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RATE OF CONVERGENCE OF THE
SZASZ-KANTOROVITCH-BEZIER OPERATORS
FOR BOUNDED VARIATION FUNCTIONS
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ABSTRACT. We introduce the Szasz-Kantorovitch-Bezier operators Sy, which
is the modified form of Szasz-Kantorovitch operators and study the rate of
convergence of bounded variation functions for these operators.

1. Introduction

For a function defined on the infinite interval [0, 00), the Szasz—Mirakyan op-
erators S, applied to f are

- k
Sn(f, SL‘) = an,k(fﬂ)f(k/n), pn,k(fll') — e @ (n:')
k=0 :

and the Kantorovitch variant is defined by
oo
1) Salfia) =Y pusiey [ @t I =/, (1))
k=0 L
Some approximation properties for Szasz—Kantorovitch operators defined by (1)

are studied by Totik [5], Aniol [1] and Razi and Umar [3] etc. We now introduce
the Bezier variant of the operators (1) as follows:

(2) Snalfiz)=n)y Qi) [ f(t)dt
k=0 I
where Q(n(f,)c(x) = Jop(@) = Jppa(@), @ 2 1and Jyp(z) = 352, paj(z) are

the Szasz—Bezier basis function. It is obvious that Sy o(f,z) are linear positive
operators and Sy o(1,2) = 1. If a = 1, S, o (f, z) reduces to the operator Sy (f,x),
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defined by (1). Some basic properties of the basis function J,, 1 (z), which are useful
for our study, are as follows:

() ( )_ nk+1( ) pn,k(w)ak:05172537"'

ii) Jp 1 (z) =nppr-1(z), k=1,2,3,...

iii) J & () —nfo Prg—1(u)du, k=1,2,3,...

iv) z = [ 5% pu(u) du = nz

) J, ( ) > Jn,l(x) > Jpa2(x) > > Tnp(x) > Tnppr(z) > -
Jn k (z) increases strictly on [0,00) and 0 < Jpk(z) <1,k € N.

Rates of convergence for functions of bounded variation by different operators
were studied in [1], [2], [4] and [6] etc. In [8] Zeng has introduced Szasz—Bezier
operators and estimated the rate of convergence for functions of bounded variation.
In the present paper we estimate the rate of convergence by the generalized Szasz—
Kantorovitch operators for functions of bounded variation. It is also observed
here that the second central moment of Szasz—Kantorovitch operators was wrongly
estimated in [3], which leads to a major mistake in the main results of [3].

Our main theorem can be stated as follows:

THEOREM 1. Let f be a function of bounded variation on every finite subin-
terval of [0,00). Ifa > 1, z € (0,00), r € N and A\ > 1 are given, then for
ft) = O(t"), t = oo, there exists a constant M (f,a,r,x), such that for n suffi-
ciently large

®) |Snalhi2) = 5ef@t) — (1= 55 ) flo-)|

alf(z+) = f(z—)] ) 20\ + T — w+z/VE M(f,a,r,x)
< Jnz [H(j) +V1+32 +7;w Xﬁ(gz)‘f‘T,
where

f(t) = flz=), 0<t<=
gm(t): 0, t==x
f@) = flz+), z<t<oo

and Vg(g$) is the total variation of g, on [a,b].

2. Auxiliary results

We need the following results for proving our main theorem.

It is well known that the basis function p, j(x) corresponds to the Poisson
distribution in probability theory. Using Berry Esseen theorem Gupta and Pant [2]
recently obtained the inequality:

(@) < 3222 + 24z + 5
DPn,k\T 2\/@ )

Very recently Zeng and Zhao [7] obtained the exact bound as follows:

€ (0, 00).
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: 1/2 j+1/2 )
LEMMA 1. Let H(j) = %e’(“lm. Then for k > j and z €
(0,00), we have J:

\/Epn,k(w) < H(])_

U+ 1/2)J+ /2 ~1/2

where the coefficient H(j) = e~Ut1/2) and the estimate order n

are best possible. !
Using Lemma 1, we have
aH(j
@ Q@) < apila) < L.
A 9 1+ 3nz
LEMMA 2. For each fized x € (0,00), we have Sp((t — z)*,z) = 32

ProoF. Using the fact that Y ;7 pnk(z) = 1, it can be easily verified by
simple computation that

R 1 2.2
1+ 2nz and 8,(12,z) = +3n3::L2+6nx_

By linearity property of the operators S,, the required result follows. For suffi-
ciently large n, there exists a A > 1 such that

(5) Sn((t — 2)*,2) = Az /n.
Further for each z € [0, 00), S,,((t — 2)™,z) = O(n [m+t1/2]) n 4 0. O

REMARK 1. We may note here that the Lemma 3.1 of [3] is not correct. In [3]
the authors get

(6) Sal(t = z)%,2) = Afn,

where A is a positive constant independent of n and z € [0, 00). Hence due to this
major mistake the main results of [3] are not estimated correctly.

