RATE OF CONVERGENCE OF THE SZASZ-KANTOROVITCH-BEZIER OPERATORS FOR BOUNDED VARIATION FUNCTIONS

Vijay Gupta, Vipin Vasishtha, and M. K. Gupta

Communicated by Gradimir Milovanović

ABSTRACT. We introduce the Szasz-Kantorovitch-Bezier operators $\hat{S}_{n,\alpha}$ which is the modified form of Szasz-Kantorovitch operators and study the rate of convergence of bounded variation functions for these operators.

1. Introduction

For a function defined on the infinite interval $[0, \infty)$, the Szasz–Mirakyan operators S_n applied to f are

$$S_n(f,x) = \sum_{k=0}^{\infty} p_{n,k}(x) f(k/n), \quad p_{n,k}(x) = e^{-nx} \frac{(nx)^k}{k!}$$

and the Kantorovitch variant is defined by

(1)
$$\hat{S}_n(f,x) = n \sum_{k=0}^{\infty} p_{n,k(x)} \int_{I_k} f(t) dt, \quad I_k = [k/n, (k+1)/n]$$

Some approximation properties for Szasz-Kantorovitch operators defined by (1) are studied by Totik [5], Aniol [1] and Razi and Umar [3] etc. We now introduce the Bezier variant of the operators (1) as follows:

(2)
$$\hat{S}_{n,\alpha}(f,x) = n \sum_{k=0}^{\infty} Q_{n,k}^{(\alpha)}(x) \int_{I_k} f(t) dt$$

where $Q_{n,k}^{(\alpha)}(x) = J_{n,k}^{\alpha}(x) - J_{n,k+1}^{\alpha}(x)$, $\alpha \geqslant 1$ and $J_{n,k}(x) = \sum_{j=k}^{\infty} p_{n,j}(x)$ are the Szasz–Bezier basis function. It is obvious that $S_{n,\alpha}(f,x)$ are linear positive operators and $\hat{S}_{n,\alpha}(1,x) = 1$. If $\alpha = 1$, $\hat{S}_{n,\alpha}(f,x)$ reduces to the operator $\hat{S}_n(f,x)$,

²⁰⁰⁰ Mathematics Subject Classification. Primary 41A25; Secondary 41A30.

Key words and phrases. rate of convergence; bounded variation; Berry Esseen theorem; total variation; linear positive operators.

defined by (1). Some basic properties of the basis function $J_{n,k}(x)$, which are useful for our study, are as follows:

- $\begin{array}{ll} \text{(i)} & J_{n,k}(x) J_{n,k+1}(x) = p_{n,k}(x), \ k = 0,1,2,3,\dots \\ \text{(ii)} & J'_{n,k}(x) = np_{n,k-1}(x), \ k = 1,2,3,\dots \\ \text{(iii)} & J_{n,k}(x) = n \int_0^x p_{n,k-1}(u) \ du, \ k = 1,2,3,\dots \\ \text{(iv)} & \sum_{k=1}^\infty J_{n,k}(x) = n \int_0^x \sum_{k=1}^\infty p_{n,k}(u) \ du = nx \\ \text{(v)} & J_{n,0}(x) > J_{n,1}(x) > J_{n,2}(x) > \dots > J_{n,k}(x) > J_{n,k+1}(x) > \dots \end{array}$

 $J_{n,k}(x)$ increases strictly on $[0,\infty)$ and $0 \leq J_{n,k}(x) < 1, k \in \mathbb{N}$.

Rates of convergence for functions of bounded variation by different operators were studied in [1], [2], [4] and [6] etc. In [8] Zeng has introduced Szasz-Bezier operators and estimated the rate of convergence for functions of bounded variation. In the present paper we estimate the rate of convergence by the generalized Szasz-Kantorovitch operators for functions of bounded variation. It is also observed here that the second central moment of Szasz-Kantorovitch operators was wrongly estimated in [3], which leads to a major mistake in the main results of [3].

