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ABSTRACT. Let w(n) denote the number of distinct prime factors of the posi-
tive integer n. We study the cardinality of the set {n <z : [wn) | n}, where
l > 2 is any arbitrary positive integer which is sufficiently small with respect
to .

1. Introduction

Let n be a positive integer, let d(n) denote the number of positive divisors of
n, and for an integer [ > 2 we define, by iteration, the [-fold divisor function of n
as

di(n) = Z d—1)(m),

m|n

which has an equivalent definition as the coefficient of the Dirichlet series ({(s))".
Let w(n) denote the distinct prime divisors of n. For all positive real numbers z
and all positive integers [, write D;(z) = {n < z : di(n) | n}. For any finite set A we
write # A for its cardinality. For a positive real number x and any positive integer k
we write log,, « for the recursively defined function log, = := max{log log(;—1) 7, 1},
where log z stands for the natural logarithm of . We also use the Vinogradov
symbols > and < as well as the Landau symbols O and o with their regular
meaning. We define

7Tl($,y) :#{n< IZW(H) =Y ,u(n) # 0, (nvl) = 1}:
m(z,y) =m(z,y) =#{n<z:wn) =y, un)#0}.

In [12], C. Spiro developed some ingenious sieve ideas to establish the following
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90 LICA AND SANKARANARAYANAN

THEOREM A. Ifl > 2 is a fized integer, then we have

e e —— U PP
(log x)

One of the important tools in establishing the above theorem is an asymptotic
formula due to her [11] for the function m(z,y) for certain ranges of y and [
versus . We point out that without the dependence on the number [, the function
m(x,y), as well as its companion function I(z,y) = #{n < x :w(n) =y}, have
been intensively studied. In fact, asymptotic formulae for both 7(z,y) and I1(z, y)
which are even uniform in the parameter y are known for most part of the allowed
range of y versus z. Such formulae are due Sathe [8, Chap. 9] for y < (2—¢)log, z,
Selberg [9, Theorem 4] for y < Alog, x with any fixed positive constant A, Hensley
[4] for Alogyz < y < (logy )>7¢, and Pomerance [7] for (log, z)? < y. A lower

bound on 7(z,y) when log,z < y < 2{;0155 z
. 2

Norton. In this connection, we also refer the reader to the paper [5] of Hildebrand
and Tenenbaum for good error terms in some of these ranges.

Another highly interesting related problem of this kind is the estimation of the
number of positive integers n such that nd(n) < z. More generally, let x> 0, and
let g(n) be a multiplicative function such that (i) g(p) = 1/ holds for all primes p,
(ii) g(n) > 0, and (iii) g(n) > n~'/'6. Then, Balasubramanian and Ramachandra
(see Theorem 1 of [1]) proved:

can be found in the paper [6] by

THEOREM B. There ezist a constant C depending on p so that the following
asymptotic formula holds:

Z 1=Cz(logz)" '+ 0, (x exp(—C (log 2)*/° (log, m)’l/‘:’) )

ng(n)<w

In this connection, we also refer the reader to the paper [2] of Bateman.

Let [ > 2 be any arbitrary integer. It is clear that [“(™ is a multiplicative
function. We define Dj(z) = {n < x : [“™) | n}. It is not difficult to see that the
inequality

(L1) (1 +1)*™ < dy(n),

holds for all positive integers n and [, and equality in (1.1) is achieved precisely
when n is squarefree, and independently of [.
Our main result in this paper is the following:

MAIN THEOREM. For large values of x, and uniformly in the positive integer
I satisfying lw?(1) = o(logs x) the following estimates hold:
x x

SO (g1 < #PI) < G iog =it

Nice features of our Main Theorem are the facts that the upper and lower
bounds on D/ (z) are the same up to the multiplicative constants implied by > and
< which are absolute, and very explicit in [, as well as the fact that such bounds
are uniform in I, at least when lw?(l) is bounded above by some function which
is o(logy x). In fact, using the fact that w(l) = O(logl/logy1), it follows that our




THE DISTRIBUTION OF INTEGERS n DIVISIBLE BY [#(™) 91

Main Theorem applies to all positive integers [ satisfying I = o(log, logi x/ log§ x).
Moreover, the combination of Theorem A, our Main Theorem, and inequality (1.1)
point out the following fact. First of all, as we have said, (1.1) is actually an
equality when n is squarefree. In particular, the two functions d;(n) and (14 1)~
coincide on the set of squarefree positive integers, which has asymptotic density
6/m2. However, Theorem A combined with our Main Theorem, show that if [ > 1
is fixed, then there are “more” numbers n so that d;(n) | n, than numbers n so
that (14 1)“ | n. Of course, this is not quite unexpected if one notices that for
large « most of the numbers n belonging to either D;(z) or Df(z) are quite far
away from being squarefree, so the fact that these two functions coincide on all
squarefree integers is of little relevance for such problems.

