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PLURISUBHARMONIC FEATURES
OF THE TEICHMULLER METRIC

Samuel L. Krushkal

ABSTRACT. The key result of this paper is a strengthened version for uni-
versal Teichmiiller space of the fundamental Gardiner-Royden theorem on
coincidence of the Kobayashi and Teichmiiller metrics for Teichmiiller spaces.
Using the Grunsky coefficient inequalities for univalent functions, we show that
the Teichmiiller metric is logarithmically plurisubharmonic and has constant
holomorphic sectional curvature ki (v, v) = —4.

This result has various important applications in geometric function the-
ory and geometry. Some applications to complex geometry of Teichmiiller
spaces are given.

1. Introduction. Main results
The purpose of this paper is to prove the following

THEOREM 1.1. The differential Kobayashi metric Kr(y,v) on the tangent bun-
dle T(T) of the universal Teichmiiller space T is logarithmically plurisubharmonic
in ¢ € T, equals the canonical Finsler structure Fr(iy,v) on T(T) generating
the Teichmiiller metric of T and has constant holomorphic sectional curvature

ki (,v) = —4 on T(T).

This theorem can be regarded as a strengthened version for the universal Te-
ichmiiller space of the fundamental Gardiner-Royden theorem on the coincidence
of the Kobayashi and Teichmiiller metrics for Teichmiiller spaces, which is crucial
for many results (cf. [AP], [EKK], [EM], [GL], [Kr5], [Rol]).

The proof of Theorem 1.1 relies on the specific features of the space T and
involves the technique of the Grunsky coefficient inequalities.

It has various applications. As its immediate consequences, one obtains the
following two important statements.
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COROLLARY 1.2. The Kobayashi metric dr of the universal Teichmiiller space
T coincides with its Teichmiiller metric 7r, and

(L.1) dr (i1, 12) = 7r(¢1,2) = infda(h " (1), h " (1)),

where the infimum is taken over all holomorphic maps h: A — T.

COROLLARY 1.3. The Teichmiller metric Tr(11,2) is plurisubharmonic sep-
arately in each of its argument; hence, the pluricomplex Green function of T equals

(1.2) gt (¥1,2) = log tanh 7r (41, ¢2) = log k11, 42),

where k is the norm of extremal Beltrami coefficient defining the Teichmiiller dis-
tance between the points 1,12 in T.

Recall that the pluricomplex Green function of a domain X in a complex Ba-
nach space (or on a Banach manifold) E is defined as

9x(x,y) =supuy(z) (z,y € X),
where supremum is taken over all plurisubharmonic functions u,(z) : X — [—00,0)
that have the representation

uy(z) =log|lz -yl + O(1)

in a neighborhood of the pole y; here || - || is the norm on X and the remainder
term O(1) is bounded from above. If X is hyperbolic and its Kobayashi metric dx
is logarithmically plurisubharmonic, then the Green function relates to dx by

9x(z,y) = logtanh dx (z,y)
(see, e.g., [K12]).

One deduces from (1.2) the following properties of the Green function gr:

(a) gr is symmetric with respect to its arguments: gr(¢1,v2) = gr(¥2,%1)
for any pair 91,9, € T (in general, such a property does not hold even for the
bounded domains in C* (n > 1) with real analytic boundaries, see [BD]);

(b) for any fixed pole 15 we have ¢li_r>réT gr(1,12) = 0;

1

(¢) gr(¢1,2) = inf{gper(a), (1, V) : d(p1) = Y1, d(v) = 2}

2. Some basic facts on universal Teichmiiller space
and on Grunsky coefficients

2.1. The universal Teichmiiller space T is the space of quasisymmetric home-
omorphisms h of the unit circle factorized by Mobius transformations. Its topology
and real geometry are determined by the Teichmiiller metric which naturally arises
from extensions of those h to the unit disk. This space admits also the complex
structure of a complex Banach manifold by means of the Bers embedding as a
bounded subdomain of B.

We shall identify the space T with this domain. In this model the points ¢ € T
represent the Schwarzian derivatives Sy of univalent holomorphic functions f in

A* = {z € C:|2| > 1}, which have quasiconformal extensions to the whole sphere
C and [[¢[|B = supa- (|2 = 1)*|¥(2)].
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To obtain the universal Teichmiiller space T, consider the Banach ball
(2.1) Belt(A); = {4 € Loo(C) : p|A* =0, [|ul] < 1}.

Each pu € Belt(A); defines a conformal structure on the extended complex plane
@, i.e., a vector field of infinitesimal ellipses, or equivalently, a class of conformally
equivalent Riemannian metrics ds? = A(z)|dz + pdz|?, A(z) > 0; these ellipses
reduce to circles for z € A*.

The universal Teichmiiller space T is obtained from the ball (2.1) by natural
identification, letting s and v in Belt(A); be equivalent if w*|S! = w”|St, S* = JA.
We denote the equivalence classes by [u].

There are certain natural intrinsic complete metrics on the space T. The first
one is the Teichmiiller metric

(22) (o), o) = gint {log K (w' o (w) ") : o € 6(u),va € 6(0) )
where ¢ = ¢ is the canonical projection
9(u) = [u] : Belt(A), - T.

This metric is generated by the Finsler structure on T (in fact, on the tangent
bundle 7(T) = T x B of T); this structure is defined by

Fr(¢(p), ¢' ()v) = inf{ ||va(1 — [ul®) 7Y, :
¢ (mve = ¢'(w)v; p € Belt(A)1; v,vi € Loo(O) }.