Our main theorem can be stated as follows:

Theorem 1. Let f be a function of bounded variation on every finite subinterval of $[0,\infty)$. If $\alpha \geqslant 1$, $x \in (0,\infty)$, $r \in N$ and $\lambda > 1$ are given, then for $f(t) = O(t^r), t \to \infty$, there exists a constant $M(f, \alpha, r, x)$, such that for n sufficiently large

$$\begin{aligned} & \left| \hat{S}_{n,\alpha}(f,x) - \frac{1}{2^{\alpha}} f(x+) - \left(1 - \frac{1}{2^{\alpha}} \right) f(x-) \right| \\ & \leqslant \frac{\alpha |f(x+) - f(x-)|}{\sqrt{nx}} \left[H(j) + \sqrt{1+3x} \right] + \frac{2\alpha\lambda + x}{nx} \sum_{k=1}^{n} \bigvee_{x=x/\sqrt{k}}^{x+x/\sqrt{k}} (g_x) + \frac{M(f,\alpha,r,x)}{n^r}, \end{aligned}$$

where

$$g_x(t) = \begin{cases} f(t) - f(x-), & 0 \le t < x \\ 0, & t = x \\ f(t) - f(x+), & x < t < \infty \end{cases}$$

and $V_a^b(g_x)$ is the total variation of g_x on [a, b].

2. Auxiliary results

We need the following results for proving our main theorem.

It is well known that the basis function $p_{n,k}(x)$ corresponds to the Poisson distribution in probability theory. Using Berry Esseen theorem Gupta and Pant [2] recently obtained the inequality:

$$p_{n,k}(x) \leqslant \frac{32x^2 + 24x + 5}{2\sqrt{nx}}, \ x \in (0, \infty).$$

Very recently Zeng and Zhao [7] obtained the exact bound as follows:

Lemma 1. Let $H(j)=\frac{(j+1/2)^{j+1/2}}{j!}e^{-(j+1/2)}$. Then for $k\geqslant j$ and $x\in(0,\infty),$ we have

$$\sqrt{x}p_{n,k}(x) \leqslant H(j)\frac{1}{\sqrt{n}}$$

where the coefficient $H(j) = \frac{(j+1/2)^{j+1/2}}{j!}e^{-(j+1/2)}$ and the estimate order $n^{-1/2}$ are best possible.

Using Lemma 1, we have

(4)
$$Q_{n,k}^{(\alpha)}(x) \leqslant \alpha p_{n,k}(x) < \frac{\alpha H(j)}{\sqrt{nx}}.$$

LEMMA 2. For each fixed $x \in (0, \infty)$, we have $\hat{S}_n((t-x)^2, x) = \frac{1+3nx}{3n^2}$.

PROOF. Using the fact that $\sum_{k=0}^{\infty} p_{n,k}(x) = 1$, it can be easily verified by simple computation that

$$\hat{S}_n(1,x) = 1$$
, $\hat{S}_n(t,x) = \frac{1+2nx}{2n}$ and $\hat{S}_n(t^2,x) = \frac{1+3n^2x^2+6nx}{3n^2}$.

By linearity property of the operators \hat{S}_n , the required result follows. For sufficiently large n, there exists a $\lambda > 1$ such that

$$\hat{S}_n((t-x)^2, x) = \lambda x/n.$$

Further for each
$$x \in [0, \infty)$$
, $\hat{S}_n((t-x)^m, x) = O(n^{-[(m+1)/2]}), n \to \infty$.

Remark 1. We may note here that the Lemma 3.1 of [3] is not correct. In [3] the authors get

(6)
$$\hat{S}_n((t-x)^2, x) = A/n,$$

where A is a positive constant independent of n and $x \in [0, \infty)$. Hence due to this major mistake the main results of [3] are not estimated correctly.

