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ABSTRACT. This paper is a survey of the author’s recent results on univalent
harmonic mappings of annuli.

1. Introduction

A harmonic mapping f of a region D is a complex-valued function of the
form f = h + g, where h and g are analytic functions in D, unique up to an
additive constant, that are single-valued if D is simply connected and possibly
multiple-valued otherwise. We call h and g the analytic and co-analytic parts of
f, respectively. If f is (locally) injective, then f is called (locally) univalent. Note
that every conformal and anti-conformal function is a univalent harmonic mapping.
The Jacobian and second complex dilatation of f are given by the functions J(z) =
|W'(2)]?> — |g'(2)|? and w(z) = ¢'(2) /I (2), z € D, respectively. Note that w is either
a nonconstant meromorphic function or a (possibly infinite) constant. A result of
Lewy [10] states that if f is a locally univalent mapping, then its Jacobian J is never
zero; namely, for z € D, either J(z) > 0 or J(z) < 0. In the first case |w(z)| < 1
and f is sense-preserving, and in the second |w(z)| > 1 and f is sense-reversing.

Th/r\oughout the paper we shall use the following notation: C for the complex
plane, C for the extended complex plane, D for the open unit disc {z € C: |2| < 1},
T for the unit circle {z € C: |z| =1}, 0 < p < 1, T, for the circle {z € C : |z| = p},
A(p,1) for the annulus {z € C : p < |z] < 1}, G for a bounded convex domain
unless otherwise is specified, and 8S and S, S C C, for the boundary and closure
of S respectively. We shall call the diameter of S the least upper bound of the
Euclidean distances between any two points of S, a Jordan curve convez if it is the
boundary of a bounded convex domain, and a ring domain is a doubly-connected
open subset of the plane. We shall need the notion of the module of a ring domain
[16]. It is known that a ring domain R is conformally equivalent to a unique annulus
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A(p,1). The module of R, denoted by M(R), is defined by log(1/p) if p # 0 and by
oo if p = 0. It is known that M is a conformal invariant and that if R C R’', where
R' is also a ring domain, then M (R) < M (R') with equality if and only if R = R'.
The Grotzsch ring domain, B(s), 0 < s < 1, is the ring domain whose boundary
components are T and the segment {z : 0 < z < s}. Observe that B(s) is unique.
The module of B(s) is usually denoted by u(s). Thus u(s) =log(1/p). It is known
that p is a strictly decreasing function of [0, 1).

The purpose of this article is to survey the author’s recent results on harmonic
univalent mappings of annuli.

2. Boundary Functions

The boundary functions of univalent harmonic mappings onto punctured con-
vex domains are characterized by the following notion introduced by Bshouty, Hen-
gartner and Naghibi-Beidokhti [3].

DEFINITION 2.1. Let f be a function of T into a Jordan curve C' of C. We
say f is a sense-preserving quasihomeomorphism of T into C' if it is a pointwise
limit of a sequence of sense-preserving homeomorphisms of T onto C. If in addi-
tion f is a continuous function onto C, then f is called a sense-preserving weak
homeomorphism.

Sense-preserving quasihomeomorphisms and sense-preserving weak homeomor-
phisms are characterized as follows [12].

PROPOSITION 2.1. Let f be a function of T into a Jordan curve C, and let F
be a sense-preserving homeomorphism of T onto C'.

(i) If f is a sense-preserving quasihomeomorphism of T onto C, then there is
a real-valued nondecreasing function ¢ on R such that p(t+27) = @(t)+27
and f(et) = F(e™¥),

(ii) If f(e®) = F(e*®), where ¢ is a real-valued nondecreasing function on
R such that ¢(t + 27) = @(t) + 2w, and if E is the countable set of
points eV where ¢ is discontinuous, then f coincides on T ~ E with a
sense-preserving quasihomeomorphism of T. In this case, f is the point-
wise limit in T N E of a sequence of sense-preserving homeomorphisms
fn(et) = F(e®~®) of T onto C, where each ¢, is a real-valued infinite
differentiable function on R such that on(t + 2m) = pn(t) + 27 and p,'(t)
is always positive.

