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ABSTRACT. Analytic mappings between Riemann surfaces are very natural
objects in complex analysis. Corresponding to the classical univalent func-
tions we have the class of injective holomorphic mappings — i.e., conformal
embeddings — of a Riemann surface into another. We find indeed a number
of analogies between them. On the other hand, because of the non-planarity
of the domain surface, we face some new problems which we have never en-
countered in the classical theory. We discuss various problems concerning the
conformal embeddings.

1. Introduction

The classical univalent function theory has been systematically producing a
number of deep and interesting results (cf. e.g., [2], [6], [16] and [37]). It is still
one of the fascinating and active fields in complex analysis. As is well known, it
is naturally and closely connected with the theory of conformal mapping (cf. e.g.,
[6], [8] and [16]). Not only qualitative but also quantitative results have been
obtained in these fields; in most cases they are largely based on the planarity of the
domains of definition. That is, the univalent function theory as well as conformal
mapping theory — both in the classical sense — belong to the complex analysis on
the complex plane C or on the Riemann sphere C.

In the present expository article we are concerned with “theory of univalent
functions on Riemann surfaces”. The readers will easily notice that this is obviously
a contradictory expression. Indeed, there exist no univalent functions — injective
(analytic) mappings into C — on a Riemann surface of positive genus, as an easy
topological argument shows. Our research objects are actually “Riemann surfaces of
positive finite genus” and “conformal embedding of one such surface into another”.
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In other words, we study “the one-to-one holomorphic mappings of a Riemann
surface into another”. We show on the one hand some results which easily remind
us of the classical ones, and find on the other hand some which contrast with the
classical. The study on conformal mapping between Riemann surfaces therefore
are important for its own sake. Sometimes one can reach a good understanding of
analyticity only when its properties — univalence and conformality in our present
case — can be well explained in the framework of Riemann surfaces. One of the
results below can be regarded as a straightforward generalization of the Riemann
Mapping Theorem and the Koebe generalized Uniformization Theorem.

A noteworthy difference between the classical univalent function theory and
ours is as follows: one cannot prescribe the target surface in our case, while the
complex plane C or the Riemann sphere Cis always the target in the classical case.
This observation brings us a new interesting problem: determine all the possible
compact Riemann surfaces into which a given (noncompact) Riemann surface can
be conformally embedded. In fact this is one of the main topics discussed in this
article.

The author tries to give the readers a comprehensive survey of this field. Not
a theorem in this article has a proof at length, but it will be of ease to trace the
detailed discussion in the bibliography at the end of the article. The bibliogra-
phy, though not exhaustive in any sense, contains sufficiently many of the classical
sources as well as recent papers and books. In the last section we mention sev-
eral problems and survey some further topics related with our study, among which
are hydrodynamics of an ideal liquid flow on a surface, analytic continuation be-
yond the ideal boundary, the role of the hyperbolic metric in our problem, a new
construction of a fundamental domain for a Fuchsian group.

The author sincerely thanks Professor Miodrag Mateljevi¢ for his kind invita-
tion to this volume. He thanks also colleagues and secretaries at the University of
Belgrad, in particular Professor Dragan Blagojevi¢, the Technical Editor, for their
kind help and patience during the preparation of this paper.

2. Embedding Theorem

We begin with the following theorem, which is another version of the result
stated and proved in [51] and [59].

THEOREM 1. Let Ry be a noncompact Riemann surface of finite genus g. Then
there is a compact Riemann surface R of genus g, a conformal mapping 1 : Ry — R,
and a nonconstant meromorphic function f on R such that

i) R~ 1(Ry) is a null set' (in the sense of Lebesgue),
i) f is holomorphic on R\ t(Rp), and
iii) Im f s constant on each component of R~ 1t(Ry).

The composed mapping fo := f ot is a meromorphic function on Ry which
shows a typical boundary behavior. That is, Im fy takes in a certain wider sense
a constant value on each ideal boundary component of Ry. It should be noted,

11t makes sense to say that a set on a Riemann surface is measurable and is a null set.
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however, that this description is not rigorous at all, since the ideal boundary of Ry
has only an abstract meaning and the function f; has not been defined on it. On
the other hand, the value of f on R \ +(Rgy) makes sense; in fact f is holomorphic
on R~ 1(Rp) and Im f is equal to a constant on each component in a strict sense.