2. Notation and Preliminary Results

Throughout this paper, we use Ay, Ag,...,B1,Bs,...,(C1,Cs, ... to denote ef-
fectively computable constants, which might depend on [. For a real number z we
use |z| and {z} for the integer part and fractional part of z, respectively. We start
with some lemmas. For the first lemma, we refer the reader either to Lemma 3
of [10], or to Theorem 2 of [11].

LeEMMA 2.1. Let B1, B2, Bs > 0 be fized. Suppose that x > 3, and assume
that y and | are positive integers with y < Bilogyz, | < exp ((log x)Bz), and
Q) =TIp < (logx)Ps. Then,

pll
oo = 5 () - omn ()
where
F(z):ﬁgO%il)(l—%)z’ Fz(z):l}(urj—))l.

LEMMA 2.2. For 0 < z < (1.4)72, we have

e e T )

PROOF. We first observe that when z > 0, we have

oo 1 o) oo
y* y* y* 1 1
2.1 I 1) = dy = Z—d —d —d —.
(2.1) (z+1) /Oeyl/ /oeyy+/1 o y>/1 >

Moreover, using the fact that the inequality 1 + z < e* holds for all non-zero real
numbers z, we get that for 0 < z < (1.4) 2 we have
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(2.2) log(l}(l-i-pil)(l—]—l))z)
= g(log(l + ]ﬁ) +Zlog(1—§>) < Z(ﬁ‘%) < ;p(pzl)

<fisliy (1+1+1)< Lo s
zl =+ = — ) =z(=+=+- - — < 0.5.
2 6 n(n —1) 2 6 4 (1.4)2 12

n=>5

The combination of (2.1) and (2.2) takes care of the upper bound. For the lower
bound, write A := (1.4)71. Tt is easy to check that both inequalities

log(14+2) > Xz and log(l—z)> —z/A,

hold when z € (0,A?). Thus, for our range of z we have

log(g(upj D0-3)) =3 (os(1+ ;) +oos(1- 7))
XG5 =S ) G ) e

which together with the fact that I'(z + 1) < I'(2) = 1 takes care of the lower
bound. (]

LEMMA 2.3. Letl > 2 be a positive integer, and let 0 < z < 3/(2l). Then,

RE=TI0+3) "> 1

pll p

ProOOF. The claimed inequality can be trivially checked when [ = 2. When
[ > 3, we have

O Il+1) 20
2. n<Y j= <5
(23) UEPVEES 2o

where o(l) denotes the sum of the divisors of [. Using again the inequality 1+2z < e*
which holds for all non-zero real numbers z, we find that in our range for z we have

H<1 n ;) = exp(pzlllog(l + ;)) < exp(Z %)

pll p|l
B 1 zo(1) 3o(l)
= exp (Z; 1_7) < eXp(T) < exp(W) <e,

with the last inequality above following from (2.3). O
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3. Proof of the main theorem

We assume that [ > 1, for otherwise there is nothing to prove. We write L for
the set of all positive integers whose prime factors are among the prime factors of
[. We start with the upper bound.

Observe that n € Dy (z) if and only if n = 14" sm, where s € L, m is coprime
to [, and w(n) = w(m) + w(l). Let y > 0 be a fixed non-negative integer, s be a
fixed positive integer in L, and let us count how many n € Dj(z) are of the form
n = 1“0 sm, where w(m) = y, with these fixed values of y and s.

When m < 2'/2, then m can be chosen in at most x1/2 ways, while [“(s can
be chosen in < (log J;)"’(l) ways, and all these ways account for all possible values
of s € L as well. Thus, the number of such numbers n for which m < z/2 is

< 2'?(log x)*® = o(z/(logx)*/?) = o(z/(log x)* /"), because w(l) = o(logl) =
O(log, ).