The Kobayashi metric dr on T is the largest pseudometric d on T contracted
by holomorphic maps h : A = T so that for any two poins 1, 92 € T, we have

(2.4) dr(v1,¢2) < inf{da(0,1) : h(0) = 1, h(t) = ¢},
where da is the hyperbolic Poincaré metric on A of Gaussian curvature —4. The
Carathéodory metric cr is the least pseudometric on T with such property.

The infinitesimal (differential) Kobayashi metric K (¢, v) is a Finsler metric
on the tangent bundle 7(T) of T defined by

Kr(3,v) = inf{|t| : h € Hol(A,T), h(0) =, dh(0)t = v}

(2.3)

(2.5) ot {% .r >0, h e Hol(A,,T), h(0) =, B'(0) = v}.

Here v is a tangent vector at the point ¢ € T and A, denotes the disk {|z| < r}
(cf. [Ko], [FV], [K12]).

As was observed in [Ea], [Ga], the Teichmiiller contraction can be done in a
more sharpened form than in (2.4). It will not be used here.

2.2. Consider quasiconformal maps f of C with f(S') = L, whose Beltrami
coefficients py(2) = 0z f/0,f are supported in the unit disk A = {|z] < 1}, and

(2.6) f)=z4+bo+biz t+---, |z|>1

The conformal maps f : A* = C ~ {0} normalized via (2.6) form the class ¥; its
subclass of the maps with k-quasiconformal extensions to C is denoted by X(k).
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One defines for each f € X its Grunsky coefficients a,,,, as the Taylor coeffi-
cients of the function
g IO IO e e
z2=¢
where the branch of the logarithmic function is chosen which vanishes as z = { —
00, and the Grunsky constant
(2.7)

#(f) = Sup{‘ i

oo
VI T Ty | 2 x = (2,) € 12, ||x|*> = Z |Tn|? = 1} <1
m,n=1 1
Tt is well known that for each f* € X(k) we have s»(f*) < k(f*); on the other
hand, if f € EAsatisﬁes this inequality with some k < 1, then it has a quasiconformal
extension to C with a dilatation k' > k (see, e.g., [Kul], [Pol], [Zh]; [KK, pp.
82-84]).
A crucial point is that for generic maps f, we have here the strict inequality

#(f) <infk(f*),

taking the infimum among all quasiconformal extensions of f (see, e.g., [Ku2],
[Kr2]). The maps f with

(2.8) »#(f) = inf k(f*)
are intrisically related to holomorphic quadratic differentials ¢(z) dz? in A having
only zeros of even order in A. This property plays a crucial role in applying the
Grunsky inequalities technique. It will be used here in an essential way.

The following theorem provides a complete characterization of the maps obey-
ing the property (2.8). We shall use the following notations.

Let A; denote the subspace of Lq(A) formed by holomorphic functions in A,
and let

A2 ={p €A =W}

this set consists of the integrable holomorphic functions on A having only zeros of
even order. Put

()a =5 [[ nEwE A pe Lu(®), ¥ L),

THEOREM A. [Kr2], [Kr4]. Equality »(f) = inf{||p]|cc : w*|A* = f} holds
if and only if the function f is the restriction to A* of a quasiconformal self-map
wh of C with the Beltrami coefficient o satisfying the condition

sup [(po, P)al = ltolloos

where the supremum is taken over holomorphic functions ¢ € A? with ||o||a, = 1.

Geometrically, this means that the Carathéodory metric on the holomorphic
extremal disk A,y = {¢r(tpo/l|poll) : t € A} in the space T coincides with the
intrinsic Teichmiiller metric of this space.

There is an extension of Theorem A to differentials with zeros of odd order
given in [Kr7]; this version will not be used here.
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3. Complex Finsler metrics and holomorphic curvature

Let X be a domain or a Banach manifold in a complex Banach space E. Con-
sider the upper semicontinuous functions u : X — [—00,+00) and define their
generalized Hessian Ayu(x) in a direction v at a point x € X by

2
Ayu(z) = 4lim inf %{L / u(z + vre?)d — u(x)} (r>0).
r—0 12| 21 Jg
Similar to C? functions uw on the domains in C", for which A, coincides with
the usual Hessian, one obtains that w is plurisubharmonic on X if and only if
Ayu(z) > 0. Consequently, if xo is a point of a local maximum of an upper
semicontinuous function v with u(zo) > —oo, then Ayu(zg) < 0 for all v. In
particular, for £ = C and v = 1, one obtains the generalized Laplacian

r=0 12 | 27

(3.1) Au(z) = 4liminf i{i /27r u(z + ret?)df — u(w)}
0

(again reducing to the usual Laplacian 490 for C? functions).
Let Fx(z,v) > 0 be a Finsler structure on the tangent bundle 7(X) C X x E
of X. We suppose that the function F' is upper semicontinuous on 7 (X).
Consider for a fixed (z,v) € T(X) the holomorphic maps h : A, — X with
h(0) = z, h'(0) = v (for suitable r > 0). Any such h determines a conformal metric
ds = A (t)|dt| on the disk A,, with

(3-2) An(t) = Fx (h(t), h'(t)).