(iil) f is a sense-preserving weak homeomorphism of T onto C if and only
if there is a real-valued continuous nondecreasing function ¢ on R such
that ¢(t + 21) = @(t) + 27 and f(et) = F(e¥®). In this case, f
is the uniform limit of a sequence of sense-preserving homeomorphisms
fn(et) = F(et*®)) of T onto C, where each {@,} is a real-valued infi-
nite differentiable function on R such that p,(t + 27) = n(t) + 27 and
wn'(t) is always positive.
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Let f be a function of A(p,1) into @, and let £ € T. We say that f has the
unrestricted limit a € C at £ if

fe) ma 22 z€Ap1);

by defining f(£) = a the function f becomes continuous at £ as a function in
A(p,1) U{&}. We shall use f(£) to denote the unrestricted limit whenever it exists,
and call the resulting function, on its domain of definition in T, the unrestricted
limit function f. We also define the cluster set C(f,&) of f at £ as the set of all
b € C for which there are sequences {zn} such that

zn € A(p,1), 2z, =&, flzn) 2 b asn — co.

Moreover, If F is a subset of T, then we define the cluster set C(f, F) of f at F as
the set-union of the cluster sets C(f,§) for £ € E.

Sense-preserving quasihomeomorphisms are essential for describing the bound-
ary behavior of univalent harmonic mappings of ring domains onto bounded con-
vex domains. Suppose f is a univalent harmonic mapping of A(p,1) onto a ring
domain G\ {¢}, ( € G. Then either lim 4 f(2) = ¢ and C(f,T,) = 9G, or
lim;,, f(z) = ¢ and C(f,T) = 0G. In the first case, f(p/z) becomes a uni-
valent harmonic mapping of A(p,1) onto G ~\ {¢} with lim,,, f(p/z) = ¢ and
C(f(p/z),T) = 8G. This leads us to consider, without loss of generality, only
univalent harmonic mappings of A(p,1) onto ring domains G \ {¢}, ¢ € G, with

lim|z|¢p f(z) = C

DEFINITION 2.2. Let H,(p, G) be the class of all univalent harmonic mappings
f of A(p,1) onto a ring domain G \ {¢}, ¢ € G, with f(T,) = (.

The boundary behavior of functions f € H,(p, G) is given as follows [12].

THEOREM 2.1. Let f € Hu(p,G). Then there is a countable set E C T such
that the following hold:

(i) For each €’ € T \ E, the unrestricted limit f(e'®) ewists and belongs to
OG. Furthermore, f is continuous in A(p,1) \ E.

(ii) For each e’ € E, the side-limits limgq, f(e¥) and limg g, f(e'®) exist in
0G and are distinct.

(iii) For each e'° € E, the cluster set C(f,e'%) lies in OG and is the straight-
line segment joining the side-limits limgpg, f(e¥) and limg g, f(e').

(iv) @o(f(T \ E)) = G; to(—) is the closed convex hull of —.

(v) There is a sense-preserving quasthomeomorphism of T into 8G that coin-
cides with the unrestricted limit function f on T\ E.

(vi) f is the Dirichlet solution in A(p,1) of the function f* defined by the

unrestricted limit function of f on T and the value of f on T,.

The fact that f* is not defined on E in (vi) is insignificant. Indeed, Dirichlet so-
lutions in multiply connected domains coincide whenever their boundary functions
coincide almost everywhere.
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3. A Representation Theorem and Univalence Criteria

Hengartner and Szynal [7] and Bshouty and Hengartner [1] gave the following
useful representation for harmonic mappings f defined on an annulus A(p,1) and
constant on the inner circle.

THEOREM 3.1. Let f be a harmonic mapping of A(p,1) that extends contin-
uously across T, with f identically ( there. Then there exist a constant c and a
function h analytic in A(p?,1) such that

3.1) f(z) = h(z) = h(p?/Z) + ¢ + 2clog(|z]/ p)-
Further, if f extends continuously across T and f* is the restriction of f on T,
then ¢ = 0 if and only if ¢ equals

]‘ > */ it
(3.2) G / £ (et) dt.

o
Using Theorem 3.1, Bshouty and Hengartner [1] obtained the following result.