Throughout the paper let

(7)
$$K_{n,\alpha}(x,t) = n \sum_{k=0}^{\infty} Q_{n,k}^{(\alpha)}(x) \chi_{n,k}(t),$$

where $\chi_{n,k}$ is the characteristic function of the interval [k/n, (k+1)/n] with respect to $I \equiv [0, \infty)$. Thus with this definition it is obvious that

$$\hat{S}_{n,\alpha}(f,x) = \int_0^\infty f(t) K_{n,\alpha}(x,t) dt$$

LEMMA 3. Let $x \in (0, \infty)$, then for sufficiently large n, we have

(8)
$$\beta_{n,\alpha}(x,y) = \int_0^y K_{n,\alpha}(x,t)dt \leqslant \frac{\alpha \lambda x}{n(x-y)^2}, \quad 0 \leqslant y < x$$

and

(9)
$$1 - \beta_{n,\alpha}(x,z) = \int_z^\infty K_{n,\alpha}(x,t) dt \leqslant \frac{\alpha \lambda x}{n(z-x)^2}, \quad x < z < \infty$$

Proof. We first prove (8). We have

$$\int_{0}^{y} K_{n,\alpha}(x,t) dt \leqslant \int_{0}^{y} K_{n,\alpha}(x,t) \frac{(x-t)^{2}}{(x-y)^{2}} dt \leqslant (x-y)^{-2} \hat{S}_{n,\alpha}((t-x)^{2},x)$$
$$\leqslant \alpha (x-y)^{-2} \hat{S}_{n}((t-x)^{2},x) = \frac{\alpha \lambda x}{n(x-y)^{2}}, \quad 0 \leqslant y < x$$

where we have applied (5). The proof of (9) is similar.

Lemma 4. [8] For $x \in (0, \infty)$, we have

$$\left| \sum_{k > nx} p_{n,k}(x) - \frac{1}{2} \right| \leqslant \frac{0.82\sqrt{1+3x}}{\sqrt{nx}} < \frac{\sqrt{1+3x}}{\sqrt{nx}}.$$

3. Proof of the main theorem

PROOF. Making use of identity for all n, we have

$$f(t) = \frac{1}{2^{\alpha}} f(x+) + \left(1 - \frac{1}{2^{\alpha}}\right) f(x-) + g_x(t) + \frac{f(x+) - f(x-)}{2^{\alpha}} \operatorname{sign}_x(t) + \delta_x(t) \left[f(x) - \frac{1}{2^{\alpha}} f(x+) - \left(1 - \frac{1}{2^{\alpha}}\right) f(x-) \right]$$

where

$$\begin{cases} \operatorname{sign}_x(t) = 2^{\alpha} - 1, & t > x; \\ \operatorname{sign}_x(t) = 0, & t = x; \\ \operatorname{sign}_x(t) = -1, & t < x \end{cases} \quad \text{and} \quad \delta_x(t) = \begin{cases} 1, & x = t \\ 0, & x \neq t \end{cases}.$$

It follows that

$$(10) \quad \left| \hat{S}_{n}(f,x) - \frac{1}{2^{\alpha}} f(x+) - \left(1 - \frac{1}{2^{\alpha}}\right) f(x-) \right| \leqslant \left| \hat{S}_{n,\alpha}(g_{x},x) \right|$$

$$+ \left| \frac{f(x+) - f(x-)}{2^{\alpha}} \hat{S}_{n,\alpha}(\operatorname{sign}(t-x),x) + \left[f(x) - \frac{1}{2^{\alpha}} - \left(1 - \frac{1}{2^{\alpha}}\right) f(x-) \right] \hat{S}_{n,\alpha}(\delta_{x},x) \right|$$