It is an infinitesimal Finsler metric whose density A, is upper semicontinuous on A,..
If Fx(x,v) is plurisubharmonic (respectively, logarithmically plurisubharmonic)
in z € X, the function A; becomes subharmonic (respectively, logarithmically
subharmonic) on the disk A,.

The structure Fx(z,v) can be regarded as an infinitesimal Finsler metric
on T(X). Its holomorphic sectional curvature kp(z,v) at a point (x,v), where
Fx(z,v) > 0, is defined as the upper bound of Gaussian curvatures of metrics
(3.2), using the generalized Laplacian (3.1), i.e,

~ Alog A7 (1)

(3.3) ma(t) = == ) (teA,)
and
(3.4) kr(z,v) = sup Alog I (h(t), ' (1))

—2F% (h(t), '(t)) =0’

where the supremum is taken over all holomorphic maps h : A, — X with h(0) =
x, h'(0) = v and all admissible r > 0 (or equivalently, over holomorphic maps
h:A — X and all £ € C so that h(0) = z, dh(0)(1/£) = v).

It is well known that the holomorphic curvature of the Kobayashi metric
K (z,v) on a complete hyperbolic complex Banach manifold M satisfies ki, (z,v)
> —4 for all (z,v) € T(X) (see, e.g., [Di], [Ro2]).
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4. Proof of Theorem 1.1

The main idea of this proof is to show that the Finsler structure Fr of the
universal Teichmiiller space T determining its Teichmdiiller metric is equal to the
plurisubharmonic differential Azukava metric. This will be accomplished in three
stages.

Step 1: Quadratic differentials with zeros of even order.

Take a tangent vector vy = Yy € B to T at the basepoint ¢ = 0 of such length
[|l4o||B that it belongs to T.

There is a unique fo € |J, X(k) whose Schwarzian Sy, = vp; this fo admits

quasiconformal extensions w* to C with u supported in A.
Take an extremal Beltrami coefficient ug for fy, i.e., such that

K(w"®) = rr(¢(ko), 0).

The Hamilton—Krushkal-Reich—Strebel theorem says that this equality is equivalent
to

(4.1) sup{|{po, P)al : ¢ € A1(A), llell =1} = llpolloo
and that the same relation is necessary and sufficient for po to be infinitesimally
extremal, i.e., to satisfy ||uollcc = Fr(0,¢'(0)uo) (see [EKK], [GL], [Ha], [Kr1],
[RS]).

In view of (4.1), there exists a maximizing sequence {¢,} C A1 (A) for pg so
that

(42) lholloo = Jim | [/ o)y () |

Since [|w(2) — w(rz)||a,(a) = 0 as 7 — 1, one can assume that every ¢, is holo-
morphic in the closed disk A and thus has there only a finite number of zeros.
Setting

1o = po/llpolloo,
equality (4.2) can be rewritten in the form
(43) tim [t /[ wi@enta)dody| = 1t 1 < 1/
p—>0o0 A
If there are infinitely many ¢,, , ¢p,, ... with zeros of even order in A, then the

assertion of Theorem 1.1 for the Teichmiiller disk A,: immediately follows from
Theorem A. Indeed, by Parseval’s equality, each such ¢,, can be represented in the
form

1 — i i) ,ymtn—
(4.4) bpy ()= — D7 mnapap)zmin?,

m+n=2

where the numbers 7 are the coordinates of the points x®i) = (arsbp j)) of the

Hilbert sphere
S@) = {lIx[l= = 1}.
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This allows us to define a sequence of holomorphic maps T — A by

oo
(4:5) W@ = Y Vi ama()el) e,
m,n=1
and this sequence is maximizing for the Carathéodory distance ¢t (0, ), because
by (4.1) we have

cr(0,%0) = 71(0,¢0) for all t € A.
Therefore, all invariant metrics on the holomorphic disk A+ coincide.

Step 2: Construction of defining plurisubharmonic functions for differentials with
zeros of odd order.

Now consider the situation when all differentials 5, 2,... have in the unit
disk only zeros of odd order. In this case, we modify the previous arguments as
follows. Let

(4.6) af”af,....af),

be the list of all zeros of a differential ¢, of odd order in the disk A. For convenience,
(p) (p) aP

the zeros are listed so that |a; (p )| < lajiy |, and aj”, @i, are assumed to be located
counterclockwise if |a(p )| |a(p ) |. We connect these points by distinct smooth
arcs U(p ) = [a(p ), gfr)l] which form nonzero angles at ag-p ), and add an arc ai’(’;) 41

joining the last zero a(f(’;) with the unit circle so that the union ¢(® =

U;gjl)—l—l a,‘gl’)
is a piecewise smooth slit whose complement A, = A \ o' is a simply connected
domain.

Take a conformal map z = g,(¢) of the disk A onto this domain A, and define

the transform x;, : p — 11, setting

e, it g > 1,
(47) ““)—{m,,(gp(o)m/g;(c% it ol <1

This transform determines a biholomorphic self-isometry of the ball Belt(A); and
depends on the choice of the slit o(®).