THEOREM 3.2. Let f* be a sense-preserving homeomorphism between T and 0G
that assumes on T, the constant (o € G given by (3.2), and let f be the Dirichlet
solution of f* in A(p,1). Then f € Hu(p,G).

Theorem 3.2 was extended by the author [12] as follows.

THEOREM 3.3. Let f* be a sense-preserving quasihomeomorphism of T into

0G such that ©o(f(T \ E)) = G, and let f* be defined on T, by the constant (o
given in (3.2). Also, let f be the Dirichlet solution of f* in A(p,1). Then (o € G
and f € Hu(p,G).

Further, the author [11, Theorem 2] showed that, without using Theorem 3.1,
Theorem 3.2 remains true under the weaker condition f(A(p,1)) C G rather than
the convexity of G. In fact, in view of Theorem 2.1 and the proof of the previous
theorem, the following more general result can be obtained.

THEOREM 3.4. Let f* be a sense-preserving quasihomeomorphism of T into
the boundary of a bounded Jordan domain G such that ©o(f(T \ E)) = G, and let
[* be defined on T, by the constant (o given in (3.2). Also, let f be the Dirichlet
solution of f* in A(p,1). Then (o € G and f € Hu(p,G).

We introduce here the following subclass of H,(p, G).

DEFINITION 3.1. Denote by Ho(p, G) the class of all Dirichlet solutions f sat-
isfying the hypotheses of Theorem 3.3.

The classes H,(p, G) and Ho(p, G) are related as follows [12].

PROPOSITION 3.1. Suppose that the following are true:
(i) f* is a sense-preserving quasihomeomorphism of T into G such that
o(f(T\E)) =G.
(ii) f is the Dirichlet solution in A(p,1) of the function defined on T by f*
and on T, by a constant ¢ € G.
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(i) fo € Ho(p, G) is the Dirichlet solution of the function defined on T by f*
and on T by the average (o of f*.

Then there is an analytic function h in A(p?,1) such that f has form (3.1) or the
equivalent form

(3.3) f(2) = fo(2) + 2¢¢log 2|

where

(3.4) fo(z) = h(z) = h(p*/2) + Co, (2 € Alp, 1)),
and

(3.5) ¢ = glg gC;.

The function f; is called the average associate of f.

In what follows we use f'(e®®) for df(e??)/df. Note that, according to Propo-
sition 3.1, f may not belong to H,(p,G) even though it shares with its average
associate fo the same analytic and co-analytic part h. Thus only the functions
f € Ho(p,G) of the form (3.4) are used in stating the following two results [12].

THEOREM 3.5. Let f € Ho(p,G) be of form (3.4). Then

(a) h' is nonvanishing on T, and h maps T, homeomorphically onto a convex
curve whose diameter is bounded above by

D = (4d/7) tanh* (" (log(1/p)) .
(b) I h(z) = £, ane™, z € A, 1), then

o
oo o oo
Zn|a_n|2p*2" < Z nla,|*p*™ < D?*/4 + Z nla_n|?p 2"
n=1 n=1 n=1

THEOREM 3.6. Let f € Ho(p,G) be of form (3.4). Then there is a univalent
close-to-convez function H of the unit disc D and a homeomorphism ¢ of A(p,1)UT
into D with ¢(T) = T such that h = H o ¢.

The author conjectures that the function H is convex.

