 5.3] that every 3-dimensional semi-Riemannian manifold
satisfies

(6) R-R=Q(S,R).

Semi-Riemannian conformally flat manifolds of dimension > 4 fulfilling (6) are
pseudosymmetric [6, Section 6.3]. We mention also that every hypersurface M of
a (n + 1)-dimensional semi-Euclidean space E**! n > 3, fulfils (6) [6, Section 5.4].
It is also known [6, Section 5.5] that on Uc C M of a hypersurface M of N1(c),
n > 4, we have

(*%) the tensors R- R — Q(S, R) and Q(g,C) are linearly dependent.
Precisely, the following condition is fulfilled on U [6, Section 5.5]

(n—2)k

(7) R-R—Q(S,R)=—m

Q(g,0)
where & is the scalar curvature of N™*1(c). Pseudosymmetric hypersurfaces M of
N™*1(c), n > 4, were investigated in [7]. We note that (**) is on U equivalent to

(8) R-R—Q(S,R) = LQ(9,C),

where L is a function on Uc. Manifolds satisfying (*) and (**) were studied in [9].

Let M be a manifold of dimension n = pq, and let SC(p, ¢) be a differentiable
field of Segre cones SC,(p,q) C T, (M), z € M. The pair (M, SC(p,q)) is called an
almost Grassmann structure and is denoted by AG(p —1,p+ ¢ — 1). The manifold
M endowed with such a structure is said to be an almost Grassmann manifold
[2, Definition 1.1]. Certain additional conditions lead to so-called semiintegrable
almost Grassmann structures [2, Definition 1.2]. The latter were studied in [2] and
examples of such structures, mainly 4-dimensional, are presented there. For more
details about almost Grassmannian structures see [1]. Some 4-dimensional semi-
Riemannian metrics are related to these structures (see Examples 3.5-3.16 of [2]).
These metrics are named Akivis—Goldberg, in short AG-metrics [11]. Curvature
properties and, in particular, curvature properties of pseudosymmetry type of AG-
metrics are presented in [11], where it is shown that if a 4-dimensional manifold
M admits an AG-metric, then on i C M we have: (5), (8) and

9) S-C=0.

We consider the AG-metrics g, r = 1,2, defined in the Examples 3.14 and 3.16 of
[2], respectively. We assume that these metrics are defined on an open, connected
and nonempty set U C R*. The metrics g, satisfy (5) and (9) and do not satisfy
(6) [11, Remark 4.8]. In addition, their Weyl tensors are nonzero at every point of
U, i.e. for both metrics we have Uo = U. Further, g; and g, are semisymmetric
metrics fulfilling (8) and VC = C ® .., where 9, are some 1-forms on U. The
last relation means that both metrics are conformally recurrent. From Theorem
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3.1 it follows that g, are non-warped product metrics. Moreover, g, satisfy on U
the relation C = %LTS A S, where L, are some nonconstant functions on U.

A semi-Riemannian manifold (M, g), n > 4, is said to be essentially conformally
symmetric manifold [4], [5], in short e.c.s. manifold, if it is a non-conformally flat
(C # 0) and non-locally symmetric (VR # 0) manifold with parallel Weyl tensor
(VC =0). We refer to [4] and [5] for a review of results on these manifolds. Every
e.c.s. manifold is semisymmetric. We mention also that such manifolds satisfy (8)
[9]. E.c.s. manifolds and manifolds admitting AG-metrics form disjoint classes of
semi-Riemannian manifolds [11, Remark 4.9].

3. Preliminary results

Let (M,g) be a semi-Riemannian manifold covered by a system of charts
{U;2"}. We denote by gi;, T, Ruijk, Sij, i’ = 97'Srj, S5 = SiS,?, Ghijk =
9nk9ij — 9njgik and

1 K
5 (9nkSij = gnjSik + 9ij Shk = gnjSik) + mGhijka
the local components of the metric tensor g, the Levi-Civita connection V and
the tensors R, S, S, S%, G and C of (M, g), respectively, where h,i,j, k,I,m,r,s
€ {1,2,...,n}. The local components of the tensors R -T and Q(A,T) are given
by

Chijk = Rnijk —

(R-Thijrim = 9"° (Trijk Rsnim + ThrjkRsitm + Thirk Rsjim + Thijr Rskim),
Q(A, Thijeim = AnTmije + AiaThmjk + AjiThimk + AriThijm
— ApmTiije — AimThije — AjmThitk — ArmThije,
respectively, where Tp;j, and Apy are the local components of a (0, 4)-tensor T' and
a symmetric (0, 2)-tensor A, respectively.