On the other hand, by applying the map g, the original quadratic differential
p is transformed to the differential

(4.8) 95 (pp) = 2p(95()g,(0)* = §p(C)

which is holomorphic in the whole disk A and has in this disk only zeros of even
order. Besides,

(4.9) (1, oy = (11, Pp)a
Similar to (4.4), the function @, can be represented in the form
(4.10) Pp(C Z fmn x(p)m(”)g’””‘ 2
m+n—

with some x® = (2P)) € S(12).
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We now define on the ball Belt(A); a new equivalence relation, letting the
Beltrami coefficients p,v € Belt(A); be xp-equivalent and write x, (1) = xp(v), if
the corresponding quasiconformal homeomorphisms wX»(*) and wX»(*) coincide on
the unit circle S* (and therefore on A*). In other words, we require that the initial
maps w”|A and w”|A coincide on S* Uo(®).

Factorization of x,(Belt(A);) by such a equivalence relation gives again the
universal Teichmiiller space T, which we shall denote by T,,. Its Bers embedding
consists of the Schwarzian derivatives of conformal maps wX» ()| A*.

Conversely, fix a point (y on the circle S with 0 < arg(y, < 7, and consider
the conformal map g of the unit disk A onto A cut along the radius [0,1] so
that g(£{) = 1, g(1) = 0 and g(—1) = —1 (this map possesses the symmetry

9(¢) = g(¢))- This defines a self-isomorphism

(4.11) psgx(p) =pog(2)g(2)/9'(2)

of the unit ball Loo(A); = {v € Lo(A) : ||v|| < 1}.

We extend the elements of Lo, (A); (the Beltrami coefficients with the supports
in A) by symmetry onto A* and call two such coefficients p1, 2 to be g-equivalent
if the corresponding quasiconformal automorphisms w9*(#1) and w9*(#2) coincide
on S'. This equivalence provides a Teichmiiller space similar to T).

It is evident that the arc (—(p,29) C S can be replaced by any other subarc
(Ghr CY) of ST

LEMMA 4.1. The isometry x, commutes with holomorphic projections ¢, :
Belt(A); — T, and ¢ : Belt(A)y = T, i.e., the diagram

Belt(A), —2— T,

(4.12) x;ll lﬂp

Belt(A); —2— T
is commutative, which determines a surjective holomorphic map m, : T, — T.

Note that the map m, does not preserve the Teichmiiller distance, but the
extremality of the Beltrami coefficients is preserved, which follows from (4.1) and
(4.9).

PROOF. One needs to make certain that if x,(u) = xp(v), then y ~ v in
Teichmiiller’s sense, but this evidently follows from the definition of x,-equivalence.
O

The fibers 7' (1)) contain the elements ¢* € T, which are located on arbi-
trarily large Teichmiiller distance from X»(®). Such Schwarzians correspond to
extensions of w*|S! with large values || in a neighborhood of ¢(»). We shall
need to restrict us by extensions with bounded ||xp ()] co-

To this end, we choose an extremal Beltrami coefficient uo(v)) € Belt(A); in
the class [f] of a map f € |J, (k) with Sy =1 and take, for a fixed K € (0,0),
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the ball
BP(¢7K) = {(P € B: dTp (907¢Xp(ﬂ0)) < K} C TP‘

Now consider the holomorphic maps

(4.13) B ('¢XP(“)) = Z VM mn (Xp (1)) TmTn : Ty = A,

m,n=1

where 1X»(#) is the Schwarzian of wX»(#)|A* and the defining parameter x = (z,)
ranges over the sphere S(I2), and define the upper envelopes

(414) B o (@) = sup{[hx ()| : W) € 71 () N B(y, K) C T}

and

(4.15) hx, i () = sup B;,K,,(p) (¥),

o(P)

where the supremum is taken over all slits ¢(P) joining the given zeros ag-” ). Both
functions (4.14) and (4.15) range over [0,1).

The last function depends only on these zeros and descends to a function on the
initial Teichmiiller space T with the range [0,1). Let us denote the function pushed
down by hx, k. Since hx, i, (¢) < hx,kx,(¥) if K1 < K>, there exists a nonconstant
limit function

hx(¥) = I?ino b,k ().
It admits the following background property:

LEMMA 4.2. The function hyx satisfies the mean value inequality
2
(4.16) hx (o) < %/hx(wo + rwe'®) db
0
for any w € B and sufficiently small r > 0.

PRroOF. Consider the planar set
Qo) ={tho +tw:t € C} N'T.

It is open but does not need to be connected (see [Kr3]). We take its connected
component (o) containing ¥y and identify Qg(1)o) with the corresponding range
domain of ¢ in C. It follows from Zhuravlev’s theorem (see [KK, Part 1, Ch. V],
[Zh]) that each connected component of (1)) is simply connected.

Schwarzians ¥; = 1y + tw € Qg(¢y) determine a family of univalent functions

fi(z) =2 +bo(t) +bi(t)zt +---: A* - C~ {0}

with Sy, = ¢ which admit quasiconformal extensions ﬁ to the disk A so that
f+(0) = 0; these functions are holomorphic in ¢ € Qg(1)9). The map

W(w,t) = fio fo ' (w) : fo(A*) x Qo(¢ho) — C ~ {0}
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determines a holomorphic motion of domain fo(A*) with the parameter space
Qo (o) (i-e., it is injective in w for every fixed ¢, holomorphic in ¢ for every fixed
w, and W(w,0) = w on fo(A*)). Put W(0,¢) = 0 for all ¢.