4. A Hengartner’s Problem Regarding Univalent Harmonic Mappings

Let f be the Dirichlet solution in A(p, 1) of a function f* of A(p,1) defined by
a sense-preserving quasihomeomorphism of T into dG satisfying co(f(T\ E)) = G,
and by a constant ( € G on T,. Theorem 3.3 asserts that f belongs to H.(p, G) if
¢ = o, where (o is the average of f* on T, given by (3.2). Hengartner and Schober
[6] showed that this condition is not necessary, and recently Duren and Hengartner
[4, Example 1] gave the harmonic mapping

F(z) = (z = p*/2)/(1 = p) + 2cloglz|, (2 € A(p,1)),

which belongs to H,(p,D), with (o = 0, whenever |¢|] < p/(1 — p?); note that
F(e') = et and F(T,) = 2clog p. This concludes a negative answer to the following
question of Nitsche [15, §879]:
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QUESTION (Nitsche). Are all univalent harmonic mappings of A(p,1) onto
A(0,1), up to a rotation, of the form

(4.1) 1) = (2 = p*/2) /(1 = g2
In this connection, Hengartner [2, Problem 15] raised the following problem:

PRrROBLEM (Hengartner). Let f* be a sense-preserving quasihomeomorphism of
T into OG with To(f(T \ E)) = G, and let f be the harmonic extension in A(p,1)
of the function defined by f* on T and by a constant ( € G on T,. Find the set of
all ¢ for which f: A(p,1) = G~ {¢} a homeomorphism.

Denote by H(p, f*) the class of Dirichlet solutions in A(p,1) of functions of
0A(p,1) defined on T by f* and on T, by some constant ¢ € G, by H.(p, f*) the
subclass of H(p, f*) of univalent mappings, and by K (p, f*) the set of values { € G
for which a function f € H(p, f*) belongs to H,(p, *).

The results of this section were obtained in an attempt by the author to give a
satisfactory answer to Hengartner’s problem. The first result [12] states as follows.

THEOREM 4.1. K (p, f*) is a nonempty compact subset of G.

By Proposition 3.1, the class H(p, f*) yields an analytic function h in A(p?, 1),
unique up to an additive constant, such that every f € H,(p, f*) is of form(3.3).
The second result [12] characterizes the boundary points of K(p, f*) in terms of
h and f* in a manner leading to a univalence criterion for functions f € H(p, f*).
The result states as follows.

THEOREM 4.2. Let f € Hy(p, f*) be of form (3.3), where f* : T — 0G is a
twice-differentiable function with nonvanishing derivative and absolutely continuous
second derivative. Then the dilatation w of f and zh'(z) + ¢¢ extend continuously
to A(p, 1) UT such that e’ (e?) + c¢ # 0 for all 6. Moreover, we have:

(a) If ¢ € OK(p, f*), then either pe®*h'(pe®t) + cc = O for some 6y, or
|w(e®2)| = 1 for some 65.

(b) If |w(e?)| =1 for some 6, then ¢ € OK (p, f*).

(c) If in (a) and (b) the function |w(e®)| is replaced by the function

e ' (e?) + c.
2 Y T T
re{ ey
then (a) and (b) continue to hold.

Regarding (a), Hengartner and Szynal [7, Theorem 3.1] asserted that if { €
OK (p, f*), then pe®®1h/(pe?t) + ¢, has at most one zero and that this zero is of
order one.

Applying Theorem 4.2 to functions f € H,(p, f*) of form (3.4), where ( is the
average (o of f* on T, cc = 0, pei?h'(pe?) # 0 for all § by Theorem 3.5(a), and
|w(e?®)| = 1 for some 6 if and only if p?|h’(p?e®®)| = |h'(e¥?)|, the following result is
obtained [12].

COROLLARY 4.1. Let f € Hy(p, [*) be of form (3.4), where f* is as in Theorem
4.2. Then the following statements are equivalent:
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(a) G €0K(p, f*).
(b) 2| (p2e®)] = |I'()] for some .
(c) 2Re{h (e¥®)/f'(e'®)} =1 for some 0.
The next result [12] provides sufficient conditions for the univalence of functions
f € H(p, f*) whose f* are as given in Theorem 4.2.

THEOREM 4.3. Let f € H(p, f*) be of form (3.3), where f* be smooth as in

Theorem 4.2. Then f € Hy(p, f*) if 2h'(2) +c¢c # 0 for z € A(p,1), and if one of
the following two inequalities holds fqg all 09
1 ! 2

() lwe®)| <1.  (b) 2Re{%} > 1.

