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ON A PARAMETRIC METHOD
FOR CONFORMAL MAPS
WITH QUASICONFORMAL EXTENSIONS

Alexander Vasil’ev

ABSTRACT. The Léwner-Kufarev equation gives a complete description of the
class S of all univalent holomorphic functions f in the unit disk normalized by
f(0)+1 = f'(0) = 1. We consider the class S9¢ of all functions from S that
admit quasiconformal extension to the whole Riemann sphere fixing co. There
is a well known Becker’s sufficient condition for the Léwner-Kufarev equation
that guarantees a function from S to be from S?¢. We study subordination
chains of quasidisks bounded by analytic curves and corresponding motions
on the modelling universal Teichmiiller space. This leads to a specific form of
the Lowner-Kufarev equation.

1. Introduction

Let U denote the unit disk in the Riemann sphere Cand U* = C~\U , where U
is the closure of U, T := 0U. By S we denote the class of all holomorphic univalent
functions in U normalized by f(z) = z + a22%2 + -+, z € U. Any function f € S
can be represented as a limit

ot
(1.1) tlgroloe w(z,t),

where the function w(z,t) is a solution of the equation

(12) ]

almost everywhere in ¢ € [0,00), with the initial condition w(z,0) = z. The
function p(z,t) = 1 4+ p1(t)z + - -+ is analytic in U, measurable with respect to
t € [0,00), and its real part Re p(z,t) is positive for almost all ¢ € [0,00). The
equation (1.2) is known as the Léwner-Kufarev equation. First its important par-
ticular form appeared almost 80 years ago in a seminal paper by K. Lowner [21],
who studied a one-parameter semigroup of conformal one-slit maps of U, taken
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p(z,t) = (e® 4 2)(e? — 2)~1 with a continuous function u(t). Lowner’s result
was generalized, then, in several ways. Attempts have been made to derive an
equation that allowed to describe a representation of the whole class S. Nowadays,
it is rather difficult to follow the correct history line of the development of the
parametric method because in the middle of the 20-th century a number of works
dedicated to this general equation appeared independently. In particular, P. P. Ku-
farev [18] studied a one-parameter family of domains Q(¢) and regular functions
f(z,t) defined in Q(t). He proved differentiability of f(z,t) with respect to t for
z from the Carathéodory kernel Q(tg) of ©(t), and derived a generalization of the
Lowner equation. Ch. Pommerenke [24] proposed to consider subordination chains
of domains that led him to a general equation. We mention here also papers by
V. Gutlyanskii [14] and V. Goryainov [11] in this direction. One can learn more
about this method in monographs [1, 8, 25] (see also the references therein).

The importance of the parametric representation (1.2) is shown by a number
of results obtained with a help of this method. The most intricate problem for
the class S posed by L. Bieberbach in 1916 [6] finally has been solved in 1984 by
L. de Branges [7] making use of the parametric representation. He proved that
lan| € n for any f € S and the equality is attained only for the Koebe function
k(z) = 2(1 — ze?)~2, 0 € [0, 27).

From the geometric point of view one can consider a subordination chain of
simply connected domains €(t) in the Riemann sphere C, co ¢ Q(t), which is
defined for 0 < ¢t < to for some o > 0. This means that Q(t) C Q(s) when
t < s. By the Riemann Mapping Theorem one constructs a subordination chain of
mappings f(z,t), 2 € U, where the function f(z,t) = a;(t)z+az(t)22+---, a(t) > 0,
is a holomorphic univalent map of U onto §2(t) for each fixed ¢. Ch. Pommerenke
[24, 25] first introduced such chains in order to generalize Lowner’s equation. His
result says that given a subordination chain of domains Q(t) of the conformal radius
a(t) which is differentiable with respect to ¢, there exists a holomorphic function
p(2,t) = po(t) + p1(t)z +pa(t)2? +---, z € U, such that Rep(z,t) > 0in 2z € U and

05(2.t) _ 0f(nt)

(13) )

almost everywhere with respect to ¢. The coefficient a1 (t) = a1 (0) exp( f(f po(T)dT)
is the conformal radius of §2(¢).