—

The function fy can be regarded as a generalization of a complex potential
function (cf. [62]).2 This kind of functions or their differentials, on which our
proof ([51] and [59]) heavily depends, are defined on general noncompact Riemann
surfaces and studied in great detail around 1960 by L. V. Ahlfors [1], Y. Kusunoki
[20] and L. Sario [38] independently. Although different names — distinguished
differentials, canonical semiexact differentials, or principal functions — are used,
they share essential properties in common. They all have a finite Dirichlet integral
near the ideal boundary of Ry — outside a compact subset of Ry. In particular
the number of poles is in all cases finite. Roughly speaking, a canonical semiexact
differential is a meromorphic differential whose real part is distinguished, and a
(Q)L1-principal function is a singlevalued harmonic function (with singularities)
whose differential is the real part of a canonical semiexact differential. See also [40,
p. 41, Remark].

In our proof ([51] and [59]) we start with a nonconstant meromorphic function
fo such that dfy is a canonical semiexact differential and construct R and ¢. To
complete the proof new insight about the covering property of such functions is sub-
stantially required in addition to the deep results on dfy as an Abelian differential,
and indeed it is the generalized Riemann-Hurwitz relation g =1 —m+ V/2+ W/2
that plays an essential role in our proof (see [51]). In the above formula,

m := the number of poles of fj,
V := the total order of branch points in Ry, and

1
W := lim (—2— d argdfo - hn) )

n—oo v SR,

where (Rp)n=1,2,.. is an arbitrarily fixed canonical exhaustion (for the definition,
see [1]) of Ry, OR,, the (positively oriented) contour of R,, and h,, the number of
the boundary components of OR,,.> The key to the Riemann-Hurwitz relation is to
show that W represents the total order of branch points on the ideal boundary.

23ometimes referred to as a “complex velocity potential”. It is “Stromungsfunktion” observed
by F. Klein [17]. Cf. also [32] for hydrodynamical background.

3We can show that the number m is equal to the (maximal) number of sheets of the covering
f:Ro— ¢



220 SHIBA

The location of poles of the function fy can be rather arbitrarily prescribed.
Indeed, for any g+1 distinct points p1,ps,. .., pg+1 on Ry, we can find a nonconstant
meromorphic function fy such that

i) fo is holomorphic on Ry \ {p1,p2,---,Pg+1},
ii) fo has at worst a simple pole at each of p1,p2,...,pg41, and
iii) dfy is a canonical semiexact differential.

The condition that the prescribed points pi1,p2,...,pg+1 on Ry be distinct is not
essential. If some of them coincide, then the obtained function has a pole of higher
order at that point. The really important quantity here is the total order of the
function fy. For the existence of such a nonconstant meromorphic fy on Ry, see
[20] and [46], for example.

The surface R in the above theorem is not unique but there are in general
infinitely many distinct surfaces with the required properties, even if we fix fo on
Ry in advance. Nonuniqueness of R can be easily shown by using an example given
n [19]. See [59], where it is also shown that for a fixed Ry and a fixed fo on Ry
the compact surfaces R onto which fy extends Ry depend on W number of real
parameters.

The uniqueness of the meromorphic function fy on Ry with a required boundary
behavior and that of the compact Riemann surface R are often confused but they
are completely different notions — even if Ry is a finitely connected Riemann
surface. The same can be said in the case of a quadratic differential on Ry which
has a holomorphic extension onto a compact Riemann surface. Indeed, our theorem
easily yields

THEOREM 2. Let Ry be a noncompact Riemann surface of finite genus g. Then
there is a compact Riemann surface R of genus g, a conformal mapping ¢ : Ry — R,
and a meromorphic quadratic differential p on R such that

i) R~ u(Ry) is a null set,
ii) ¢ has at most 2g + 2 poles on R,
iii) ¢ is holomorphic on R~ 1(Ry), and
iv) each component of R~ t(Ro) is realized as a (possibly branched) trajectory
arc* of .

