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MOBIUS TRANSFORMATIONS
AND MULTIPLICATIVE REPRESENTATIONS
FOR SPHERICAL POTENTIALS

F.G. Avkhadiev

ABSTRACT. For the unit spheres S» C R?*! and $2"~! C R?” = C” we

prove the following identities for two classical potentials
1 T,
/ o) - FTne () 4
sn |z —y|mte L= z?|> Jsn |z —y[mme

/ F({)doe 1 / F(®n,z(¢))do¢

s=1 [1=(z, Q)P (1= [2[2)* Js2n—1 [1 = (2,() "~

where £ € R**! (|z| # 0 and |z| # 1), z € C” (|z| < 1), Th,o and &, , are

explicit involutions of S™ and S2"—1 respectively. Some applications of these

formulas are also considered.

Y
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1. Introduction

The aim of this paper is to present a new approach to study boundary behavior
of classical potentials using M&bius transformations in two and several dimensions.
We consider two spherical potentials in the spaces R®*! and C" for n > 1.
The first one is the Riesz potential
[y
1) Paotenf) = [ LY do

gn |z —ylrte Y

of the sphere S™ = {y € R"*! : |[y| = 1} in R"*! for |z| # 1, and the second is the
complex potential

@) QnalerF) = | F(¢)

§2n—1 |1 - (z,C)|n+a
of the sphere S?"~! = {¢ € C" : |[¢| = 1} in C" for |z| < 1. In (1) and (2) do,
and do¢ denote the differential elements of surface area of the spheres S™ C R"*!
and $2"~1 C R?", respectively, and (z,() = 21(; + 22(5 + - + 2,(,, is the scalar
product in C™.
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It is very well known that the classical methods use some special additive
representations of (1) and (2) to study their boundary behavior (see, for instance,
[1], [3], [5], [6]). We will give new formulas to find the singularities of spherical
potentials in the case, when « is a complex number such that Rea > 0.

Namely, for (1) and (2) we obtain multiplicative representations which explic-
itly give the principal singularities of these potentials near the spheres S™ and
S2n—1 respectively. Moreover, we apply the multiplicative representations to find
sharp estimates for the functions

11— |2/ Pua(z, f) and |1 —[2]’|"Qua(z, F)

when 8 > Rea and the densities f and F' belong to L9 with ¢ > 1. We also show
that the multiplicative representations may be used to prove Fatou type theorems.

The paper is organized as follows. In Section 2 the Riesz potential P, , is
considered. In Section 3 we study the complex potential (2) in some details. It is
clear that Py o(z, f) = Q1,0(2, F) for f = F and ¢ := (21, 22), 2 := (21 + iz2), but
Qn,a(z, F) does not reduce to Pop_1,4(2, f) for n > 2.

2. Riesz spherical potentials

We intend to transform integral (1) by a change of variables using Mdobius
transformations. Consider first the trivial case n = 0. We can take S° = {-1,1}

e f(=1) f()
Poq = RSO
0, (waf) |.CL'+1|a |$_1|a’ T € \Sa
for any function f : S® — C. If Ty : S° — SO is involute, i.e., To(1) = —1,
To(—1) = 1, then the following identity
|z — 1*f(=1) + [z + 1|*f(1) 1
P [e% ) = == P —a 5 T
0, (.’L' f) |1_$2|a |1_$2|a 0, (.fL' fO 0)

is valid in R ~\. S°. Surprisingly, this elementary formula has a direct extension to
the case n > 1.

For n > 1 and every fixed z € R\ ", |z| # 0, we will consider the following
Mébius transformations of R?+!

2
— 1 (y —
g+ LD 2 7) ; )iyz 2 if || > 1,
3 Tnz(y) = 9
@) W e G20/l o
WP T —o/RPP

For fixed z the transformation 17, ; is a conformal automorphism of the unit ball
Bpi1 := {y € R"! : |y| < 1} (see [1]) and the restriction T}, , | S™ presents the
standard inversion of 5™ about the sphere S? ! = {y € S": |y—z| = /|1 — [z[?|}.