The connection between (1.2) and (1.3) can be thought of as follows. Solving
(1.3) by the method of characteristics and assuming s as the parameter along the
characteristics we have

% = 17 % = —zp(z,t), Z_.Z = Oa
with the initial conditions ¢(0) = 0, 2(0) = 20, f(2,0) = fo(z), where 2 is in
U. We see that the equation (1.2) is exactly the characteristic equation for (1.3).
Unfortunately, this approach requires the extension of fo(w~'(2,t)) into U because
the solution of the function f(z,t) is given as fo(w!(z,t)), where z = w(zo, s) is the
solution of the initial value problem for the characteristic equation. Thus, assuming



ON A PARAMETRIC METHOD FOR CONFORMAL MAPS... 11

certain properties about the family f(z,t) enables us to derive the equation (1.2)
as a necessary condition.

Several attempts have been launched to specialize the Lowner-Kufarev equation
to obtain conformal maps that admit quasiconformal extensions (see [2, 3, 4, 15]).
Precisely, if f(z,t) is a solution to the equation (1.3) where p(z,t) satisfies the
condition

p(Z, t) -1
(4 ‘p(z,t)+1‘ skt
then Q(t) is a Jordan domain bounded by a k-quasicircle. The corresponding
function generated by (1.1) belongs to the class Sy of all functions from S that
admit k-quasiconformal extension to the Riemann sphere fixing co. Thus, Becker’s
condition (1.4) is a sufficient condition for a function f € S to belong to S, C S1¢,
where S = (J;c0,1) Sk-

We ask reciprocally: what does p(z,t) look like when 0€(t) is a quasicir-
cle? Generally, we are not able to give a complete answer for this question, but
assuming that the corresponding quasiconformal mapping of C has the Beltrami
coefficient vanishing in some neighbourhood of T, we will deduce some analogues
of the Lowner-Kufarev equations.

Another problem we are concerned with is as follows: given a one-parameter
family of complex functions u(z,t) vanishing in a neighbourhood of U,
measurable with respect to z € U*, ||u|l < 1, and differentiable in ¢ €
[0,t0), we solve the Beltrami equation f; = u(z,t)f, normalizing f by
f(0) =0, f'(0) = ety f(0c0) = cc. What is the condition on y that guarantees
the family Q(t) = f(U,t) to be a subordination chain? For the obvious case
u(z,t) = p(z) we have f(z,t) = et f(z) which forms a subordination chain of starlike
maps if f(z) is starlike.

Parametric methods for quasiconformal maps have been known since 1959.
Shah Dao-Shing [26] suggested an evolutionary equation for quasiconformal auto-
morohisms of U. In another form this method appeared in the paper by F. Gehring
and E. Reich [10], and then, in [19]. Later, Cheng Qi He [17] obtained an anal-
ogous equation for classes of quasiconformally extendable univalent functions (in
terms of inverse functions). Unlike the parametric method for conformal maps, its
analogue for quasiconformal maps did not receive so much attention. Moreover,
the parametric representations mentioned above have no precise concordance with
the Lowner equation.

In 1987 the author attended the Kuban’ conference on Geometric Function
Theory held in a beautiful village Divnomorsk at the Black Sea Coast. There
V.V. Goryainov gave a nice lecture on a semi-group approach to the Léwner-
Kufarev equation. Later he published several new results obtained by this approach
(see, e.g., [11, 12, 13]). Recently D. Shoikhet published a monograph [27] where
he presented a systematic treatment of this method. Inspired by these works we
consider differentiable paths on the universal Teichmiiller space as a natural re-
alization of one-parameter families of quasicircles and link them to semigroups of
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conformal maps with quasiconformal extension. Then, based on variational formu-
las, we derive a special form of the function p as a necessary condition and shed
some light onto proposed questions.

Acknowledgement. I would like to thank Jochen Becker and Victor Goryainov
for helpful conversations. In particular, J. Becker made several valuable remarks
leading to improvement of the paper.