If there actually exists® a component of R~.t(Ry) which is realized as a branched
trajectory arc of ¢, there are infinitely many distinct® pairs (R, ) with the required
properties. Note that the pull-back g := ¢*(p) is the same for these distinct .

Compare the theorem with [4] and Chapter 13 of [5]. If a quadratic differential
has critical points on the ideal boundary — that is, if W > 0 — the surface R can
be constructed in infinitely many distinct ways. They determine distinct points in
the Teichmiilles space.

4For the definition and properties of trajectory arcs, see [63].

5This is to say that W > 0.

6The word “distinct” here means that any two of them are not mutually conformally
equivalent.
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To explain the situation more clearly we restrict ourselves for a while to finitely
connected Riemann surfaces. The reason for confusion is then a unnatural restric-
tion on the boundary. One often starts with the assumption that the boundary
is realized as analytic Jordan curves, but this is to say that the given surface is
from the outset embedded in a larger surface.” This is absurd when we consider
noncompact Riemann surfaces as independent objects. One can neither introduce
nor fix a particular conformal structure on the boundary. Otherwise, the Riemann
Mapping Theorem would lose its essence.® Consider, for example, the Joukowski
transformation z — z 4+ 1/z on the open unit disk.

If g = 0, then R is conformally equivalent to the Riemann sphere C. For
simplicity we assume that R = C. We can choose ¢ = dz2 with a suitable coordinate
z on R. There are no branch points on each trajectory arc, so that each component
of R\ «(Ryp) is a vertical segment which is traced exactly twice — go and back. We
can indeed show that the image domain «(Rg) in Theorem 1 is a so-called extremal
parallel slit domain. For the definition of an extremal slit domain, see [16] and [40].
This shows that Theorem 1 is a natural generalization of the classical uniformization
theorem due to Koebe (see [6], [8], [16], and [40]).

In case g > 0 our theorem gives a general and exact formulation of the results
due to Nehari [35], Kusunoki [20], Mori [34] and Mizumoto [33]. They are con-
cerned primarily with the range of functions and little with the covering properties.
As a consequence the notion of “slits” is very ambiguous, although Mizumoto [33]
implicitly pointed out the importance and difficulty of the problem.

Here are some typical questions: What is a “slit” in the first place? Is it the
resulting boundary component obtained by the removal of a “closed segment” or a
“closed arc” from a “surface”? If so, what kind of surface should be considered in
advance? What kind of segment or arc should be removed? How simple (or com-
plicated) can they be? How does the function fy behave near a slit — continuity,
holomorphy, injectivity, and so on? How about the behavior of fy on a slit?

Our approach to this set of questions consists of

(1) starting with a noncompact Riemann surface Ry of finite genus g and a
generalized complex potential function fy on it.

(2) constructing a compact Riemann surface R of genus g and a conformal
embedding ¢ : Ry = R,

(3) extending the function +*(fo) = foor™! on +(Ry) onto R as a meromorphic
function f on R,

(4) showing that f is holomorphic on R \ ¢(Rp) and is univalent on a neigh-
borhood of every — but a finite number of exceptional ones — connected
component of R \ t(Rp), and finally

"In other words, the interior of a compact bordered Riemann surface is not generic enough
in this context. The conformal structure of the border is fixed in advance.

8As is well known, even the continuity of a mapping function on the boundary is not
guaranteed.
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(5) verifying that df vanishes somewhere on each exceptional connected com-
ponent of R\ t(Rg), while Im f is constant on every connected component
of R~ t(Rp)-

In our argument the study of fo : Ry — Casa covering surface (not as a
complex-valued function) plays an essential role. See [51] for further details. We
note that a connected component of R ~ «(Rp) is a realization of a Kerékjarto-
Stoilow ideal boundary component of Ry.

3. Compact continuations of a Riemann surface of finite genus

According to the classical usage a Riemann surface R is a continuation® of Ry, if
Ry is a (proper) subregion of R. If R is compact, it is called a compact continuation.
See, e.g., [40]. In the present article we always assume that the genus g of Ry is
positive and finite!®, so that compact continuations play an important role. We
are particularly interested in compact continuations of the same genus, compact
Riemann surfaces which are continuations of Ry and are of genus g. In fact, one of
the central problems is to determine, for a fixed noncompact Riemann surface Ry,
the set of its compact continuations of the same genus.