THEOREM 1. Suppose that n > 1 and f € L'(S™). For any o € C and for all
z € RS, |z| #0, the following identity is valid

() /S @) 4 1 / f(Tne(y)) do,

n |z —ylrte Y L=zl S @ —ylnoe
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PROOF. Let z € R"T1\ S, |z| # 0. To simplify computations it is convenient
to use a new orthonormed basis (ej,es,...,e,11) obtained by a rotation of R™+!
about the origine and such that z = |z|e;.

Suppose that

n+1 n+1
y= Z yrer and  u=T,,(y) = Z U€k-
k=1 k=1

Straightforward computations using (3) give

_ 20l = (A [zP)y

5 =T . =
( ) U 1, \(yl) 1+ |.Z'|2 — 2|m|y1
and
11—z i
6 —_ e - L, 2<k<n+1,

in both cases: |z] > 1 or 0 < |z| < 1. To deduce the second equalities for uy in (6)
we used the following consequence of (5):

2 _ 1 —|z*)? 2
" P a2l

Moreover, equality (5) implies that y; = T |5 (u1), hence

1—lx 2)2

(8) 1oy = L)
(1+ [ = 2Jz|ur)

Using (5) and (6) we also obtain that u = T}, ;(y) € S" forany y € S™ and T}, , | S™
is an involution of S™.
From (7) and (8) it follows that

L+ |2* = 2lzly) (1 + |2]* — 2laur) = (1 - [*)*

which is equivalent to the equality

5 (1 —u?).

for any y € S™ and u = Tp, 5 (y).
Thus,
f(w) - N
1 a0y = e Tz —y|""*I(y)d .
(10) /n |z — u|rte g 11— |z[2|nte Jgn F(Tnz(y)lz -yl (y)doy

where I(y) = doy/doy (v = T, ;(y)) is the Jacobian of the map T, ,|S™. To
compute I(y) we consider a diffeomorphism K : B, ;1 — B, defined by

(K |5")(€) = (Tno| S*)(E) for &€ S™

and
n+1

v=K() = kaek for €] <1,

k=1
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where

2
1— i

(11) v =Ty 4(61), v = ﬁﬁk for 2<k<n+1.
- 61

For any £ € S™ and v = K (£) one has

1] Ay, 1- ¢ Ay,
Iy) =1 det ( =— det [ = .
) gl—rfgl/ 1—|v| ¢ (8,5]- )1<j,kgn+1 sy 1—|vl? ¢ <8§j )1gj,ksn+1
lgl<1 |gl<1
Since
Oy 1—v?  Ouy 1—0?
=1 1 g k>2
o6~ T1-g e \1-g V7
and 5
UV .
— =0 for k>1 d k
BEj or P and ) > K,
we have Lon/2
L= €2 [1—0}\"
I(y) = lim |€|2 ( “;) .
eoy 1— v \1-§
l€l<1
From (11) it follows that
1—2
1—[of? = 22 (1 - [¢f2).
1-¢
Using this and the formula (8) for v =T, ,(y) = K(y) € S™ we obtain
11— |z
12 Iy) = +———— S,

Formulas (10) and (12) imply (4). Thus, the proof of Theorem 1 is complete. O
COROLLARY 1.1. Let F € L1(S™), ¢ > 1. If 3 = Rea +n/q > 0 then for any
Il Flle=1

fized z € R S™
doy 1/t
B (/s E —yl""’t> ’
where t = (¢ —1)/¢ < 1 and

[ M-k,
= ([ If(y)lqddy)l/q-

(13) sup
|z — gyt Y
PROOF. According to Holder’s inequality

1/t
(14) P [Paa(e f)] = Py (e 1),
Applying Theorem 1 we obtain
1
(15) Pppi(z,1) = an,—,@t(x7 1).