2. Infinitesimal structure of the universal Teichmiiller space

Let us consider the family F of all quasiconformal automorphisms of U. Ev-
ery such map f satisfies the Beltrami equation f; = ps(z)f, in U in distribu-
tional sense, where us is a measurable essentially bounded function (L*°(U*)) in
U, ||lpsll = esssupy |pus(2)]|oo < 1. Conversely, for each measurable Beltrami coeffi-
cient u essentially bounded as above, there exists a quasiconformal automorphism
of U, that satisfies the Beltrami equation, which is unique if provided with some
conformal normalization, e.g., three point normalization f(+1) = +1, f(i) = 1.
Two normalized maps fi and f2 are said to be equivalent f; ~ f» if being extended
onto the unit circle T, the superposition f; o f, * restricted to T is the identity map.
The quotient set F/~ is called the universal Teichmiller space T'. It is a covering
space for all Teichmiiller spaces of analytically finite Riemann surfaces. By defini-
tion we have two realizations of T": as a set of equivalence classes of quasiconformal
maps and, due to the relation between F/~ and the unit ball B C L*(U), as a
set of equivalence classes of corresponding Beltrami coeflicients.

The normalized maps from F form a group Fy with respect to superposition
and the maps that act identically on T form its normal subgroup Z. Thus, T is the
quotient T' = Fy/Z.

If g € F, f € Fy, then there exists a Mdbius transformation h, such that
hofog ! € Fo. Let us denote by [f] € T the equivalence class represented by
f € Fo. Then, one defines the universal modular group M, w € M, w:T — T, by
the formula w([f]) = [h o f 0 g7!]. Its subgroup M of right translations on T is
defined by wo([f]) = [f o g~ ], where f,g € Fo.

An important fact (see [20, Chapter III, Theorem 1.1]) is that there are real
analytic mappings in any equivalence class [f] € T

Given a Beltrami coefficient p € B C L (U*) let us extend it by zero into
z € U. We normalize the corresponding quasiconformal map f which is conformal
in U by f(2) = z+a22%+- - - about the origin. Then, two Beltrami coefficients y and
v are equivalent if and only if the corresponding normalized mappings f* and f”
map U onto one and the same domain in C. Thus, the universal Teichmiiller space
can be thought of as the family of all normalized conformal maps of U admitting
quasiconformal extension. Moreover, any compact subset of T' consists of conformal
maps f of U that admit quasiconformal extension to U* with ||pus|lc < k < 1 for
some k.

As we mentioned above, a normalized conformal map f € [f] € T defined in U
can have a quasiconformal extension to U* which is real analytic in U*, but on the
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unit circle f can behave quite irregularly. For example, the resulting quasicircle
f(T) can have the Hausdorff dimension greater than 1.

REMARK 2.1. For a bounded k-quasicircle T' in the plane let N(g,T") denote
the minimal number of disks of radius £ > 0 that are needed to cover I'. Let

. log N(e,T")
k) = suplim sup ——————
bk) rp s—>0p log(1/¢)
denote the supremum of the Minkowski dimension of curves I" where I' ranges over
all bounded k-quasicircles. The Hausdorff dimension of I' is bounded from above
by B(k) (see [5]). In [5] it was also established several explicit estimates for §(k) ,
e.g., B(k) <2—cK 3" where K = (1+k)/(1—k).

Let us denote by S% C S the class of all those univalent conformal maps
f defined in U that admit a quasiconformal extension into U*, normalized by
f(z)=z+az®+---. Let 2,y € T and f,g € S be such that uy € z and p, € y.
Then, the Teichmiiller distance 7(x,y) on T is defined as

1 1+ ”Ngof—lnoo
er 2 1- ”/J/gof—lnoo

For a given z € T we consider the extremal Beltrami coefficient p* such that
[|6*||lo = infyeq ||V]|co- Let us remark that the extremal p* need not be unique.
A geodesic on T can be described in terms of the extremal coefficient p* as a
continuous homomorphism z; : [0,1] — T such that 7(0,z;) = ¢t7(0,21). Due to
the above remark the geodesic need not be unique as well.

We consider the Banach space B(U) of all functions holomorphic in U equipped
with the norm

lellBw) = sup p(2)|(1 = |2*).
zeU

For a function f from S the Schwarzian derivative

" " 2
Sp(z) = o (fl(2)> 21 (fl(z))
9z \ f'(z) ) 2\ [f'(2)
is defined and Nehari’s [23] estimate ||Sy||pw) < 6 holds. Given z € T, u € = we
construct the mapping f# € S and have the homeomorphic embedding T' — B(U)
by the Schwarzian derivative.