We remark that f* as defined in Theorem 4.2 yields zh'(z) # 0 for z € A(p,1)
which makes the above hypothesis, zh'(z) +¢¢ # 0 for z € A(p, 1), easily achievable
for functions f € H(p, f*) with sufficiently small c;.

The next result [12] asserts the existence of a large family of triplets, 0 < p < 1,
Gp, f*, where G, is a bounded convex domain and f; : T — 0G, is a sense-
preserving homeomorphism, such that K (p, f*) has a nonempty interior containing
the average of f*.

THEOREM 4.4. Let ) be a bounded conver domain, and let h be a homeomor-
phism of D onto Q) that maps D conformally onto 2. Suppose that h'" is continuous
on D, h"' (') is absolutely continuous, and

) h//(ew)

0
(4.2) Re{lJr-ez (e >0
for all 8. Then there exists & > 0 such that for each 0 < p < § we can find a
bounded conver domain G, such that the harmonic mapping

fo(2) = h(z) = h(p*[7), (2 € Alp,1)),

satisfies the following properties:

(i) f,: T — 0G, is a sense-preserving homeomorphism.

(ii) f, is continuously twice-differentiable on A(p,1).
(iii) f, € Holp, Gy).
(iv) There is 0 > 0, depending on p, such that for any |(| < o the function

fe(2) = h(z) = W(p*[2) +  + 2¢c¢ log(|2|/ p)
belongs to H(p,G,).

REMARK 4.1. (i) Without (4.2), the hypothesis of the theorem yields the fol-
lowing weaker form of (4.2):

. h//(eia)
i0
. - > 0.
(43) Re{1+e h,(ezg) } 20
To see this, observe that zh/(z) is a univalent starlike function in I) which gives
n
(4.4) Re{l—kz};,((zz))} >0, (z=re? eD).
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Now, because h" extends continuously to D, the integral
z
| wow e,
0

where the differentiable path of integration from 0 to z lies in ID, yields, by Cauchy’s
theorem, the continuous extension of A'(z) to D. On the other hand, since zh'(z)
is univalent in I and maps the origin to itself, zh'(z) # 0 for z € D. Then (4.3)
follows at once by letting r — 1 in (4.4).

(if) Using Kellogg and Warschawski [16, Theorem 3.6, p. 49], the hypothesis
that h"(z) admits a continuous extension to D with absolutely continuous h’(ei?)
follows if G has a parameterization w(t), 0 < t < 27, whose first derivative is
nonvanishing and second derivative is Lipschitz of order o, 0 < a < 1.

5. Nitsche’s Question Revisited

In this section all harmonic mappings f € H,(p, G) whose analytic parts extend
analytically throughout ) are determined explicitly. It follows that the function f
defined by (4.1) is the only harmonic mapping, up to rotation, in Ho(p, D), (here
G is taken as D), of A(p,1) onto A(0,1) whose analytic part is analytic in D). This
somehow justifies Nitsche’s Question above. The result of this section states as
follows [12].

THEOREM 5.1. Let f € Hyu(p,G) be of form (3.3) with h analytic in D. Then

f2) =3 200 fon (272 o+ ¢ + 26 og(12l/p)

_ 2
n=1 1 P "
2 A"b, )
- Z 1—p?n [2" = (p°/Z2)"] + (o + 2¢¢ log |2],
n=1

where by, n = 1,2,---, is the n-th coefficient of the conformal map
F(z)=¢(o+ Z bp2"
n=1

of D onto G satisfying F(0) = (o and c; is as given in (3.5).
As an application of Theorem 5.1, if G = D), then

G S (o)1
FE) = g =@ (=16l (6

and the following result holds.

COROLLARY 5.1. Let f € Hy(p,D) be of the form (3.3) with h analytic in D.
Then there is a unimodular constant \ such that

£) = A1 = 16ol) {7 S (p2/2)"]}

1—p?
+ C+2¢cclog(|2|/p), (2 € Alp,1)).

n=2
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In particular, if (o =0, then

2—p2/z
f(2) = Al_if’pg +2¢clog 2], (2 € Alp,1)).