By the properties of holomorphic motions (see, e.g., [BR], [EKK], [EM],
[MSS], [S]], [ST]), W(w,t) extends from the set fo(A*) U {0} to a holomor-
phic motion VV\(w,t) : C x Qo (1) of the whole sphere so that the fiber maps
Wi(w) = W(w,t) are quasiconformal homeomorphisms of C (conformal on fo(A*))
whose Beltrami coefficients

pw (w,t) = 0gW(w,t) /0w W (w,t)

depend holomorphically on parameter ¢t € Qg(1)o) as elements of L (C).
Now choose v € ¢~ 1(¢hg) in Belt(A); and consider the composite maps Wyow".
Their Beltrami coefficients
tw, ow” + vow” /dw”

—, teQ,
1+ 7(uw, o w?)ow? [Ow”

KW, owv =

range over a (simply connected) complex disk A, C Belt(A);. The transform
(4.7), for a fixed collection of cuts oP), carries this disk onto the complex disk
Xp(A,), whiles the above construction of the space T, yields that the restriction
of projection ¢, onto the last disk is injective. Therefore, the composite ¢, o
Xp © 7 |Q0(10) maps the distinguished domain Qo(¢)y) biholomorphically (thus
conformally) onto a simply connected holomorphic curve (Riemann surface)

ﬁO(JO) = ¢p o xp(Ay) C Ty,
where _
Yo = ¢p 0 Xp(v) € Tp(tho)-

Denote the indicated conformal map Qo (ko) — Qo(¢0) by ép-
The restrictions

(4.17) B2 [6p o Xp (1w, 0w )]

of the functions (4.13) to (1) are holomorphic on this curve, thus the corre-
sponding functions

(4.18) hg:p) o ¢po Xp(NWiow") oé€p
are holomorphic on the initial planar domain Qg(109) C T. The functions (4.17)
and (4.18) depend on the choice of both v € ¢~ (¢)y) and ¢(P).

On the other hand, let ¢, be a point in the fiber (o) over 9. Choose a
Beltrami coefficient 7 = ¢, ! (1) in the ball Xp(Belt(A)1). Its inverse image under
Xp» i-€., the Beltrami coefficient v = x; ' (7), must lie in the fiber ¢~ (¢) over ¢y
in Belt(A)1, because, by definition, the x,-equivalence is stronger than the initial
equivalence relation defining the projection of Belt(A); onto the base space T.

This yields that when v runs over the fiber ¢=1(¢y9) € Belt(A);, we get for
every point 1, € T, L(4)0) a similar holomorphic disk ﬁ({ﬁ*) over Qg(wo) centered
at this point.
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Therefore, defining on Qo (¢o), in accordance with (4.14) and (4.15), the enve-
lope

(4.19) ho(t) =sup  sup h,;p) 0 ¢p 0 Xp(Hw,ouwr) © €p(t),
a(®) vep~1(%o)

we get a function which coincides with the restriction to Qo(t)) of the function hyx
determined above on the whole space T. The upper semi-continuous regularization
lim sup,,_,, h%(t") of (4.19) is logarithmically subharmonic on Qg(¢9) and hence
satisfies the mean value inequality on this planar domain. This yields the inequality
(4.16) and completes the proof of Lemma 4.2. O

Passing to the upper semi-continuous regularization

(4.20) h(¢) = lim sup hx ()
o=

of hx on the whole space T, one obtains a nonconstant logarithmically plurisub-
harmonic function on T whose properties are summarized in the following lemma.

LEMMA 4.3. The function h% is logarithmically plurisubharmonic on the space
T and satisfies the relations

hy(¢) < tanhdr(0,9) < ko(f) <1 forall ¢ =Sy € Ty

2 @) = wlls +01) as 0.

PROOF. The first relation in (4.21) follows from (2.4) and from definition of h%,
while the second equality immediately follows from the existence of the Ahlfors-
Weill extension with harmonic Beltrami coefficient in A of conformal maps f :
A* — C, provided ||Sy||B < 2 (see [AW]). o

We proceed with the proof of theorem and apply the Schwarz lemma to the
lifts

Hyp=hxod,:Belt(A); = A, p=1,2,...,

and obtain

(4.22) | Hee p (txp ()] = [Bix 0 p(txp ()| < I8,

provided ||g|| =1 and |¢| < 1. Taking into account that

(G () = — = // Va2 dy + O(w]%) as [W]les = O,

because the functions w” € ¥(k) with small ||v||« are represented by means of the

variational formula
c——// dz dy + O(|v|2),
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we conclude that the differential of the map Hy , at the origin of Ly, (C) is given
by

~ 1 i
dHyx,p(0)v = —— //V(z) Z Vmn P P ;24 dy = — (v, 0, A
g A m+n=2
Comparison with Theorem A and (4.9) yields that, letting
Xp(1) = |@p|/Pp =: B,
we will have in (4.22) the case of equality
(4.23) mx o ¢p(tiip)| = [t{fip, Pp)a| = [t| forall ¢ € A.
The relations (4.14), (4.15), (4.20) and (4.23) together imply

hy o ¢(tug) hx o ¢p(tiap) > lim mx o ¢p(thiyp)|

lim sup = > limsu =1.
t—0 P |t] ~ o P |t] 7 0 It]
Hence, in view of (4.3),
h tug
(4.24) lim sup hi o $(th5) =1.
t—0 ||

Now, let us consider the function

(4.25) uo() = sup{hx(¥) : x € S(I*)}

for which, arguing similarly to Lemma 4.3, we get

LEMMA 4.4. The upper semi-continuous regularization ui(y) = lim sup ug(y)
o=
of the function (4.25) is logarithmically plurisubharmonic on T and possesses the
estimates similar to (4.21).