The universal Teichmiiller space T is an analytic infinite dimensional Banach
manifold modelled on B(U). The Banach space B(U) is an infinite dimensional
vector space that can be thought of as a co-tangent space to T" at the initial point.
More rigorously, the map f* € S has a Fréchet derivative with respect to u in a
direction v. Let us construct the variation in S%°

ffP(z)=2z+7V(2)+o(1), zeU.
Taking the Schwarzian derivative in U we get

Sgre =7V (2) + 0(1), 2z €U,
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locally uniformly in U. Taking into account the normalization of the class S7¢ we

have (see, e.g., [16, 20])
_ daw
B w2

e =__// daw __g//@_l/(l/w)daw.
™ w? (1 —wz)*
U

The integral formula 1mphes V" (A(2))A'(2)? = V"'(z) (subject to the relation for
the Beltrami coefficient p(A(z))A’(z) = u(z)A'(2)) for any Mdbius transform A.

Let us extend v(z), z € U* into U by putting v(1/2) = v(2)2?/2%, z € U.
Taking A, (2) = Sf-u(z) and A,(z) = V" (2) we have (see, e.g., [9, Section 6.5,
Theorem 5]) that

i o(7)
A,,(Z)—TAV(Z): m, ZEU
or A,, is the derivative of A, at the initial point of the universal Teichmiiller space
with respect to the norm of the Banach space B(U). The reproducing case of the
Bergman integral gives

(2.1) // )~ wl? )2d0’”, ¢ € B(U).

(1 —wz)*

Changing variables w — 1/@ in the latter integral we come to the so-called har-
monic (Bers’) Beltrami differential

W) = Ay() = —50() (1~ |2P)’, ze Ul

Let us denote by A(U) the Banach space of analytic functions with finite L' norm.
Then A(U) — B(U) is a continuous inclusion ([22], Section 1.4.2). On L*(U*) x

A(U) one can define a coupling
/ / daza

where do, means the area element in U. Denote by N the space of locally trivial
Beltrami coefficients, which is a subspace of L>°(U) that forms the kernel of the
operator (-,¢p) for all ¢ € A(U). Then, one can identify the tangent space to T
at the initial point with the space H := L*(U)/N. It is natural to relate it to a
subspace of L (U*). The superposition A, o A}, acts identically on A(U) due to
(2.1). The space N is also the kernel of the operator A,. Thus, the operator A*
splits the following exact sequence

0— N o LoU) 24 A) — 0.

Then, H = A*(A(U)) = L*°(U)/N. The coupling {u, ) defines A(U) as a co-
tangent space.
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Let A%2(U) denote the Banach space of analytic functions ¢ with the finite norm
lellow = [ 1P |2P)2 do..
U

Then A(U) — A%(U) and Petersson’s Hermitian product [28] is defined on A%(U)
as

(1, 02) = / / 01(2) 22 () (|2]? — 1)? do.
U

The Kéhlerian Weil-Petersson metric {v1,v2} = (v1,A,,) can be defined on the
tangent space to T that gives a Kdhlerian manifold structure to 7T'.

The universal Teichmiiller space is a smooth manifold on which a Lie group
of real sense preserving diffeomorfisms Diff T' is defined. The tangent bundle is
defined on T and is represented by the harmonic differentials from H translated to
all points of T'. We will consider tangent vectors from H at the initial point of T
represented by the map f(z) = 2. The Weil-Petersson metric defines a Lie algebra
of vector fields on T by the Poisson bracket [v1,va] = {vo,v1} — {v1,12}, where
v1,vs € H. One can define the Poisson bracket at all other points of T by left
translations from Diff . To each element [z] from Diff T an element x from T is
associated as an image of the initial point. Therefore, a curve in Diff T' generates a
traced curve in T that can be realized by a one-paramter family of quasiconfromal
maps from S7°.

For each tangent vector v € H there is a one-parameter semi-flow in Diff T’
and a corresponding flow 27 € T with the velocity vector v. To make an explicit
representation we use the variational formula for the subclass S?¢ of S of functions
with quasiconformal extension (see, e.g., [16]) to C, fixing co. If f# € S%°, v € H,
and

Tv(z) +o(r), if z€U*,
“f(z’T):{o,() " if 2 €U,
then the map
2
w17 // v(w) doy,
fr0) === [[ BT olr)
U*

locally describes the semi-flow =7 on T'.