Equalities (14) and (15) imply (13). O
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By virtue of well-known properties of Riesz potentials the integral P, _g(z,1)
depends on |z| only and has three critical points that are |z| = 0, || = 1 and
|z| = oco. Compare P, _p:(0,1), Pp _p:(1,1) and P, _p¢(c0,1) one may compute
its maximum and minimum for 0 < |z| < 1 or 1 < |z| < co. In particular, if n > 2,
0<n—pFt<n—1,then P, _p/(0,1) > max{P, _p(1,1), P, _pgt(c0,1)}.

Consequently, (13) implies the sharp estimate
(16) 11— |2’ |Paa(e, /)] < on/*lflle Vo € RN ST,

op(n+1)/2
I((n+1)/2)
occurs for |z| = 0 and f(y) = const.

Using classical methods for Poisson’s integrals (see, for instance, [1]) one may

prove the following Fatou’s theorem for P, o(z, f) in the case Rea > 0 and f €
L(S™) : for almost all £ € S™

where o, = is “the surface area” of S™ in R"*!. Equality in (16)

['(a/2)

7F((a+n)/2)f(£’)

(17) lim [l |2*|* Pp,a(=, f) = 207"/
Tr—>
lo—&|<M(1—|z|)
where M is a positive constant.
In the next Corollary 1.2 we examine (17) for a particular case when (17) is a

simple consequence of Theorem 1 and a property of T}, ,.

COROLLARY 1.2. If Rea > 0, f € L>™(S™) and f is continuons at the point
& € 8", then

. I'a/2)
1 1— 2aPna — 9a n/2__ ~\*/4) .
|]#1
PRrROOF. According to Theorem 1 we have to prove that
: f(Tn2(y)) / doy ['(a/2)
lim g, = = ,
L A A T (T
which is equivalent to
T -
Ao = [ L (;z(y;fn_f@)dgy 50 asz—é, |7| £ L
gn —

Since Holder’s inequality on can write

.01 < 0 ([ 15Tnato) - @10, )

where C is a constant.
From (3) it follows that
lim T, .(y) =&, VyeS™~{¢}.
z—E€
||#1
Consequently, f(Tnz(y)) = f(€) as z — &, |z| # 1 for any y € S™ \ {{} and
|foTns— fE| — 0asz — & || # 1 by Lebesgue’s theorem on the majorized
convergence. This completes the proof of Corollary 1.2. O
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The function P; 4(r,1) is used in many problems related to the spaces of func-
tions analytic in the unit disk. We add to known results (see [2], [4]) the following
assertion. We will need the beta function

B(} g) _ Val(a/2)
272 F((a+1)/2)
COROLLARY 1.3. If0<r<1,a >0 and a # 1 then

2r /2” do 2°B(1/2,a/2)
A —r2)> = J, |1 —reib[ite (I—r2)a

Equality in the left-hand side inequality occurs if and only if r = 0. The right-hand
side inequality is sharp asymptotically as r — 1 — 0.

ProOF. By Theorem 1

/2“ dé 1 /2" dé
o |1 —reif|it+a (1 =7r2)e Jy |1 —reif|l-a’

According to Hardy’s theorem Py _,(., 1) is an increasing function in [0,1) if & # 1.
Consequently, for any r € (0,1), « >0 and a # 1

(1=7%)*Pyo(r,1) > P1_4(0,1) = 2m,
(1=1)2Pa(r1) < lim (1=1?)*Pia(r,1) = Pi_a(1,1) = 2°B(1/2,a/2).

Two last formulas complete the proof of Corollary 1.3. O

3. The potential of $?* ! in C"

Let B be the unit ball {¢ € C™ : [¢| < 1}, 0B = §?" 1. For fixed z € B\ {0}
we consider the biholomorphic map ®,, . of B onto B defined as follows (see [5]):

z—p=(¢) — V1 —|2]2(( = p=(9))
1- (Caz)

(I)n,z(C) = ) |C| <1,

where .
p:(¢) = W(Caz)-

It is known (see [5]) that .