LEMMA 3.1. Let B be a symmetric (0,2)-tensor on a semi-Riemannian man-
ifold (M,g), n > 3, and let Up be the set of all points of M at which B is not
proportional to g. If at x € Up we have

(10) BAB=2agAB+28G, o,B €R,
then o? = —f and rank(B — ag) = 1 at .

PrOOF. We set A = B — ag. Thus from (10) we obtain

1

(11) SANA= (a® + B)G
whence £Q(A, AN A) = (&® + B)Q(A,G). This, by Q(A AN A) =0, reduces to
(12) (@ +B)Q(A,G) =
We suppose that a® + 3 # 0. Now (12) turns into Q(A G) = 0. From this, by
suitable contractions, we obtain A = ";A)g. Thus B = "(nB)g at z,i.e., x € M—Ug,

a contradiction. Therefore a? + 3 = 0. Now (11) reduces to A A A = 0, whence
rank A = 1, which completes the proof. O
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LEMMA 3.2. Let B be a symmetric (0,2)-tensor on a semi-Riemannian man-
ifold (M,g), n > 3, and let Up be the set of all points of M at which B is not
proportional to g. Let T be a generalized curvature tensor satisfying at x € Up the
following relation:

(13) T:%B/\B'f‘ﬂlg/\B-i-’hG, al,ﬂl,fyle]R.
(i) If, in addition, we have at x the following decomposition of the tensor T
(14)  T=ZBAB+BgAB+mG,  ai—ar#0, afmeR

then at x we have: (Bs — B1)? = (72 — 71) (a2 — 1) and rank( — &b ) =1

a1 — (12

(i) If the conditions rank (B — Ba=P g) =1and (B2—p1)? = (12—m) (a2 — 1)

a1 — Qg

are satisfied at ©, then (14) holds at x.
Proor. (i) From (13) and (14) we get

IBZ_IBlg/\B-i-Z’YZ ’Y1G

(15) BAB=2
o] — Q2 a1 — Q2

Applying Lemma 3.1 to this we obtain easily our assertion.
(ii) From our assumptions we have (B — gZ_gl g) A (B — 22281 g) = 0, which is
2 a1 —Q2

equivalent to (15). But this, together with (13), leads to (14). Our lemma is thus
proved. O

PROPOSITION 3.1. Let (M, g), n > 4, be a semi-Riemannian manifold. If (1)
is satisfied on U C M, then (3) and (4) hold on U. Conversely, (3) and (4) imply
(1) on U.

PRrOOF. First of all, we present (1) in the following form
s il
——(9 A S)nijk + m—12

(16) Chijr = ( (S A S)nijr — Ghijk)a

K
-1

whence we obtain

1

n—2

(17)  Rpijk = g(S/\ Shijr + (% - )( (9 N S)hijk + l Ghz]k)

We assume that (1) holds on U. From our assumptions it follows that (4)(iii) is
satisfied at every point of Uc. Further, contracting (16) with g/ we obtain (4)(ii).
Next, from (1) we have Q(S — =£7g9,C) = 0. This, in view of Lemma 3.4 of [9],
implies (4)(i). Finally, from (17), in view of Theorem 4.2 of [9], it follows that (3)
holds on U. Now we prove that the converse statement is also true. By making use
of Theorem 3.1 of [10] and (3) and (4)(i) we obtain on U

(18) Q<S_nilg’c_n(nu—2)G) =0,

where the function p satisfies A = p(S — -£1g), A is the (0,2)-tensor with the
local components A;; = S™*Chj,, S = g'S;* and 81 = g%15;;. We note that at
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every point of U we have rank(S — -£;g) > 1. Now from (18), in view of Lemma
3.4 of [9], it follows that

(19) T(S—Lg)/\(S—ng)zc P G rer-{o},

n—1 n— "~ n(n-2)
at every point of &. From the last relation, by contraction and making use of (4)(ii),
we get easily u = 0. Now (19) reduces to (1), which completes the proof. O

REMARK 3.1. From (1), by making use of (4)(ii), it follows that
(20) C(SXlaX23X37X4) =0

on U. Thus we see that (9) holds on Y. Further, combining Proposition 3.1 with
Theorem 4.2 of [9], we obtain on U

(21) Q8. R) = (

From (20), by (4)(ii), we get

kK 1
n—1 (n—2)

L)Q(g,C)-

1
2(n — 2)(

Using this, (3) and the identities 2Q(g,S A S) = —Q(S,g A S) and Q(S,G) =
—Q(g,9 N S) we can check that on ¢ we have C'- R = 0.