For a more detailed study of compact continuations of the same genus, we have
to consider the homology groups. The definition and the argument below can be
applied to general g (> 0), but to simplify the notation and the statements we
confine ourselves to the simplest case g = 1. If this is the case, we can explicitly
describe the set of compact continuations of the same genus, which is another
advantage of our restriction.

Now, let Ry be a noncompact Riemann surface of genus one. For the abuse
of language, we sometimes call it a noncompact torus. Let {ag,bo} be a canonical
homology basis of Ry modulo dividing cycles.!! The pair (R, {ao,bo}) is referred
to as a homologically marked noncompact torus. For simplicity we often omit
“homologically”. Our terminology is just an extension of the following classical
usage: a compact Riemann surface of genus one is called a torus and a torus with
a canonical homology basis {a, b} is called a (homologically) marked torus.

We say that a triple (R, {a, b}, ) — a marked torus (R, {a, b}) together with a
conformal embedding ¢ : Ry = R — is a compact realization of a marked noncom-
pact torus (Ro, {ao,bo}), if t(ag) (resp. t(bo)) is homologous to a (resp. b).

LAt

(ROJ {aOJ bO}) h
! (RII’ {au’ bll})

Two compact realizations (R',{a’,b'},:") and (R",{a",b"},:") of a marked
noncompact torus (Rp, {ag,bo}) are said to be equivalent, if there is a (surjective)

9The terms “prolongation” and “extension” are also used.
10For the case of infinite genus, see e.g., [41], where the situation is quite different.
M For the precise definition of “dividing cycles” see [1].
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conformal mapping h : R' — R" such that h(a’) (resp. h(b')) is homologous to a”
(resp. b") and h o = ". Each equivalence class [R, {a,b},t] is called a compact
continuation of (Ry,{ag,bo}). We will use a simplified notation [R] instead of
[R,{a,b}, ] if there is no serious confusion. We denote by C(Ry, {aog,bo}) the set
of compact continuations of (Ry, {ag,bg}). Note that C(Ry, {ag,bo}) is considered
in the Torelli space.

To describe the set C(Ry, {ao, bp}) quantitatively, we make use of the moduli of
tori. To each compact continuation [R, {a, b}, ] of (Ro, {ag,bo}) we can associate a
complex number 7 with positive imaginary part. In fact, using a compact realization
(R, {a,b},t) which represents [R,{a,b},] and the holomorphic differential w on R
with [ w =1, we set'” 7 := [, w. As is easily verified, 7 does not depend on the
choice of a representative (R, {a,b},t). Hence we have the correspondence

C(Ro,{a0,bo}) > [R] = 7 = 7([R]) € H,

where H denotes the upper half plane {r € C | Im7 > 0}. We call 7([R]) the
modulus of [R] = [R, {a, b}, :]. We finally set

E):'R(ROJ {a07 bO}) = {T = T([R]) | [R] € C(ROJ {a07 bO})}
The following result is called the moduli disk theorem:

THEOREM 3. Suppose that a marked noncompact torus (Ro, {ao,bo}) is given.
Then, the following hold:

(1) M(Ro, {ao,bo}) is a nonempty closed disk in H, and it reduces to a single
point if and only if Ry € Oap.®

(2) To each boundary point T of M(Ry, {ag,bo}) there exists a unique [R, {a, b},
1] € C(Ro,{ao,bo}) with 7 = 7[R, {a,b},t]. Furthermore, R~ «(Ry) is a null set
consisting of horizontal trajectory arcs of —ie~®w?, where 6 = arg(r — 1) €
(—m, 7] with T the center of the disk 9M(Ry, {ao,bo}).

(3) To any interior point T of M(Ro,{ao,bo}) there are infinitely many dis-
tinct'* [R] € C(R,{ao,bo}) with T = 7([R]).