Therefore the plurisubharmonicity of the Teichmiiller distance 7r(0,%)) is an

immediate consequence of the following straightforward extension of the Schwarz
lemma (cf. [K11], [Kr6], [Si]).

LEMMA 4.5. Let a function u(z) : A — [0,1) be logarithmically subharmonic
in the disk A and such that the ratio u(2)/|z|™ is bounded in a neighborhood of the
origin for some m > 1. Then

(4.26) u(z) < |z|™ forall z€ A
and
(4.27) lim sup u(z) <1

20 2™

Equality in (4.26), even for one zo # 0 or in (4.27), can only hold for u(z) = |z|™.

ProorF. The function

u(z
v(z) = log % = logug(z) — mlog|z|
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is subharmonic in the punctured disk A \ {0} and bounded from above near the
origin; thus, due the removability of the one-point sets for the locally bounded
above subharmonic functions, v(z) extends to a subharmonic function in the whole
disk A. We shall denote this extension also by v(z). The function

0i(2) = € = u(z)/|2[™

is also subharmonic on A; hence, applying to it the maximum principle in the disks
A, ={z:]2|<r},0<r <1, we get
u(z 1
supvi (=) = sup v (2) = sup 2 < L
A, lz|=r lol=r |2] r
which implies (4.26).
In the case of equality in (4.26), even for one zg # 0 or in (4.27), we have
that v1(z) attains at 2z its maximum in A equal to 1, but this is possible only if
v1(z) = 1. This completes the proof. O

Applying this lemma to subharmonic functions u(t) = u§ o ¢(tu*), where p* =
w/lpll, p € Belt(A);, one obtains ug(ty) < k(0, te)) for all ¢ € T.

On the other hand, it follows from (4.3), (4.21) and (4.24) that for u = po,
where pg is the initial extremal Beltrami coefficient for the point 1y, we have

g 0 9(tug) B0 00) _ 3 _ o0, 40

. Ug . x
lim sup > lim sup
t—0 |t| t—0 |t|
which shows that we have the case of equality in (4.27). Hence,
US(t’(/J()) = k(O, t¢0)
for all t € C such that t1g € T, in particular, for ¢t = 1.

Now for an arbitrary point ¢ € T, one can apply the corresponding right
translations of this space defined as follows.

Take a Beltrami coefficient v € Belt(A);, and let its image in T be the
Schwarzian 9 = ¢ (v). Then w”(S!) is a quasicircle with the interior domain
D, = w”(A). Let w be a conformal map of the disk A onto A,, then we obtain
(for fixed v) a biholomorphic isomorphism

p—v w’ow™?!

1=Ppwv ow=1
of the ball Belt(A);. This isomorphism is compatible with the canonical projection

¢ and thus descends to a holomorphic bijection ¢ of T defined from the commutative
diagram

(4.28) W= oy =

Belt(A) 1 L} Belt(A)l

5| |o

Gy

T —_— T
Thereby, the translation (4.28) determines the Teichmiiller and Kobayashi isome-
tries

m0(¢(v), d(w)) = (0, ¢(00 (1)),  dr(d(v), ¢(u)) = dr (0, $(0w (1))
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and their infinitesimal analogues (for the corresponding Finsler structures)
Fr(6(v),¢'[v]n) = 18/ = [l = Fr(0, (¢ 0 0,)' ),
Kr(¢(v),¢'Vln) = Kr(0, (¢ 0 0,)' n);

here § = p—v. In particular, the holomorphic disks A, € T centered at 0 are moved
conformally onto the corresponding holomorphic disks centered at ; therefore, the
holomorphic sectional curvatures of these metrics are preserved.

The function

(4.29)

Alp(v), ¢'(v)p) = ug o 5o ()
determines an infinitesimal plurisubharmonic metric on 7(T) which is maximal
among all such metrics majorized by Fr(¢(v),¢'(v)u). Hence, it must coincide
with the Azukava metric of T generated by the pluricomplex Green function (1.2)
(cf. [Az], [K12]), and therefore (cf. [EM]),

(4.30) K (6(v),¢' (v)u) = Fr(o(v),¢' (v)n).

Step &: Curvature comparison for some Finsler metric.

As was already mentioned in Section 2.2, the holomorphic curvature of the
Kobayashi metric of every complete hyperbolic complex Banach manifold M satis-
fies

Kicy (X,0) = —4.
Our goal is to show that the holomorphic maps constructed above allow us to
establish for M = T the opposite inequality. Using the right translations (4.28),
one reduces the proof to the case when x = 0 and v = 9y is a unit tangent vector
to T at 0, i.e., such that [[v||z(T) = 1, where Tp(T) means the tangent space to T
at the base point.

Let g : t — ¥(z,t) be a holomorphic map of a disk A, (r > 0) into T with
g(0) =0, ¢'(0) = 1)p. This yields
(4.31) Y(z,t) = tho(2) +w(z,t), |lw(z,t)B = O(t*) ast— 0.

Assuming that r is sufficiently small (so that ||[¢||s < 2), one can extend by [AW]
the solutions w of the Schwarz equation S, (2) = ¥(z,t) in A* to a quasiconformal

homeomorphism w”# of C with harmonic Beltrami coefficient

volert) = =31~ 1P (5:t) o

in the disk A. Then vy, — u* € A;(A)* and by (4.31),
(4.32) sup{[(vy(.p) — tus, P)al : llella, =1} = O(t%), t—0.