For the operators $\hat{S}_{n,\alpha}$ it is obvious that

$$\hat{S}_{n,\alpha}(\delta_x, x) = 0$$

First we estimate $\hat{S}_{n,\alpha}(\operatorname{sign}(t-x),x)$. Let us choose k' such that $x \in \left\lfloor \frac{k'}{n}, \frac{(k'+1)}{n} \right\rfloor$, then

$$\hat{S}_{n,\alpha}(\operatorname{sign}(t-x), x) = \sum_{k=0}^{k'-1} (-1)Q_{n,k}^{(\alpha)}(x) + \left(\frac{Q_{n,k'}^{(\alpha)}}{\int_{I_k'} dt}\right) \int_{k'/n}^{x} (-1) dt + \left(\frac{Q_{n,k'}^{(\alpha)}(x)}{\int_{I_k'} dt}\right) \int_{x}^{(k'+1)/n} (2^{\alpha} - 1) dt + \sum_{k=k'+1}^{\infty} (2^{\alpha} - 1)Q_{n,k}^{(\alpha)}(x)$$

$$= \sum_{k=k'+1}^{\infty} 2^{\alpha}Q_{n,k}^{(\alpha)}(x) + \left(\frac{Q_{n,k'}^{(\alpha)}(x)}{\int_{I_k'} dt}\right) \int_{I_k'}^{(k'+1)/n} 2^{\alpha} dt - 1$$

Note that

$$0 \leqslant \left(\frac{Q_{n,k'}^{(\alpha)}(t)}{\int_{I'_{t}} dt}\right) \int_{x}^{(k'+1)/n} 2^{\alpha} dt \leqslant 2^{\alpha} Q_{n,k'}^{(\alpha)}(x),$$

we conclude

$$|\hat{S}_{n,\alpha}(\operatorname{sign}(t-x),x)| \leq \left| \sum_{k=k'+1}^{\infty} 2^{\alpha} Q_{n,k}^{(\alpha)}(x) - 1 \right| + 2^{\alpha} Q_{n,k'}^{(\alpha)}(x)$$

$$= |2^{\alpha} J_{n,k'+1}^{\alpha}(x) - 1| + 2^{\alpha} Q_{n,k'}^{(\alpha)}(x)$$

Applying the inequality $|a^{\alpha} - b^{\alpha}| \leq \alpha |a - b|$ for $0 \leq a, b \leq 1$ and $\alpha \geq 1$ yields

$$|2^{\alpha}J_{n,k'+1}^{\alpha}(x) - 1| \leqslant \alpha 2^{\alpha} \Big| J_{n,k'+1}(x) - \frac{1}{2} \Big| = a2^{\alpha} \Big| \sum_{k>n} p_{n,k}(x) - \frac{1}{2} \Big|.$$

Therefore by (4) and Lemma 4, we get

$$(12) \left| \hat{S}_{n,\alpha}(\operatorname{sign}(t-x),x) \right| \leqslant \alpha 2^{\alpha} \frac{\sqrt{1+3x}}{\sqrt{nx}} + \alpha 2^{\alpha} \frac{H(j)}{\sqrt{nx}} = \frac{\alpha 2^{\alpha}}{\sqrt{nx}} \left[H(j) + \sqrt{1+3x} \right]$$

Next we estimate $\hat{S}_{n,\alpha}(g_x,x)$. By (7), we have

$$\hat{S}_{n,\alpha}(g_x, x) = \int_0^\infty g_x(t) K_{n,\alpha}(x, t) dt$$

$$= \left(\int_0^{x - x/\sqrt{n}} + \int_{x - x/\sqrt{n}}^{x + x/\sqrt{n}} + \int_{x + x/\sqrt{n}}^\infty \right) K_{n,\alpha}(x, t) g_x(t) dt$$

$$= E_1 + E_2 + E_3, \quad \text{say.}$$

We start with E_2 . For $t \in [x - x/\sqrt{n}, x + x/\sqrt{n}]$, we have

(14)
$$|E_2| \leqslant \bigvee_{x-x/\sqrt{n}}^{x+x/\sqrt{n}} (g_x) \leqslant \frac{1}{n} \sum_{k=1}^{n} \bigvee_{x-x/\sqrt{k}}^{x+x/\sqrt{k}} (g_x).$$