The differential w induces a natural metric on (R,{a,b}). We may and do
assume that a is a geodesic curve on (R, {a,b}) with respect to this metric. If 7 €
OM(Ro, {ao,bo}) and (R, {a,b},t) is the marked torus with 7 = 7[Ro, {ao, bo}, ¢],
then the marked noncompact torus (¢(Ryp), {a, b}) is a parallel slit torus; the bound-
ary components of Ry realized on R are linear segments which are geodesic par-
allel to each other. This property, together with the extremality of the associated
Abelian differential of the first kind, allows us to say that the compact continuation
[R] of (Ro,{ao,bo}) for 8 = —7/2 (resp. § = 7/2) is “an extremal geodesic horizon-
tal (resp. vertical) slit torus”. The embedding of Rg for any 7 € 89(Ro,{ao,bo})
thus yields a natural generalization of the classical results due to Koebe.

12This w is often referred to as a normal Abelian differential of the first kind.

13The statement “Rg € O ap” means that Rp carries no nonconstant analytic functions with
a finite Dirichlet integral. See [1] or [89], for example.

4 These continuations will be studied in the next section.
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Here are some historical remarks. The above theorem refines a theorem due
to M. Heins [9], who proved the boundedness of the principal moduli of tori. Qur
theorem gives another proof of H. Grétzsch [7].

For a proof of the preceding theorem see [52]. One of the key steps toward
the theorem is the construction of an Abelian differential of the first kind with a
special kind of periods and boundary behavior. This is achieved in [46] and [47].
Another key is the generalized Riemann-Hurwitz formula stated in the last section
(cf. [51]). Indeed, suppose that g = 1 and take a holomorphic differential . Then
n = 0, which yields V = W = 0, so that there are critical points of ¢? neither in R
nor on the boundary.

The above theorem gives a good explanation for the total energy and the bound-
ary behavior of an ideal fluid flow on a noncompact torus. See [52], [58], [15]. A
clear and intuitive account on the close relationship between complex analysis and
hydrodynamics can be found in [17], [18], and [62].

For higher genera we can similarly discuss with some necessary modification.
For example, the homology basis {ao,bo} of Ry (resp. {a,b} of R) should be re-
placed by {a(()l),a(()z), . .,a(()g);b(()l),b(()z), .. .,b(()g)} (resp. {aV),a® ... a@;p®) b2
...,b9}), and we consider conformal mapping f such that f (a(()k)) (resp. f (b(()k)))
is homologous to a(*) (resp. b(k)), k=1,2,...,9. The description of the set cor-
responding to M(Ro, {ag,bo}) is not completely known. As for partial results, see,
for example, [53], [54], and also [29].

4. Classical theory of univalent functions
and the theory of conformal embeddings

The readers will be easily aware of the affinity between the results in the last
section and those in the classical theory of univalent functions. In fact, it suffices
to recall the theorems of Koebe, de Possel, and Grotzsch. Cf. e.g., [8], [16] and
[40]. To state the classical results, let G be a plane domain and let ¢ (# o) be a
fixed point in G. Let F(G, () be the family of univalent meromorphic functions f
on G whose Laurent expansion about ( is

£ = s+ O+
and set R(G, () ={x € C| k = ks for some f € F(G,()}.

The theorem below gathers the classical results and is a prototype of Theorem
3.

THEOREM 4. (1) R(G, () is a nonempty closed disk in C. It reduces to a single
point if and only if G belongs to O ap.

(2) To each boundary point of R(G,() there corresponds a unique function in
F(G, (). Furthermore, if K(0) = kg + pe’, —m < 8 < ©, parametrizes OR(G, ()
and if f. ) is the element of R(G, () corresponding to k(6), then (OIN fr(o)(G) is a
plane null set which consists of parallel segments making an angle /2 with the real
azis.

The following result due to Grunsky is also remarkable:
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THEOREM 5. The area of C ~ F(G) assumes its mazimum in F(G,() for the
1
function fg = §(fn(0) + fr(m)) € F(G,Q) only. The function fg is expanded near
¢ as
1
fe(z) = <t k(2 —¢) +o(lz — ()
and the mazimum area is equal to TpE.