REMARK 3.2. Let (M, g), n > 4, be a semi-Riemannian manifold satisfying (1)
on the set Y C M. Thus the curvature tensor R of (M, g) satisfies (17) on /. This
decomposition of R in the tensors S A S, g A S and G is unique. This statement is
a consequence of Lemma 3.2 and the fact that the Ricci tensor S of (M, g) cannot
be decomposed on U into a sum of a metrical term and a term of rank one.

R(SXI,XQ,X3,X4)= S/\S)(Xl,XQ,Xg,X4).

We present now some results on 4-dimensional semi-Riemannian manifolds.

THEOREM 3.1. Let (M,g), n = 4, be a semi-Riemannian manifold satisfying
(1) onUU C M. Then (2) and (5) hold on U.

PrROOF. From Lemma 2.1(ii) of [11] and Remark 3.1 it follows that x = 0 on
U. Therefore (4)(ii) and (1) reduce on U to S? = 0 and (2), respectively. Further,
it is known that on every 4-dimensional semi-Riemannian manifold (M, g) we have
the following identity of E. M. Patterson

9riCikim + 95iCrrim + 9kiCrjim + 9riCikms + 9t Crrmi

(22) + 9kiCrimi + grmCirit + 9imCrrit + GrmCrja = 0.
Transvecting (22) with S} and using (20) we get ShiCikim + ShiCjkmi + ShmCikil
= 0. This, by (2), turns into

Shi(SimSkr — SjtSkm) + Shi(S;jiSkm — SimSki) + Shm(SjiSki — S;iSk) = 0,

which means that rankS = 2. Finally, (9) is a consequence of Remark 3.1. Our
theorem is thus proved. O
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THEOREM 3.2. Let (M,g), n = 4, be a semi-Riemannian manifold satisfying
(1) onU C M. Then for every xz € U there exists no chart V. C U around x such
that g is expressed as a warped product metric on V.

PrROOF. The assertion is a consequence of our Theorem 3.1 and Theorems 3.1
and 3.3 of [11]. O

In [9, Theorem 4.2] it was shown that if the curvature tensor R of a manifold
(M,g),n >4, has on U C M the form

_ L

(23) R—25A5+ugAS+nG,
then
(24) R-R=(E(-2u-1)-(-21) QR

on U, where L, u and 7 are some functions on ¢. We note that (23) is equivalent

on U to
e s e DI CE A )

+(n_%<'u_ni2)2+(n—2)ﬁ(n—l))G

Evidently, from (24) it follows that if (M, g) is a manifold satisfying (23) on U C M,
then R- R =0 on i if and only if £((n —2)u —1) = (n —2)n on Y. Thus we see
that if (M, g) is a manifold satisfying (23) on & C M, then R- R = 0 on { if and

only if
=5 (41 555)9) A (4 £ (7 55))
(25) +ni2<%(u_ni2)+nil)G

on . In addition, if on &4 we have

l( | ) K
L\n—2 H) =" n=7r
then (25) turns into (1). In particular, if 4 = 0 on U, then (1) is equivalent on U to

n—1
26 R=—""->_SNAS.
(26) 2(n —2)k
An example of a manifold fulfilling (26) is given in [13, Example 3.1]. Manifolds
satisfying the condition R = £5 A S were investigated in [12].
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4. Hypersurfaces

Let M, n = dim M > 3, be a connected hypersurface isometrically immersed
into a semi-Riemannian manifold (N,g). We denote by g the metric tensor in-
duced on M from g. Further, we denote by V and V the Levi-Civita connections
corresponding to the metric tensors g and g, respectively. Let £ be a local unit
normal vector field on M in N and let € = g(£,£) = £1. We can write the Gauss
formula and the Weingarten formula of M in N by: VxY = VxY + eH(X,Y)¢
and Vx& = —A(X), respectively, where X,Y are vector fields tangent to M, H is
the second fundamental tensor of M in N, A is the shape operator of M in N and
HH(X,Y) = g(AF(X),Y) and tr(H*) = tr(A¥), k = 1,2.