Next we estimate E_1 . Setting $y = x - x/\sqrt{n}$ and integrating by parts, we have

$$E_{1} = \int_{0}^{y} g_{x}(t)d_{t}(\beta_{n,\alpha}(x,t)) = g_{x}(y)\beta_{n,\alpha}(x,y) - \int_{0}^{y} \beta_{n,\alpha}(x,t)d_{t}(g_{x}(t))$$

Since $|g_x(y)| \leq V_y^x(g_x)$, we conclude

$$|E_1| \leqslant \bigvee_{y}^{x} (g_x) \beta_{n,\alpha}(x,y) + \int_{0}^{y} \beta_{n,\alpha}(x,t) d_t \left(-\bigvee_{t}^{x} (g_x)\right)$$

Also $y = x - x/\sqrt{n} \leqslant x$, (8) of Lemma 3 implies for n sufficiently large

$$|E_1| \leqslant \frac{\alpha \lambda x}{n(x-y)^2} \bigvee_y^x (g_x) + \frac{\alpha \lambda x}{n} \int_0^y \frac{1}{(x-t)^2} d_t \left(-\bigvee_t^x (g_x) \right)$$

Integrating by parts the last integral, we obtain

$$|E_1| \leqslant \frac{\alpha \lambda x}{n} \left(x^{-2} \bigvee_{0}^{x} (g_x) + 2 \int_{0}^{y} \frac{\bigvee_{t}^{x} (g_x) dt}{(x-t)^3} \right)$$

Replacing the variable y in the last integral by $x - x/\sqrt{n}$, we get

$$\int_0^{x-x/\sqrt{n}} \bigvee_t^x (g_x)(x-t)^{-3} dt = \sum_{k=1}^{n-1} \int_{x-x/\sqrt{k}}^{x+x/\sqrt{k}} \bigvee_{x-t}^x (g_x) t^{-3} dt \leqslant \frac{1}{2x^2} \sum_{k=1}^n \bigvee_{x-x/\sqrt{k}}^x (g_x) t^{-3} dt$$

Hence

$$|E_1| \leqslant \frac{2\alpha\lambda}{nx} \sum_{k=1}^n \bigvee_{x=x/\sqrt{k}}^x (g_x)$$

Finally we estimate E_3 , we put

$$\hat{g}_x(t) = \begin{cases} g_x(t), & 0 \leqslant t \leqslant 2x \\ g_x(2x), & 2x < t < \infty \end{cases}$$

and divide $E_3 = E_{31} + E_{32}$, where

$$E_{31} = \int_{x+x/\sqrt{n}}^{\infty} K_{n,\alpha}(x,t)\hat{g}_x(t) dt$$
, and $E_{32} = \int_{2x}^{\infty} K_{n,\alpha}(x,t)[g_x(t) - g_x(2x)] dt$

with $y = x + x/\sqrt{n}$ the first integral can be written in the form

$$E_{31} = \lim_{R \to +\infty} \left\{ g_x(y) [1 - \beta_{n,\alpha}(x,y)] + \hat{g}_x(R) [\beta_{n,\alpha}(x,R) - 1] + \int_x^R [1 - \beta_{n,\alpha}(x,t)] d_t \hat{g}_x(t) \right\}$$

By (9) of Lemma 3, we conclude for each $\lambda > 1$ and n sufficiently large

$$\begin{split} |E_{31}| &\leqslant \frac{\alpha \lambda x}{n} \lim_{R \to +\infty} \left\{ \frac{\mathbf{V}_{x}^{y}(g_{x})}{(y-x)^{2}} + \hat{g}_{x}(R)(R-x)^{2} + \int_{y}^{R} \frac{1}{(t-x)^{2}} d_{t} \left(\mathbf{V}_{x}^{t}(\hat{g}_{x}) \right) \right\} \\ &= \frac{\alpha \lambda x}{n} \left\{ \frac{\mathbf{V}_{x}^{y}(g_{x})}{(y-x)^{2}} + \int_{y}^{2x} \frac{1}{(t-x)^{2}} d_{t} \left(\mathbf{V}_{x}^{t}(g_{x}) \right) \right\} \end{split}$$