(i) ®y,. is an involution, i.e., @, (P, .(¢)) = ¢ for any ¢ € B;

(ii) ®,,, satisfies the conditions

(I)n,z(z) = 07 @n,Z(z/|z|) = —Z/|Z|,
®,.(¢) €S>t and @,.(¢) #¢ forany (e S
(iii) @, |S* 1 §27~1 - §27~1 ig a diffeomorphism;

(iv) there is the identity

1- ((ﬁn,z (C)a (I’",Z (w)) = ((11__(|C'Z|z;)(21_—(§z’wﬂ)1;) '

For Qn,o(z, F) we have the following analog of Theorem 1. Note that the
assertion of Theorem 2 is known in the case a = n (see [5, Chapter 1]).
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THEOREM 2. Suppose that a € C, F € L'(S?"1). For any z € B \ {0} the
following identity is valid:

F(Q)do: 1 F(®n,:(¢))do
-, C Joe TG

an-t 1= (2, Qe (1 [2]?)e
where S?"~1 = 9B ={¢C e C": [¢| =1}.
PROOF. Let z € B \ {0}. Taking w = &,, .(¢), ¢ € S !, we have
F(w)daw F((I)n Z(O)I(C)dUC
19 _— = : .
1 Joes T ™ Jo = ot
From the properties (i), (ii) and (iv) we have ( = &, .(w) and
1 =121 = (¢ w))
1-— =
)= G- w)
Consequently, for any ¢ € $2" 1 and w = @, .(¢)
(20) 11— (z,w)| |1 = (2, =1 |2
According to Theorem 3.3.8 in [5] the Jacobian
doy, (1—z]*)"
21 I{()=—=—"—""+.
2y = d; TGP

From (19), (20) and (21) we have (18) immediately. The proof of Theorem 2 is
complete. 0

(G w) #1.

In [5, Proposition 1.4.10], for —# ¢ N it is proved that

_ _onal() Tkt (n+a)/2) o
(22) el D)= o 0)2) 2 T DG+

and that
(23) Qna(z,1)~ (1= [2*)"* for a>0.

It is to note that
/ d 2"
O2p—1 = O = ———
n—1 §2n—1 ¢ F(’I’L)

is “the surface area” of $?"~1 in R?", and in [5] the normalized measure

do(¢) = do¢/o2n—1

is considered. Hence, Qn,a(2,1)/02n—1 is I.(z) from [5, Chapter 1], with ¢ = a.
Using Theorem 2 and the series (22) we get a refined version of (23).

COROLLARY 2.1. Ifa >0, z € B,, and F € L>(5*"1) then
/ F(Qdo¢ | . 2m"T(a) [I£'lloo
sen-1 [L= (2, Q)| | = T2((n +a)/2) (1= [2]*)*”

where ||F||oo = sup{|F(¢)| : ¢ € §*™'}. If F({) = const. # 0 then the inequality
is asymptotically sharp as |z| = 1 —0.

(24)
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PRrROOF. Using Theorem 2 and the series (22) one has
(25) | sup  |Qn,a(2, F)|(1 = [2[)* = Qn,—a(l2],1)

o=1
n—oa n—ao
— . 2
—UZn—lF( 2 ) 2 ,TL,|Z| )7

where F(a,b;c;|z|?) is the hypergeometric function.

Since ¢ — a — b = a > 0, we have by Gauss’ formula
T(c)T(c—a—0b)
T(c—a)T(c—b)

Taking c=mn, a = b= (n — a)/2 and letting |z|] = 1 — 0 we obtain
2"T ()
26 na(l,l)= = —-2—
29 el D= M a)/2)
(see another proof of (26) in [5, Theorem 4.2.7]).
The equalities (25), (26) and the following consequence of (22)

@n,—a(lz,1) < lim Qn—allz],1) = Qn,—a(l,1)
|z|—=1-0

F(a,b;c;1) =

imply (24) and the asymptotic equality

: 27" ()
lim (1 —|212)%Qpalz,1) = =2
\Z}I—I:l( [2)*@n.al(2,1) 2((n+ a)/2)
These complete the proof of Corollary 2.1. O
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