We assume that the ambient space is NPt1(c), n > 4. Let z" = z"(y")
be the local parametric expression of M in N"!(c), where y”* and z" are local
coordinates of M and N?t1(c), respectively, and h,i,5,k € {1,2,...,n} and r €
{1,2,...,n 4+ 1}. The Gauss equation of M in N?*1(c) is given by

K
(27) Rpijr = e(HppHij — HpjHig) + mGhijk;

where & is the scalar curvature of N (c), Rpsjk, Snr and Hpy, are the local com-
ponents of the curvature tensor R, the Ricci tensor S and the second fundamental

tensor H of M, respectively. Contracting (27) with g%/ we obtain

(n—=1)F& i
(28)  Shi = e(te(H)Hpiw — Hpyp) + T D) H2, = g HiHji.

Let M be a hypersurface of N**1(c), n > 4, and let U; be a connected compo-
nent of the set &Y = Us NUc C M. From now on we restrict our considerations to
the hypersurface U; of N !(c), n > 4, with the metric g induced on M from the
metric of N1 (c).

PROPOSITION 4.1. Let (M,g), n > 4, be a semi-Riemannian manifold and let
Uy be a connected component of the set U = Us NUc C M and assume that (Ui, g)
can be realized as a hypersurface of EXYL. Then (1) is fulfilled on (Us,g) if and

only if on (Ui, g) we have
n—1
(n—2)k"

PRroOF. It is easy to see that (29)(i) and (29)(ii) imply (17), which is equivalent
to (1). We assume that (1) is fulfilled on (U,g). Thus, in particular, (3) holds
on (U, g). Evidently, now (6) turns into Q(S,R) = 0. Applying this in (21) we
obtain (m — —£-)Q(g,C) = 0. If the tensor Q(g,C) vanishes at z € U, then
C also vanishes at = [6, Section 2.3], i.e., # € M — Uc, a contradiction. Thus we
see that (29)(ii) must be satisfied. Further, by (29)(ii), (17) reduces to (29)(i). Our

proposition is thus proved. O

(29) (i) R= gs/\ S and (i) L=

REMARK 4.1. (i) An example of a semi-Riemannian manifold (U, g) satisfying
(29)(i) and (29)(ii), which can be realized as a hypersurface of E?*! n > 4, was
given in [13] (see Examples 3.1 and 4.2).
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(ii) It is clear that R-R = 0 implies R-C = 0. Using this fact and Remark 3.1 we
can state that on every hypersurface M of E?*t1 n > 4 satisfying (1) the following
relations: R-C' = 0 and C-R = 0 are fulfilled on the subset Uy CU = UsNUc C M.
Hypersurfaces fulfilling the last two conditions were investigated in [3] and [8].

As an immediate consequence of Proposition 4.1 we have the following

THEOREM 4.1. A nonconformally flat semi-Riemannian manifold (M,g) sat-
isfying (2), i.e., (1) with & = 0, cannot be realized as a hypersurface of EPt!,
n > 4.

COROLLARY 4.1. (i) Every e.c.s. metric satisfying (2) cannot be realized on a
hypersurface M of EXY, n > 4, as the metric induced on M from the metric of
Er+L,

(79) The AG-metrics g1 and g2, defined in Ezamples 3.14 and 3.16 of [2], cannot
be realized on a hypersurface M of B3 as the metric induced on M from the metric
of E3.

We present now some results related to the problem of immersions of semi-
Riemannian manifolds satisfying (1) into N**1(c), ¢ # 0, n > 4.