3. Semigroups of conformal maps

We consider the semigroup G of conformal univalent maps from U into itself
with composition as the semigroup operation. This makes G a topological semi-
group with respect to the topology of local uniform convergence on U. We impose
the natural normalization to such conformal maps: ®(z) = Bz +be22+---, z € U,
B > 0. The unit of the semigroup is the identity. Let us construct on G a one-
parameter semi-flow ®7, that is a continuous homomorphism from Rt into G, with
the parameter 7 > 0. For any fixed 7 > 0 the element ®7 is from G and is repre-
sented by a conformal map ®(z,7) = B(7)z+ba(7)2% +--- from U onto the domain
®(U,7) C U. The element ®" satisfies the following properties:
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o &0 =id;
e &7 = ®(P(2,71),5), for 7,5 > 0;
e &(z,7) = z locally uniformly in U as 7 — 0.

In particular, 3(0) = 1. This semi-flow is generated by a vector field v(z) if for each
z € U the function w = ®(2,7), 7 > 0 is a solution of an autonomous differential
equation dw/dr = v(w) with the initial condition w|,;—¢ = 2. The semi-flow can be
extended to a symmetric interval (—t,t) by putting ® 7 = ® 1(z,7). Certainly,
the latter function is defined on the set ®(U,7). Admitting this restriction for
negative 7 we define a one-parameter family ®7 for 7 € (—t, t).

For a semi-flow ®7 on G there is an infinitesimal generator at 7 = 0 constructed
by the following procedure. Any element ®7 is represented by a conformal map
®(z,7) that satisfies the Schwarz Lemma for the maps U — U, and hence,

®(z,7) < ‘@(z,T)
z

Re

‘gl, zeU,
z

where the equality sign is attained only for ®° = id ~ ®(z,0) = 2. Therefore, the
following limit exists (see, e.g., [11, 12, 27])

® 8%®(z,7)
- or
lim Re Hn =z Re —— =0 <0,
T7—0 TZ A
and the representation
0®(z, 1) B
or  lr=o0 2p(2)

holds, where p(z) = pg + p1z + --- is an analytic function in U with positive real
part, and

(3.1) _ag(:)

In [13] it was shown that &7 is even C'™ with respect to 7. The function —zp(z)
is an infinitesimal generator for ™ at 7 = 0, and the following variational formula
holds

(3.2) ®(z,7) =2z —T12zp(z)+o(r), B(1)=1-—1ps + o(T).
The convergence is thought of as local uniform. We rewrite (3.2) as
(3.3) ®(2,7) = (1—-7po)2+7 2(—p(2) +po) +0(r) = B(T)z+T 2(—p(2) +po) +0(7).

Now let us proceed with a semigroup G?¢ C G of quasiconformal automorphisms
of C. A quasiconformal map ® representing an element of G2¢ satisfies the Beltrami
equation in C

= —Po-
7=0

(I)i = K3 (Z)(bz,

with the distributional derivatives ®; and ®,, where ug(2) is a measurable function
vanishing in U and essentially bounded in U* by

lua |l = esssupy- |na(2)] <k <1,



ON A PARAMETRIC METHOD FOR CONFORMAL MAPS... 17

for some k. If k is sufficiently small, then the function ®/4 satisfies the variational
formula (see, e.g., [16])

(3.4) ) _,_ 2 / / d"“’ + o(k),

where do,, stands for the area element in the w-plane.

Now for each 7 small and & € G%°, the mapping h(z,7) = ®(z,7)/8(7) is
from S?¢ and represents an equivalence class [h”] € T. Consider the one-parameter
curve z” € T that corresponds to [h”] and a velocity vector v(z) € H (that is not
trivial), such that

wn(z,7) = pa(z,7) = Tv(2) + o(7).
We take into account that ®(z,0) = z in U and is extended up to the identity map
of C.
Comparing (3.3) and (3.4) we come to the conclusion about ®:

(3.5) B(z,7) = / / (s d”“’ +o(7).

The relations (3.2, 3.3, 3.5) imply that

(3.6) =po+ = 16/1U2 daw

The constant pg and the function v must be such that Rep(z) > 0 for all z € U.
We summarize these observations in the following theorem.

THEOREM 3.1. Let @7 be a semi-flow in G1°. Then it is generated by the vector

field v(z) = —zp(2),
=po+ — // w2 dow

where v(z) € H is a harmonic differential and the holomorphic function p(z) has
positive real part in U.