An analogous theorem for the conformal embeddings of a noncompact torus
into tori holds. To state it we recall the unique Abelian differential w of the first
kind on [R, {a,b},t] € C(Ro,{ao,bo}) with [ w =1 (see section 3). Let a([R]) =
a([R,{a,b},]) be the area of R \ t(Ry) measured by w:

ol[R]: //R\L(Ro)

We are now ready to generalize the Grunsky theorem to the case of genus one.

THEOREM 6. The area o([R]) assumes its mazimum in C(Roy,{ao,bo}) for a
unique conformal embedding. The embedding is associated with the arithmetic mean
of the holomorphic differentials on Ry which respectively determine the extremal
geodesic horizontal and the extremal geodesic vertical slit tori. The maximum area
is equal to pg/2.

The Grunsky theorem shows that the area of the complement of the image in
C is maximized at the euclidean center of the disk R(G, ). Similarly, our theorem
shows — just as its prototype due to Grunsky — shows that the area of the com-
plement of the image in the target torus!® is maximized at the euclidean center of
the moduli disk. The euclidean centers of the disks £(G, ) and 9M(Ro,{ao,bo})
thus play an important role.

On the other hand, we can regard the (euclidean) disk 9M(Ry, {ao,bo}) as a
disk with respect to the spherical metric on C. Since it lies entirely in H, we can
regard it also as a disk with respect to the hyperbolic metric on H. Hence, it
makes sense to ask what kind of role the center of the hyperbolic or spherical disk
%(Ro, {ao.bo}) plays.

To solve this problem we study the areal property of conformal embeddings in
further detail. For each [R] = [R, {a,b},t] € C(Ro,{a0,bo}) let A([R]) be the area
of R measured by w:

A(R]) = A(R {a,0},1) = | /R w A&,
Obviously A([R]) = Im7([R]) holds. We also set

S(R) = SR, {a, b}, 1) = 5

A([R]) = A([R, {a,b},1]) := %

15Recall that this is now variable!
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We consider the normalized conformal complete metrics

— __2dr] _ lar|
dsc :=|dr|, dsg:= T+ 72 il g

and dsg:

on C, C and H, respectively, where 7 stands for the complex coordinate. By
the normalization we mean that they are of constant curvature 0,+1, and —1
respectively.!®

We recall here that 7 and pg are respectively the euclidean center and radius
of M(Ry, {ao,bo}). Denote now by 7 and pm (resp. 75 and pg) the hyperbolic
(resp. spherical) center and radius of 9M(Ry, {ao, bo}). We call the radii pg, pg and
ps the euclidean, hyperbolic and spherical spans of (Ry, {ao, bo}), respectively. It
can be easily shown that the hyperbolic span does not depend on the choice of
{ao, bo}. Hence it is more intrinsic than the other spans; we can say that oy is the
hyperbolic span of R (without referring to any particular canonical homology basis
{ao, b} modulo dividing cycles). In any case, however, they vanish simultaneously.

We denote by du(-, -), dc(-, -) and di(-, -) the distance function induced by
dsw, dsc and dsg respectively. Furthermore we simplify the notation and set!”

ru(T) :=du(ta,7), rE(T) :=dc(TE,7) and rs(7):=da(7s,T).
Then we can describe the set M(Ry, {ag, bo}) in three ways as follows:
IM(Ro, {ao,bo}) = {r € H|ru(r) < pu}
={r € C|rp(r) < pr}
={r e C|rs(r) < ps}-

The interior of the closed disk 9M(R, {aq, bo}) is itself a hyperbolic space, so that
it carries its own normalized hyperbolic metric dsas := dson(R,{ao,50}) (of curvature
—1). As is well known it is explicitly given by

<
<

2
dsy = — ﬁEﬂ |d7|, rg =rp(T) = |17 — 18|
E~TE

For each point 7 € M(Ry, {ao,bo}) we consider
C‘F(R07 {a07 bO}) = {[R7 {a7 b}7 L] € C(R07 {0,0, bO}) | T[R, {a7 b}a L] = T},

the set of compact continuations of modulus 7.

The following result is a refinement!® of the preceding theorem.