Also, if (o = 0 and f(T,) =0, then

1) =NTLE D e ).

6. The Modulus of the Image Annuli under Univalent Harmonic
Mappings and a Conjecture of Nitsche

For harmonic mappings f : A(p,1) — A(R, 1), R can possibly be zero as with
(4.1) which maps A(p, 1) univalently onto the punctured disc A(0,1). On the other
hand, R admits a universal upper bound (less than 1) as was shown in 1962 by
Nitsche [14]. To state this result, let K(p) be the class of univalent harmonic
mappings of the annulus A(p,1) onto some annulus A(R,1), and let k(p) be the
supremum of R as f ranges over all f € K(p). Using Harnack’s inequality, Nitsche
proved the following result [14]:

THEOREM 6.1. The value k(p) is less than 1.

Consider now the class of harmonic mappings
filz) =tz+ (1 =t)/Z2=[t+ (1 =1t)/0]e?® (z=0ce?).

Each f; maps concentric circles onto concentric circles, and maps A(p, 1) univalently
onto A(R(t),1), R(t) = tp+ (1 —t)/p, if, and only if, 1/(1+ p?) <t < 1/(1 — p?).
Restricted to these values of ¢, Nitsche [14] observed that R(t) admits its maximum
value 2p/(1 + p?) at t = 1/(1 + p?). This led him to suggest the following:

CoNJECTURE (Nitsche). k(p) = 2p/(1+ p?).

The conjecture was raised again in 1989 by Schober [17] as “an intriguing
open problem”, and subsequently in 1994 by Bshouty and Hengartner [2] as “open
problem 3.1”. Looking closer at Nitsche’s proof of the above theorem, the latter
authors observed that the proof also applies to the wider class of harmonic mappings
of A(p, 1) that are not necessarily univalent and that admit a point in each of the
vertical strips {w : R < Rew < 1} and {w : —1 < Rew < —R}. Consequently,
they remarked that x(p) is unlikely to be found by parlaying Nitsche’s proof of his
Theorem 6.1.

Until recently, it was believed that no quantitative upper bound for x(p) was
found. However, in a personal communication dated December 1999, Nitsche wrote
that he had “developed the estimate (k(p) < tanh[7(1+ p)/(1 — p)] = 0.9926) at
the time (of his article [14])”, but refrained from publishing the “poor bound” in
order “not to detract from the impact of the conjecture”.

The author, being unaware of Nitsche’s result, gave a substantial upper bound
of k(p) in terms of the Grdtzsch’s ring domain B(s) of A(p,1) [13].
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THEOREM 6.2. Let f be a univalent harmonic mapping of the annulus A(p, 1)
onto the annulus A(R,1), and let B(s(p)) be the Grétzsch’s ring domain that is
conformally equivalent to A(p,1). Then R < s(p).

Further, it was conjectured in [13] that the inequality R < s is sharp, but the
conjecture was subsequently disproved by Weitsman [18] in the following result.

THEOREM 6.3. Let f be a univalent harmonic mapping of the annulus A(p, 1)
onto the annulus A(R,1). Then

1
1+ (plogp)?/2’

Computations reveal that for a value py ~ 0.36, o(rp) < s(p) if po < p < 1,
o(p) is substantially smaller that s(p) if p is close to 1, a(p) > s(p) if 0 < p < po,
and o(p) is of no value when p is small. Further, if 7(p) = 2p/(1 + p?), which is
the upper bound conjectured by Nitsche, then lim,_,;- (1 —7(p))/(1 —o(p)) = 1.

It was noted by the referee that Kalaj [8] has recently improved Weitsman’s
result above as follows.

R < o(p)

THEOREM 6.4. Let f be a univalent harmonic mapping of the annulus A(p,1),
0 < p <1, onto the annulus A(R,1). Then

1
R < n(p)

T 1+ (logp)?2/2”

Obviously, n(p) < a(p) and 5(p), like o(p), is of no value when p is small.
In conclusion, Nitsche’s conjecture remains an unsettled interesting problem.
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