This theorem implies that at any point 7 > 0 we have

0%(z,7)

5 —®(z,7)p(®(2,7))-

4. Evolution families and differential equations

A subset ®*% of G, 0 < s < t is called an evolution family in G if
o Ot = i(g;
e &L =Pt o d™ for 0 < s<r <t
e d*% — id locally uniformly in U as t,s — .
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In particular, if " is a one-parameter semi-flow, then ®¥~¢ is an evolution family.
We consider a subordination chain of mappings f(z,t), z € U, which is defined
in an interval ¢ € [0,%y), where the function f(z,t) = a1(t)z + a2(t)22 +--- is a
holomorphic univalent map U — C for each fixed ¢ and f(U,s) C f(U,t) for s < t.
Let us pass to the semigroup G%¢. So ®%? now has a quasiconformal extension
to U* and being restricted to U is from G. Moreover, ®** — id locally uniformly
inCast,s > .
For each t fixed in [0,%p) the map f(z,t) has a quasiconformal extension into
U* (that can be assumed even real analytic). An important presupposition is that
f(z,t) generates a non-trivial path in T'. This means, in particular, that for any
t1,t2 € [0,%0), t1 # t2 the image f(U,¢1) can not be obtained from f(U,t3) by
a Mobius transform, or taking into account our normalization, multiplying by a
constant. We construct the superposition f~!(f(z,s),t) for t € [0,t0), s < t.
Putting 7 = ¢t — s we denote this mapping by ®(z,t, 7).
Now we suppose the following conditions for f(z,t).
(i) The maps f(z,t) form a subordination chain.
(ii) The map f(z,t) is holomorphic in U, f(z,t) = ai(t)z + az(t)z? + ---,
where a; (t) > 0 and differentiable with respect to t.
(iii) The map f(z,t) is a quasiconformal homeomorphism of C, f(co,t) = .
(iv) The chain of maps f(z,t) is not trivial.
(v) The Beltrami coefficient p(z,t) of this map is differentiable with respect
to ¢ locally uniformly in U*, vanishes in some neighbourhood of U (inde-
pentently of t).

The function ®(z,t¢,7) is embedded into an evolution family in G. It is dif-
ferentiable with regard to 7 and t in [0,%9), and ®(2,t,0) = z. Fix t and let
D, = & Y(U,t,7) ~ U. Then there exists v € H such that the Beltrami co-
efficient is of the form pe(z,t,7) = 71v(2,t) + o(7) in U* \ D, with some v,
pa(z,t,7) = py(z,t —7) in D,, and vanishes in U. We make 7 sufficiently small
such that pe(z,t,7) vanishes in D, too. Therefore, z = lim,_,o ®(2,¢,7) locally
uniformly in C and ®(z,t,7) is embedded now into an evolution family in G%¢. The
identity map is embedded into a semi-flow & C G?¢ (which is smooth) as the initial
point with the same velocity vector

0®(z,t,1)
or 7=0
that leads to (1.3) (the semi-flow @7 is tangent to the evolution family at the origin).
Actually, the differentialble trajectory f(z,t) generates a pencil of tangent smooth
semi-flows with starting tangent vectors —zp(z,t) (that can be only measurable
with respect to t).

The requirement of non-triviality makes it possible to use the variation (3.4).
Therefore, the conclusion is that the function f(z,t) satisfies the equation (1.3)
where the function p(z,t) is given by

= —Zp(Z,t), z € Ua

v(w,t) doy,

(@.1) pent) =po(t)+ = [[ LD,
J:
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and has positive real part. The existence of po(t) comes from the existence of
the subordination chain. We can assign the normalization to f(z,t) controlling
the growth of the conformal radius of the subordination chain by e!. Changing
variables we obtain py = 1.

Summarizing the conclusions about the function p(z,t) we come to the following

result.

THEOREM 4.1. Let f(z,t) be a normalized subordination chain of maps that
exists for t € [0,ty) and satisfies the conditions (i—v). Then, there is a harmonic
differential v(z,t), v € H, such that Rep(z,t) >0 for z € U, t € [0,10),

td
plt) =142 // w;"w_”"’, zel,

and f(z,t) satisfies the differential equation

(12 D ED ., zeu,

int €0,to).