THEOREM 7. Suppose that 7 € M(Ry, {ao, bo}) is given. Then, for any [R] €
C(Rg,{ao,bo}), the following three inequalities hold:

(1) a((R) < ¢

< .
dSM ‘r’

dSH

asu | dsg.
dSM ‘r7

(2) S(R]) < 3) A(R]D <

< .
dSM T

16The hyperbolic and spherical metrics are uniquely determined by this normalization of
curvature, while the euclidean is not. By convention dsc := |d7| is the normalized metric in the
case of zero curvature.

L71f there is no ambiguity we will drop even 7.

80ne can similarly give a refinement of Theorem 5. See [55].
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Equality holds either for none of (1), (2) and (3), or for all of them. The
latter case occurs for one and only one [R] € Cr(Ro,{ag,bo}).

We now set a, := supa([R]), S; := sup S([R]) and A, := sup A([R]) respec-
tively, where the supremum is taken over all [R] € C.(Rg,{ao,bo})}. Then we
have

2 2
PE —TE

2pE
B cosh? (pgr/2) — cosh®(rg /2) B tanh?(pgr/2) — tanh®(rg /2)
~ sinh(pn/2) cosh(pr/2)  tanh(pgy/2)- (1 —tanh®(rg/2))’
_ _tan’(ps/2) —tan’(rs/2) _ tan’(ps/2) —tan’(rs/2)

" tan(ps/2)- (1 +tan%(rs/2))  tan(ps/2) - (1 + tan®(rs/2))’

In particular, a, (resp. Sr or A;) is constant on each euclidean (resp. hyperbolic
or spherical) concentric circle.

By letting the Riemann surface Ry move continuously and by showing the
continuity of span as a function of Ry, we can prove the following theorem ([60],
[44] and [23]; cf. also [16]).

a; =

THEOREM 8. (1) The moduli disk 9(Ro,{ag,bo}) is exhausted by compact
continuations [R, {a, b}, t] such that R\ t(Ro) has a vanishing area.

(2) The range of o on Cr(Rg,{ag,bo}) is exactly the finite closed interval [0, ar],
and the range of S on Cr(Ro,{ao,bo}) is exactly the finite closed interval [0, S;].

5. Some related topics

In this section we mention some applications, related problems, and further
development.

A. Some new theorems in the theory of univalent functions. The re-
sults in the preceding sections suggest theorems for univalent functions on a plane
domain. Some of them are indeed new; for example, the estimate of the area of the
omitted set by a normalized conformal mapping refines classical results. The role
and meaning of the spherical center is not yet known completely, however.

To show another application, let G be a plane domain as before and fo (resp.
f1) be the normalized extremal horizontal (resp. vertical) mapping function of G.
It is well known (see, e.g., [8], [16]) that any convex combination of these functions
yields a univalent function. That is, ¢fo+(1—¢)f1 with 0 < ¢ < 1 is again univalent.
F. Maitani asked the following question in [21]: When is a complex combination
cofo+c1fi, co,c1 € C, a univalent function? He gave an answer to this problem for
a finitely connected G. We can use Theorem 4, for example, to deal with general
G (cf. [56]). Namely we have

THEOREM 9. Let G be a plane domain and ( € G be a fixed point. Let fo, f1 be
the normalized extremal horizontal (resp. vertical) mapping of G with the pole at .
Then, cofo + c1f1, co,c1 € C, is a univalent function if and only if Re(co/c1) 2 0.
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B. Rankine ovoid — another kind of continuation. The compact con-
tinuations with which we have been concerned realize the original noncompact
Riemann surface (R, {ao,bo}) as a dense subset of a compact Riemann surface
(R,{a,b}). Thereby the ideal boundary are realized as a set of stream lines of an
ideal liquid flow on Rg; in other words, the ideal boundary is supposed to be impen-
etrable for the flow. The complex potential function fyo:~! (Strémungsfunktion)
on t(Ry) can be holomorphically extended onto R \ ¢(Ry).

There is another kind of compact continuations, where R\ ((Rp) has an interior
point, and the extension of the complex potential function fo o +~! on t(Ry) onto
R is meromorphic (but not holomorphic*®) on R \ ¢(Ry). The hydrodynamical
phenomenon on the plane which describe this situation is known as a Rankine
ovoid (cf. [32]). Concerning the Rankine ovoids on a torus, see [14] and [15].