Throughout the paper let
(7) naxt _HZQ(a) Xnk )

where xp,1 is the characteristic functlon of the interval [k/n, (k+1)/n] with respect
to I = [0, 00). Thus with this definition it is obvious that

Suntri) = [ 10Kt

LEMMA 3. Let z € (0,00), then for sufficiently large n, we have

v alr
= < — <
(8) Br,a(Z,y) /0 Ky oz, t)dt < Y - O0<y<z
and
& alT
—_— = <
9) 1 - Bnalz,2) /z Ky oz, t)dt < (e =22 <2< 00
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PROOF. We first prove (8). We have

/0 Koalz,t) d / Kool 1) _y) dt < (¢ — ) 28n.a((t — 2)2,)

)?
A aix
<al@—y) 28 (t—2)%0) = —222_ 0g
ol =) 28t =) 0) = 2 <y <a
where we have applied (5). The proof of (9) is similar. O

LEMMA 4. [8] For x € (0,00), we have

5 oL 08I 3r  VI+3s
Dn,k X %E %E .

k>nzx

3. Proof of the main theorem

ProOOF. Making use of identity for all n, we have

f(t) = ziaf(aht) (1 — %)f(m—) + 9.(t) + w sign, (t)
1
6.0 £(@) - g fla) = (1= 2 ) F)]
where
sign, (t) =2% -1, t>m; . .
sign,(t) =0, t = and 0x(t) = {0’ = ;
sign, () =1,  t<az > BF
It follows that
. 1 1 .
(10) |Sulf2) = 55 S @) = (1= 55 ) £@=)| < 1Smal9e, o)

_ =) 4 1 1 A
+‘w5n,a(sign(t—w),x)+ [1@) 55— (135 ) F@)] Sna(0 ),
For the operators S’n,a it is obvious that
(11) S a(6z,x) =0
First we estimate S, o (sign(t—z), z). Let us choose k' such that = € [k—, M] ,
then n n
R k=1 Q(a), z
S, o(sign(t — z),z) = —1)Q@ +( "’“) 1) dt

(st =2)0) = S 000 + (12 [,
QW ( )) (k'+1)/n - (@)
+ 2* —1)dt + 2* -1
<.&dt L @ -y 3 @ - 0ekl

() K +1)/n
Z 29Q%) (x) RLXAC) /( " s 1
[ dt

k=k'+1 4
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Note that

(2) :

L (t (k'+1)/n

0< (Qf””“;t)> / 2%dt < 2°Q%) (),
I, T

we conclude

Snalsign(t— 22 <| 3 20 (@) - \+2‘*Q£f’;,<)
k=k'+1

= 27 (@) = 1]+ 2°Qi% (@)
Applying the inequality |a® — b*| < aja — b| for 0 < a,b < 1 and o > 1 yields

1
ank z) — 2l

k>nx

2% T3 1 (2) — 1] < a2%

Jnw1(z) — —‘ =a2®

Therefore by (4) and Lemma 4, we get

V1 H(j 2¢
) -y T
\/nz Vnr  \/nz
Next we estimate S’n,a(gmm). By (7), we have
Snal0ar0) = [ 9:(OKnala,t)de

0

z—z//n z+z//n %)
(13) ([T [ YRt
0 z—z//M z+z//n

= E1 + E2 + E3, say.
We start with Es. For ¢ € [z — z//n,z + x//n], we have

(12) gn,a(sign(t — ), x)‘ < a2® 1+ 3z

m+<//\/ﬁ 1> z+<;_\/15
14 E S T g_ 9z ).
(14 mi<, Y, @< Vo6

Next we estimate E;. Setting y = z — z/+/n and integrating by parts, we have

E = /Oy gz(t)dt(ﬂn,a(mat)) = gz(y)ﬁn,a(may) - ‘/Oy ﬁ”aa(:v’t)dt(gz(t))

Since |g,(y)| < V; (g2), we conclude

1811 < V@) + [ nate 0 (- Vo)

Also y =z — z/+/n < z, (8) of Lemma 3 implies for n sufficiently large
alr

ade Y 1 ¥
B < =22 Vi) + 22 [* L= Va)

Integrating by parts the last integral, we obtain

|E1| a;:'r ( -2 V v Vf(gz)dt)

o (z—1)?
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Replacing the variable y in the last integral by x — z//n, we get

z—z//n T n—1 ,ztz/Vk = n T
| Veae—nca=Y [ Vg tars QLZ V)

Pl S 3

Hence

(15) B < 22y V()
nT = o o/vVE

Finally we estimate Fs3, we put

t 0<tg2

9:(27), 2z <t< oo
and divide E3 = FE3; + Ej35, where

E31 = / Kn,a(wat)gz(t) dt7 and E32 = / Kn,a(xat)[gz(t) - gz(2x)] dt
z+z//n 2z

with y = z + z/4/n the first integral can be written in the form

E31 = R1—i>r£oo {gw(y)[l - ﬂn,a(x,y)] + gz(R)[/gn,a (SE, R) - 1]

+ /R[l — Bn,a(®, 1) di gz (t)}

By (9) of Lemma 3, we conclude for each A > 1 and n sufficiently large

2l < 22 i {0 gy o 4 [ e (Van) )

R—too | (y — x)2

-2 [ (Vo))

Using the similar method as above, we get

2z 1 \t/ iw/ Vy(g ) n—1 E+{}\/E
< -2 _ T \JT —2
which implies the estimate
n T+zx \/E
2a\ +a/
(16) | E31] < P 2 Y (92)

Finally we estimate E32. By assumption there exists an integer r such that f(¢) =
O(t?"),t — oo. Thus for certain constant M > 0 depending only on f,z,r, we have

|Fsal < MnZQ(a) / X ()27t

By Lemma 2, we have
(17) |E32| < a2TMS’n((t —2),r)=0(n""), n—= o
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Finally collecting the estimates of (10)—(17), we get (3). This completes the proof
of the theorem. O

REMARK 2. For @ = 1, Theorem 1 gives the improved estimate over the result
of Aniol [1]. In [1, p. 13] the author has used 8(z) < 82° + 6x2 + z, which can be

improved using B(z) = E|é1 — a1]? < VE(& — a1)*E(&G — a1)? < z/(1 + 31).
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