Assume now that m > /2. In particular, y > 1. With the fixed y and s,
since m < x/(sl*) = z/(s1W*v), it follows, by an inequality of Hardy and
Ramanujan [3], that the number of such m is
T 1 (logy (x/s1*™) + C'Q)Zﬁ1

sleO+y  log (z/slwm) . (y—1)! ’

where C, C; are absolute constants which are effectively computable. Since we are
counting only the instance x/(sl“(™) > m > x'/2, it follows that the number of
such numbers is

<Cr-

1 (logy(z) +Cp)" "
slvO+y logx (y —1)!
Summing up over all the values of s, and keeping in mind that

s=> - 5) -G - 5

seL pll “a=0 pll

<20 -

we get the number of such n’s in D} (x) for which w(n) =y + w(l) is fixed is

<20 -

T 1 (lome—i—Cg)y*l
o(D)eOlogz (y—1)! l ’
Summing up over all y > 1, we get

. 2Cx logy () + Cy
R o2\ @ —4
#Dl (QE) X le(l)lw(l) IOgﬂ? exp( i

which finishes the proof of the upper bound.

For the lower bound, we let 0 < A; < 1 to be a constant depending on [
to be fixed later, and let = be a large positive real number. We look at the
numbers n € Dj(z) with w(n) = |Ajlog, x| + t, where ¢ is an integer in the
interval [0, (A;log, 7)'/?], with Ay a positive constant depending of [ to be fixed
later as well. In fact, as it will turn out, the optimal choices for A; and Ay are
A1 = Ay = 1/1, and we shall use these choices for our estimates. Let us fix a value
of the integer ¢, write k := | A;log, x| + ¢, and let us find a lower bound on the

x
(0 (log )1

) < 20,6

)
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number of numbers n € D} (x) having w(n) = k. It is clear that all the numbers
of the form n := [*sm, where s € L, s < (%, where u = ["!logyz, m <y = x/sl",
m is squarefree and coprime to I, and w(m) = k — w(l) are all numbers in Dj (),
and different choices of triples (k, s, m) satisfying the above conditions will give rise
to different n’s in D/ (z). With k and s fixed, write w := k — w(l). Since both
inequalities

(3.1) logy =logx — klogl —logs
> logz — (A1 log, = + (A3 log, m)l/Q) logl — ulogl

> logz — B2 vlosl_ logyzlogl logz(1 - M),
! ! llogx
and
1 log
(3.2) log, y = log(logz — klogl) > log, = + log(l _ M)
llogz
4log, wlogl 4logl
1 el (1 _ )’
> logy @ log 2 0go T Tog e

hold for large values of z and uniformly for [ = o(log, ) because of our choice of
the number £, it follows that

(3.3) w=k—w(l) < Ajlogyx + (Aylogy 2)*/% — w(l)

= A;log, m(l + (loglg I)1/2 lw(l)

o) = Arlomay(1 -+ (1),

where the above estimates hold, by (3.2), for large values of # and uniformly in [
such that lw(l) = o(log, z). By (3.3), it follows that in order to estimate m;(y, w)
we may use Lemma 2.1 with the choices Bo = B3z = 1, and B; any constant strictly
larger than A;. Since A; = 71 < 271 < (1.4)72, it follows that we may choose
Bi = min{(1.4)72,31/2}, and now Lemmas 2.1, 2.2, and 2.3 show that in our range
of parameters we have

s v (ogy)

logy (w—1)!

(3.4) m(y, w)

where the constant implied by the above > can be taken to be any constant strictly
smaller than e~2 provided that x is large. Using our previous estimates (3.1) and
(3.3) together with Stirling’s formula in (3.4), we get

x 1 elog, y\w—1
3.5 . .
(3:5) W) > e @) (w1 ( w—1 )
x elogy y \ w1
SPTEORYE log z(logy 2:)1/2 (l(w — 1)) '

Let C3 = 1/1¢W+1/2, Using now (3.2) in (3.5), we get that
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T

Cs elog, log v
—_— 2
m(y, w) > s logz(log, x)1/2 I(w— (llog:v)))

>>% logar;(lo:lngx)l/2 (l?zljgff)w 1 exp( (Zizggj))
(1)
|

Cs x elog, x \w-1 logllogy x
> “log z(logy 2)1/2 " \I(w — 1) ( ( 1?log ))
Cy T elogy )w 1e
— 8. X
s logx(logyz)t/2 \l(w—1) p(o
Cs x elogy, x \ w1
3.6 =2 ( )
(36) >3 log z(logy 2)/2  \l(w — 1)