Now consider the sequence of holomorphic maps

)= 3 VIman GO Da? A oA (p=1,2,...);

m,n=1

it is normal in the disk A,.. The derivatives of these maps at ¢t = 0 are given by the
formulas following (4.22). Applying the equality (4.32), one concludes that there
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exists r > 0 such that the sequence {h,} is convergent uniformly on the disk A, to
a conformal map
ho(t) : A, = A.
The relations (4.3) and (4.23) imply that the derivative h{(0) is the unit tangent
vector to A at the origin.
Since the holomorphic maps decrease the hyperbolic metrics, we have

BRAW) = Alg(t), g’ (1) > —0OL_ "y e a,
1 — |ho(t)[?
The last relation shows that
|ho(8)]
M) = —————
o0 =T he ()P

is a supporting metric for A4 = h§A at t = 0, which means that A¢(0) = A 4(0) and
Ao(t) < Aa(t) in a neighborhood of the origin. This metric has Gaussian curvature

k(Mo) = —4 in noncritical points of hg, thus in a neighborhood of the origin.
It follows that the ratio log i‘—i has a local maximum at the point ¢ = 0, and

therefore, its generalized Laplacian in this point
A
Alog /\—0(0) = Alog Ao(0) — Alog A4 (0) < 0.
A

This implies
Alog A 4(0) Alog Ao (0)
A0 T A3(0)
and the desired inequality k(A 4) < —4 follows.
Comparison of the obtained relations for the curvatures with the equality (4.30)
completes the proof of Theorem 1.1.

5. Metric geometry of hyperbolic balls in T

By definition, the hyperbolic distance da, (0,t) on the disk A, = {|t| < &} is
given by

(5.1) da,.(0,t) =da (0, %)

It is not known how to relate in the general case the Carathéodory and Kobayashi
distances on the balls in a complex manifold X with the corresponding distances on
X. As for the universal Teichmiiller space, Theorem 1.1 and Corollary 1.3 ensure a
relation similar to (5.1) for the Kobayashi metric on the hyperbolic (Teichmdiller)
balls

B.(T)={¢€T:dr(¢,0) < K} (0<K <00),

where the values k and K are related by k£ = tanh K.

THEOREM 5.1. The Kobayashi metrics dr and dp, (r) satisfy the relation

(5.2) dp, (1)(0,9) = tanh ™! (M) =da (0’ M)

for the points ¢ € B, (T), where l(s) = tanhs.
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The corresponding Green functions are related in a similar way; in particular,
a representation of type (1.2) for the balls B,(T) assumes the form

KO.9) o eV

(5.3) 9B,.(1)(0,9) = log

PROOF. Let 99 € B,(T), and let ug € Belt(A); be an extremal Beltrami coef-
ficient for g, i.e., 71(0,10) = da (0, ||t0]lcc)- Consider the Teichmiiller isometries

h(t)ztﬁ:A—)Belt(A)l and ¢roh:A—T.
0[foco

Then po = h(||xo]|) and ¢ oh(Ax) C By (T). Since the map ¢ o h is holomorphic,
we have

i, (1)(0,%0) = dp, () (6 © h(0), b © h({ o))
< da, 0, o) = da (0, 1221,

To establish the opposite inequality, observe that the function

Gr(p,9) =log Li’ v)

is separately plurisubharmonic in each of the variables ¢, on the whole space T;
the values of G, (0,%) on B, (T) belong to [—00,0), and

(5.4)

(5.5 G0, v0) = log 2l 1og tanh da, (0, 1)

Since the Green function gp_(T) is maximal, (5.5) yields

(5.6) 9B.(1T)(0,%0) = G (0,10) > logtanhda,, (0, [|uol|)-

The relations (5.4) and (5.6), together with (1.2), imply the desired equalities (5.2)
and (5.3). O

6. Extension to Teichmiiller space of the punctured disk

6.1. Many problems concerning holomorphic functions with quasiconformal
extensions require to exploit more normalization conditions for these extensions.
Suitable model examples are provided by the class of univalent functions

f)=z+ Zanz"
n=3

in the unit disk A, whose extensions f to C satisfy f(oo) = o0, and the corre-
sponding class of nonvanishing univalent functions F(2) = z + b1z~1 + --- in A*
with the extensions F' to A satisfying F(0) = 0. These classes are related by
F(z) = 1/f(1/2). Therefore, not all initial data become admissible to solve the
problems.

Such maps are naturally connected with the Teichmiiller space T(A,) of the
punctured disk A, = A ~ {0}.

We shall show that Theorems 1.1 and 5.1 can be naturally extended to this
space. To this end, we embed T(A,) holomorphically into T.
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6.2. The elements of T(A,) are the equivalence classes of the Beltrami co-
efficients p € Belt(A); so that the corresponding quasiconformal automorphisms
W* of the unit disk coincide on S* U {0} and are homotopic on the punctured disk
A,

This space can be endowed with a canonical complex structure of a complex
Banach manifold and embedded into T using uniformization.