In the above theorem the function v belongs to the space of harmonic differen-
tials. We ask now about another but equivalent form of v. Writing w = f(z,t—171),
®(z,t,7) = f~H(w,t) we have

z fujl’UJz +fﬁ_)1’u_]2 . Wz +/~‘Lf_1u_)z _ ’U}Z ,Ltwu—y _/“Lf 7

[ e T T T T

#l#

po =

We use that ps—1 0 f = —usf./fz. Finally, us, f., f5 are differentiable by ¢ in
t € [0,t9) for z € U*, and

: 9 Iz
M@z_ﬁat (sz)
=0 T f= l_lﬂf|2 ’

where the limit exists a.e. with respect to ¢t € [0,9) locally uniformly in z € U*,
or in terms of the inverse function

Iz 1 Opy—1
FolT=lugP 7"

Sometimes, it is much better to operate just with dilatations avoiding functions, so
we can rewrite the last expression as

vo(2,t) =

dlog By—1

vo(z,t) = —pg(z,1) [Fljiﬁ o f(Zat)] .

REMARK 4.1. The function v(z,t) in Theorem 4.1 may be replaced by the
function vg(z,t) that belongs to the same equivalence class in H.
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Let us consider one-parameter families of maps in U normalized by f(z,t) =
etz + az(t)2? + ---. The inverse result to the Lowner-Kufarev equation in partial
derivatives states that given a holomorphic function p(z,t) = 14+ p12+--- in U with
positive real part the solutions to the equation (4.2) give a subordination chain (see,
e.g., [25]). This enable us to give a condition for vy that guarantees a normalized
one-parameter non-trivial family of maps f(z,t) to be a subordination chain.

THEOREM 4.2. Let f(z,t) be a normalized one-parameter non-trivial family of
maps for z € U which satisfies the conditions (ii-v) and is defined in an interval
[0,t0). Let each f(z,t) be a homeomorphism of C which is holomorphic in U, is
normalized by f(z,t) = etz + az(t)2® + - - -, and satisfies (4.2). Let the quasicon-
formal extension to U* be given by a Beltrami coefficient py = p(z,t) which is
differentiable with respect to t almost everywhere in t € [0,1t). If

4 [, K(s)ds
where vo(2,t) is as above, and K(-) is the complete elliptic integral, then f(z,t) is
a normalized subordination chain.

PROOF. Let |z| = p, w = re?. We calculate

// w, 1) daw PllYlloo // do, PlY|loo // do,
< <
™ |w]?|w — 2| ™ |lw|]1 — wz|
p||V||oo // dr df p”V”oo // dr df
[1—refz| |1 —reifp

1 27
_ Pl // dr df
7F ) V1+712p2 —2rpcos 6

0
p 27
_Ylleo // ds df
™ 1+ 52 —2scos 0
00
1 2w
7]l oo // ds df
<
™ V1452 —2scos 0
00
d 4 /
e [ dn W [y
™ |w|?|w — 1] T
U 0
Then Rep(z,t) > 0 that implies the statement of the theorem. O

REMARK 4.2. If ||v(-, t)||o < ¢, then

1+ |/I,(Z,t)| < thq 1+ |/J‘(Z:O)|
RS .
1—|,U,(Z,t)| 1—|N(z;0)|
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This obviously follows from the inequality

Olps| _ Blug=2| .
ot - ot S lfig-1]-
The equation (4.2) is just the Lowner-Kufarev equation in partial derivatives
with a special function p(z,t) given in the above theorems.

A dual result for the Lowner-Kufarev equation in partial derivatives is the
Lowner-Kufarev ordinary differential equation (1.2). The solutions to (1.2) form a
retracting subordination chain w = g¢(z,t), i.e., g(U,t) C U, g(U,t) C g(U,s) for
t>s,and g(z,0) = 2.

Let a one-parameter family of maps w = g(z, t) satisfy the following conditions.

(i) The maps g(z,t) form a retracting subordination chain g(U,0) C U.
(ii) The map g(z,t) is holomorphic in U, g(2,t) = a1 (t)z+aa(t)22+- - -, where
a1 (t) > 0 and differentiable with respect to ¢.

(iii) The map g(z,t) is a quasiconformal homeomorphism of C, g(co,t) = cc.