PROPOSITION 4.2. Let (M, g), n > 4, be a semi-Riemannian manifold and let
Uy be a connected component of U = Us NUc C M. Let the manifold (Uy,g) be
realized as a hypersurface of N'"1(c), ¢ # 0, n > 4. If (1) is satisfied on (Uy,g),
then on Uy we have:

(n=2k _ K 1
(30) nn+1) n—-1 (n—2)L°
L (n—2)& Lk (n—2)k
(31) R—ES/\S—LW‘Q/\S-F”_IW s
_ ER _ (n—2)k
(32) (@) H?=aH + DY (b) S=pH+ n DY
(33) @ p=cl(l) =),  ®) L=,
30 () te(H)= (n—1ep (n—-2)k ) a= €p (n—2)k

n—2 n(n+1)p’ n—2 nn+1)p

PrOOF. We assume that (1) holds on ;. Now (7), by making use of (3) and
(21), turns into

(n—2)k K 1
(35) (n(n+1) B (n—2)L)Q(g’C):O'

If the tensor Q(g,C) vanishes at € U;, then C = 0 at z, i.e., x € M —Ug, a
contradiction. Thus the tensor Q(g,C) is nonzero at every point of U;. Now (35)
implies (30). Further, since (3) is fulfilled on U1, Theorem 5.1 of [7] states that at
every £ € U we have: rank(H) = 2 or

(36) H? = aH + 8y, a,B€R.
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If rank(H) = 2 is fulfilled at z, then, in view of Theorem 3.1(i) of [7], at = we have
R-R= ﬁ@(g, R), whence, by (3), KQ(g,R) = 0 and Q(g, R) = 0. The last
relation implies R = 557G [6, Section 2.3], i.e., ¢ € M — UR, a contradiction.
Thus at every point of U/ we have (36). Now (36), by Theorem 3.1(ii) of [7], yields
R-R= (n(n+1) —eB)Q(g, R), which, by (3), yields (n n+1) —£B)Q(g, R) = 0. Since
Q(g, R) is nonzero at z, the last relation reduces to y = = ¢f3. Therefore (36)

turns into (32)(a). From (32)(a) we obtain

n(n+1

€R
n+1
Applying (32)(a) to (28) we get (32)(b), where p is defined by (33)(a). From
(32)(b), by our assumptions, it follows that p is nonzero at every point of U;.
Further, applying (32)(b) to (27) we find
) ) 2722 =
€ (n VK & (n—2)°%k 4 K ) Q.
n(n+ 17 pPr*(n+1)?  n(n+1)

Comparing the right-hand sides of (37) and (17) we obtain

€ 1 e (n—2)& K 1
S _r\z (= _L _
(p2 )ZSAS <p2n(n+1) (n—l (n—2)L))gAS
— 2)%k? K L 1
(e (n—2)°K + K K ( k. ) G
pPn2n+1)2 nn+l1) n-1\n-1 (n-—-2)L
Ife/p?— L # 0 at € U, then, in view of Lemma 3.1, we have rank(S — ug) = 1, for
some p € R. The last relation, by (32)(b), yields H = p1g + pow Q w, w € Ti M,
i1, 2 € R, which means that M is quasi-umbilical at z. So, the Weyl tensor C'

must vanish at z, a contradiction. Thus (33)(b) holds at . Now from (32)(b), by
contraction, we get

tr(H?) = atr(H) +

(37) R_— s/\s

gn s+ (

(38) k—ptr(H) = %

Further, (30), by (33)(b), yields

y n—2 (n —2)%k
ep’ = K — .
n—1 n(n + 1)

Applying (33)(a) and (38) we obtain

K 2(n-2)k
n—1 nm+1)"

ap =
From the last two equations, by making use of (33)(a), we get (34)(a). Finally,
(34)(b) is an immediate consequence of (34)(a) and (33)(a). Our proposition is
thus proved. O

As an immediate consequence of Proposition 4.2 we have the following
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COROLLARY 4.2. Let (M,g), n > 4, be a semi-Riemannian manifold and let
Uy be a connected component of the set U = Us NUc C M. If (1) is satisfied on
the manifold (U, g) and the function L is nonconstant on Uy, then the manifold
(Uy, g) cannot be realized as a hypersurface of N™'(c), ¢ # 0, n > 4. In particular,
every e.c.s. metric satisfying (2), with nonconstant function L, as well as the AG-
metrics g1 and g2, defined in Ezamples 3.14 and 3.16 of [2], cannot be realized on
a hypersurface of N*"*1(c), ¢ #0, n > 4, and N°(c), ¢ # 0, respectively.
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