Namely, A, is conformally equivalent to A/T", where I' is a cyclic parabolic
Fuchsian group acting on I' discontinously. The functions pu € Ly, (A) are lifted to
A as the Beltrami ((—1, 1)-measurable forms fidz/dz in A with respect to ' (i.e.,
via (i 0 ¥)y' /v = i, v € T) forming the Banach space Lo (A,T). All these ji
are extended by zero to A*; then the corresponding Schwarzians S,z s+ belong to
T. Moreover, T(A,) is isomorphic to the subspace T(I') = T N B(T'), where B(T")
consists of elements 1) € B satisfying (1) o v)(y')%2 = ¢ in A* for all y € T.

Due to the Bers isomorphism theorem, T(A,) is biholomorphically equivalent
to the Bers fiber space

Fib(T) = {¢1(p),2) € T x C: p € Belt(A)1, z € w”(A)}
over T with holomorphic projection 7 (¢, z) = 1) (see [Be]).

6.3. Our approach is somewhat different and does not require uniformization.

We take now the Jordan curves oy joining 0 with S' which can turn around
the origin many times so that each turn determines a different homotopy class of
curves on A,. Fix such og.

The converse construction by reducing the boundary values of quasiconformal
maps w*|A along the subarcs (),¢4) C S! and transforming the Beltrami coeffi-
cients p analogously to (4.11) exploited above must be modify as follows. We apply
a conformal map g of A onto the slit disk A \ gg, and call p1, us € Belt(A); to be
g-equivalent, if w9*(#1) and w9*(#2) coincide on S U {0} and are homotopic on A*.
Then one obtains that the images g * (1) and g * (u2) of any two u1, ue € Belty
which are equivalent in the Teichmiiller sense (i.e., w#t = w2 on S') become
g-equivalent.

Indeed, equality of the maps w9*(#1) and w9*®#2) on S' U {0} allows us to
construct the needed homotopy w(z,t) : A, x[0,1] for these maps in a standard way,
when w(z,t) is the point dividing the hyperbolic segment [w?*(#1) (2), w9*(#2)(2)]
on A, in the ratio ¢t/(1 — t).

Note that one can use also the hyperbolic metric of the whole disk A and obtain
a homotopy of these maps which preserves the origin fixed. Then, by D. Epstein’s
theorem on the homotopy with a fixed base point, the restriction w(z,t) to A,
yields a desired homotopy on the punctured disk (cf. [Be], [Ep]).

Now observe that the extremality condition for the elements u € Belt(A);
to realize the Teichmiiller metric of T(A.) is again of the form (4.1), but the
corresponding quadratic differentials ¢ must be integrable and holomorphic on A,.
Thus they can have at most a simple pole at the origin.

Take again a maximizing sequence {¢,} for uo as in (4.3) and denote the zeros
of ¢, of odd order in A, by (4.6). One only needs now to join these zeros by a
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piecewise smooth slit o(P) located in A \ 0. All other arguments in the proof of
Theorems 1.1 and 5.1 remain valid.

7. Complex hyperconvexity of the Teichmiiller spaces

Let X be an arbitrary hyperbolic Riemann surface. By the uniformization
theorem, there is a torsion free Fuchsian group G acting discontinuously on the
disks A and A* so that the surface X is conformally homeomorphic to the factor-
space X = A/T'. The limit set L(T) of T either coincides with the unit circle S*
if T is of the first kind or L(T) is a nowhere dense subset of S' when T is of the
second kind.

The Teichmiiller space T(X) = T(T") of the surface X (or of the group TI) is
the deformation space of the conformal structure on X. This space has a natural
copy in the universal Teichmiiller space; namely, the embedding of T(I") consists of
those Schwarzians ¢ € T which are I'-automorphic holomorphic forms of weight-4
in A* (holomorphic quadratical differentials on A*/T"), i.e.,

(7.1) Won)(¥)2 =1, veT; (z) =0(z %) as z = oo.
The Teichmiiller spaces satisfy the relation
T(T) =B()NT,

where B(I") denotes the subspace of B formed by ¢ satisfying (7.1) (see, e.g., [Le]).

The Teichmiiller metric ¢y on T(T) is defined similarly to (1.3). It is uni-
formly equivalent to the metric 7p|T(I") induced on T(I') by the metric of the
universal Teichmiiller space: obviously,

TT(W: ¢) < T1I(D) ((/77 ¢); 907¢ € T(F)a
on the other hand, on every bounded set E C T(T),

TT(I) ((105 ¢) < 3(1 + diam E) TT(SO, ¢)7

where diam denotes the diameter of E in 7p(ry metric (see [Le, Theorem 4.7]).
As one of the important consequences of Theorem 1.1 we obtain the following
result:

THEOREM 7.1. Every Teichmiiller space T(T) is complex hyperconvez, that is,
there exists a negative continuous plurisubharmonic u(y) on T(T) which tends to
zero when Y tends to infinity.

The question of complex hyperconvexity of Teichmiiller spaces was stated by
M. Gromov. It is solved in the affirmative for the finite-dimensional Teichmiiller
spaces T(p,n) = T(T') in [Kr5]. Theorem 1.1, together with the above relations
between the spaces T and T(T'), immediately provides this property for all T(T");
as a needed plurisubharmonic function can serve, for example, g1 (0, ).

Note that recently McMullen [MM] established the Kahler hyperbolicity of the
finite-dimensional moduli spaces M(p,n) = T(p,n)/ Mod(p,n), where Mod(p,n)
denotes the Teichmiiller modular group of the space T'(p,n). The complex hyper-
convexity and the Kahler hyperbolicity are closely related properties.
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