The Rankine ovoid for a torus can be also interpreted as a conformal sewing of
a slit torus and a slit Riemann sphere (crosswise along the slits). Our problem is
to study the change of modulus of the torus under the conformal sewing. This is a
rather algebraic problem and was studied in [10], [11] and [12].

C. Riemann surfaces of higher genera. It is natural to ask what happens
for Riemann surfaces of genus greater than one. Let Ry be a noncompact Riemann
surface of genus g > 1. If we fix a canonical homology basis xo of Ry modulo divid-
ing cycles, the definition of a compact continuation of (Ry, xo) is easily obtained.
Instead of the moduli set 9M(Ry, xo) we can consider the set of period matrices
of [R,x,t] € C(Ry,x0)- Although some partial results have been obtained (see,
for example, [53], [54], [44]; [26], [27], and [29], there still remain a number of
unsolved problems.

It is also of interest to consider analytic mappings of a Riemann surface of genus
(> 1) to a torus. For example, we can apply such observation to prove a classical
theorem of Hurwitz concerning the degeneration of a conformal automorphism of
a compact Riemann surface of genus > 1 and its generalizations. See [50].

D. Analytic continuation beyond the ideal boundary. A conformal em-
bedding of a Riemann surface into another yields a realization of the ideal boundary.
This is one of the significant features of the classical Riemann Mapping Theorem
and its generalizations. Analytic continuation of a meromorphic function, together
with the extension of conformal structure beyond the ideal boundary, deserves to
be studied in further detail. Indeed, this kind of problem is regarded as a natural
generalization of the classical theorem of Abel to noncompact surfaces. One of the
results in this direction is shown in [57], where the previous work ([42] and [45])
concerning the size of the realized ideal boundary plays an important role.

Algebraic theorems such as the Riemann-Roch theorem and Abel’s theorem
for noncompact Riemann surfaces are studied in detail around 1960. The key to
the generalizations is the uniqueness of an Abelian differential — e. g., a canonical
semiexact differential or a distinguished differential — with prescribed periods and
singularities. The analytic extension property of the meromorphic functions and

19Indeed, no holomorphic extension is possible by the maximum modulus principle.
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differentials on a noncompact surface, which we give in section 2, well explains why
the uniqueness is guaranteed on noncompact surfaces.

E. Hyperbolically maximal domains and fundamental domains for
a discontinuous group. Our theorems suggest an interesting property of the
quotient of conformal metrics. For example, from Theorem 7 we know that the
ratio of the hyperbolic metric on H to that on a (hyperbolic) disk D in H is constant
on each concentric circle of D (see [55]).2° This simple property itself was later
studied in [30] as a general theorem, which does not imply the results in [55],
however.

Along this line and also as a generalization of the Riemann Mapping Theorem,
we consider an extremal problem for simply connected domains on a Riemann
surface. Suppose that a Riemann surface R is conformally equivalent neither to C
nor to C, and p is a point of R. Let D be the class of simply connected domains D
on R which contains p. Our extremal problem is to minimize dsp at p, where dsp
denotes the hyperbolic metric on D with constant curvature —1.2! A hyperbolically
maximal domain is, by definition, the unique solution to this kind of extremal
problem (for some p). It has a number of interesting properties; for example, a
hyperbolically maximal domain has a characteristic geometric structure described
in terms of the closed horizontal trajectories of a certain quadratic differential on
R. This will be discussed in a forthcoming joint paper with Masumoto.??

We furthermore observe a similar problem under the properly discontinuous
action of a conformal automorphism group I" of R. We assume now that v(D)ND =
(0 holds for any D € D and for any nontrivial v € I'. This assumption necessarily
requires that p is not fixed by any nontrivial element v € T". A hyperbolically
maximal domain is defined as above. It turns out that a hyperbolically maximal
domain for T is a locally finite fundamental domain for I". In a special case where
R is the open unit disk and I' is a Fuchsian group, we obtain a new type of a
fundamental domain, which is neither of Dirichlet nor of Ford. See [31] for further
details.
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