(iv) The chain of maps g(z,t) is not trivial.

(v) The Beltrami coefficient p,4(2,t) of this map is differentiable with respect
to t locally uniformly in U*.

Note that in this case we need not a stong assumption (v) of the previous case.

Set

H(zytaT) = g(g(zat)aT) = ,6(7')’11) + b2(T)U)2 +oeee
where w = g(z,t). For each fixed ¢ the mapping g(z,t) forms a smooth semi-flow
H7™ in G7 which is tangent to the path g(z,t + 7) at 7 = 0. Therefore, we use
the velocity vector —wp(w,t) (that can be only measurable regarding to t) with
w = g(z,t) and obtain

OH (z,t,7)
or 7=0

As before, the trajectory g(z,t) generates a pencil of tangent smooth semi-flows
with the tangent vectors —wp(w,t), w = g(z,t). Since g(U,t) € U for any t > 0,
we can consider the limit

= —g(z,t)p(g(zﬁ),t).

lim H(ZJtJT) —g(z,t)
7—0 Tg(zat)

We have that

H
(4.3 O LT 0ED o (e, ),
where p(z,t) = po(t) + p1(t)z + --- is an analytic function in U that has positive
real part for almost all fixed ¢. The equation defined by (4.3) is an evolutionary
equation for the path g(z,t) and the initial condition is given by g(z,0) = 2.

We suppose that all g(z,t) admit real analytic quasiconformal extensions. The
function g(w,7) = H(z,t,7)/B(7) can be extended to a function from S and it
represents an equivalence class [¢7] € T. There is a one-parameter path y” € T
that corresponds to a tangent velocity vector v(w,t) such that

pg(w,7) = Tv(w,t) + o(7), w=g(z,t).
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We calculate explicitly the velocity vector making use of the Beltrami coefficient
for a superposition:

Pg(w,r) © 9(2, ) L BH(zt,m) — Mg(zt) 92(251)

v(w,t) = lim = lim — = ,
( ) T—0 T ™07 1— P’g(z,t),uH(z,t,'r) gZ(zat)
or
0 ot
(4.4) v(w,t) = Mg_z og '(w,t), ze€U*

1- |p’g(z,t)|2 9z

It is natural to implement an intrinsic parametrization using the Teichmiiller dis-
tance 77(0, [¢*]) = ¢, and assume the conformal radius to be by (t) = e~ that implies
po = 1. Then we use the variational formula (3.5) to state the following theorem.

THEOREM 4.3. Let g(z,t) be a retracting non-trivial subordination chain of
maps defined for t € [0,t0) and z € U. Each g(z,t) is a homeomorphism of C
which is holomorphic in U, g(z,t) = etz +ba(t)2% +- - -, with a €**-quasiconformal
extension to U* given by a Beltrami coefficient u(z,t) which is differentiable re-
garding to t a.e. in [0,ty). The initial condition is g(z,0) = z. Then, there is a
function p(z,t) such that that Rep(z,t) >0 for z € U, and

(u,t) dau
s =1+ 2 [[ LS weqwn,
g(U* t)

where v(u,t) is given by the formula (4.4), ||V||co < 1, and w = g(2,t) is a solution
to the differential equation

W — (1), weg(01)

with the initial condition g(z,0) = z.

REMARK 4.3. Taking into account the superposition we have

,t)do
plote).0) = 1+ 220 // c,uggc C )) G

where ( € U*, z € U.

REMARK 4.4. The function wp(w, t) has a continuation into g(U*,t) given by

dw
2 _F
dt (wJ t))

where the function F(w,t) is a solution to the equation

oF _ ggﬂg

—1
S Pl — t).
55 " g — g of @Y
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The solution exists by the Pompeiu integral and can be written as

gz/‘y -1 doy,
F Hu
(w,) = // TR A E
// (u,t dau
h(w,t) — — s
g(U* t)

where w € g(U*,t), h(w,t) is a holomorphic functions with respect to w, that can

be written as
1
hw, ) = —— / up(u,t) .

211 uU—w
8g(U* )

Reciprocally, given the function F'(u,t), u € g(U*,t), we can write the function
p(w,t) as

Fy(u,t)doy,
H)y=1+—
p(w, t) + P —w)
(U* t)
where w € g(U, t).
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