Using the similar method as above, we get

$$\int_{y}^{2x} \frac{1}{(t-x)^{2}} d_{t} \left(\bigvee_{x}^{t} (g_{x}) \right) \leqslant x^{-2} \bigvee_{x}^{2x} (g_{x}) - \frac{\bigvee_{x}^{y} (g_{x})}{(y-x)^{2}} + x^{-2} \sum_{k=1}^{n-1} \bigvee_{x}^{x+x/\sqrt{k}} (g_{x})$$

which implies the estimate

$$|E_{31}| \leqslant \frac{2\alpha\lambda}{nx} \sum_{k=1}^{n} \bigvee_{x=1}^{x+x/\sqrt{k}} (g_x)$$

Finally we estimate E_{32} . By assumption there exists an integer r such that $f(t) = O(t^{2r}), t \to \infty$. Thus for certain constant M > 0 depending only on f, x, r, we have

$$|E_{32}| \le Mn \sum_{k=0}^{\infty} Q_{n,k}^{(\alpha)}(x) \int_{2x}^{\infty} \chi_{n,k}(t) t^{2r} dt$$

By Lemma 2, we have

(17)
$$|E_{32}| \leqslant \alpha 2^r M \hat{S}_n((t-x)^{2r}, x) = O(n^{-r}), \quad n \to \infty$$

Finally collecting the estimates of (10)–(17), we get (3). This completes the proof of the theorem.

Remark 2. For $\alpha = 1$, Theorem 1 gives the improved estimate over the result of Aniol [1]. In [1, p. 13] the author has used $\beta(x) \leq 8x^3 + 6x^2 + x$, which can be improved using $\beta(x) \equiv E|\xi_1 - a_1|^3 \leq \sqrt{E(\xi_1 - a_1)^4 E(\xi_1 - a_1)^2} \leq x\sqrt{(1+3x)}$.

References

- [1] G. Aniol, On the rate of pointwise convergence of the Kantorovitch type operators, Fasciculi mathematici 29 (1999), 5-15
- [2] V. Gupta and R. P. Pant, Rate of convergence for the modified Szasz-Mirakyan operators on functions of bounded variation, J. Math. Anal. Appl. 233 (1999), 476-483.
- [3] Q. Razi and S. Umar, L_p-approximation by Szasz-Mirakyan-Kantorovitch operators, Indian J. Pure Appl. Math. 18(2) (1987), 173-177.
- [4] P. Pych Taberska, On the rate of convergence of the Bezier type operators, Functiones et Approximatio 28 (2000), 201-209.
- [5] V. Totik, Uniform approximation by Szasz-Mirakjan type operators, Acta Math. Hungar. 41(3-4) (1983), 291-307.
- [6] X.M. Zeng and V. Gupta, Rate of convergence of Baskakov Bezier type operators for locally bounded functions, Comput. Math. Appl. 44 (2002), 1445-1453.
- [7] X.M. Zeng and J.N. Zhao, Exact bounds for some basis functions of approximation operators,
 J. Inequal. Appl. 6 (2001), 563-575.
- [8] X.M. Zeng, On the rate of convergence of the generalized Szasz type operators for functions of bounded variation, J. Math. Appl. 226 (1998), 309-325.

School of Applied Sciences Netaji Subhas Institute of Technology Sector 3 Dwarka, Azad Hind Fauj Marg New Delhi 110045, India

vijay@nsit.ac.in

Department of Mathematics Hindu College Moradabad-244001, India

Department of Mathematics Ch. Chran Singh University Meerut-250004, India

mkgupta2002@hotmail.com

(Received 14 06 2002)