Let z = A logy x + . Then
w—1=k—w(l)—1=|A1logsz| +t—w(l)—1=12—Cy,

where Cy := w(l)+1+{A; log, 2} is a real number in the interval [w(l)+1,w(l)+2].
Thus, (3.6) implies that

Cs x elog, )71)71
Ty, w) > s logz(log, x)1/2 (lz —1Cy

:%.loga:(lomggac)l/2 <613i2x(1+c +O(C4>>> 7

(3.7) _ G5 T (elogZ:z;)w*leXp((w— 1)Cy +O(wCZ)).

s logz(logyx)1/2\ Iz z 22

Clearly,

W w . Ca\ lw(l)\

z w+Ci—1 1+O( )_l+0<log2x)_l+0(l)'
Thus

(w — 1)04 U)CZ - (Z — 04)04 CZ
z + O( 22 ) B z + O<7)
_ Ciy lw(l)®\

(3.8) _c4+0(7) _c4+0(10g2m) = Oy +o(1),

where the last estimate in (3.8) above holds because lw?(l) = o(log, ). Putting
(3.8) in (3.7), we get

Czev) T elog, x\w—1
iy, w) > s loga(log, )1/? ( lz ) '
Thus,
Czev® x elogy,z\* relogyxy—Ca
(39) iy, w) > s log 2:(log, 2:)1/2 Iz lz
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= iwrey = (ro(G)) = (o)

while by (3.3) we know that

lolgiuix =1+ O((logl2 m)l/Q) + O(lloc;il?r)
Thus,

oy e (a0 (L)

Putting (3.10) into (3.9), we get that

> (B o o+ (42)))

s logz(log, z)1/2 lz log, log,
Cs T elog, x)z
Z8 . 1
> 5 log z(logy 2)1/2 ( lz exp(o(1))

Cs T elogy x\*
3.11 — ( ) )
(3:-11) > log z(log, )1/2 lz

with the last estimates in (3.11) above following again from the fact that lw?(l) =
o(logy z). Thus,

Cs x elog,
3.12 — 1 .
(3.12) My w) > e e (sl

We now look at the expression appearing inside the exponential in (3.12). This is

zlog(el(;glgx> = (Aqlogyz +1) (1 B log(llogz I))

(3.13) = log, x(Al + loth ac) (1 - log(lAl (1 + Aﬂf)m)))

Since t < (A log, x)'/2, it follows that

¢ I N\1/2
< =o(1),
Ajlogy (log2 a:) o(1)
and so (3.13) is

zlog(eloj2 x) = log, a:(Al + logi T) (1 —log(lA1) — log<l + A log.z lzgg T))
= log, a:(Al + loth x) (1 —log(lAy) — Al%w

t3 Grs) +((Gmas)))

Ay (1 log(LAy)) logy & log(IAy)t— —— - & +0( v )
e — Xr— - = " :
1 gllAr &2 gllas 24, logy A2 logg -
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It is now obvious why we want to choose A; = 1/I. Indeed, with [ fixed, in order
to get the optimal lower bound on m;(y,w) by our process, we want to choose
A so that the expression A; (1 —log(lA;)) is as large as possible. Treating this
expression as a function of A; with [ fixed and computing its derivative, we find
that the maximum is achieved precisely when 4; = 1/1. So,

elogQ:c) _logyx 1 12 < 312 )

3.14 log( = - .
(3:14) SRR l 24; logyw log3

Since t < (Azlogy 2)'/? with Ay = 1/1, we get that the error term in (3.14) is

372 1/2
(i) = (2) ) =0

elog2x) _logyz 1 t2 log,z 1A,

— 1) > 2828 12 ),
2l T T34, Toga TOW =T y Tl

and the above inequality (3.15) holds for all our choices of ¢ and s. Thus, indepen-
dently on t and s, we have

Thus,

(3.15) zlog(

_lﬁ) ! z

2/ (logyx)/2 (loga)t—H/t

Since t can assume | (A log, 2)/2 |41 distinct values, it follows that w := |log, /1]
—w(l) +1t can also assume |(Azlog, 2)1/2| +1 > (A3 log, x)'/? distinct values, and
for each one of these values inequality (3.16) holds. Assembling these together for

the same value of s, we get that the number of numbers n € D} (z) arising in this
way for the fixed value of s is

Cy AP x
s A2’ (log z) =1/t

It is now again clear why we need to choose Ay = 1/I. Indeed, in order to get
a lower bound as large as possible on #Dj(z) by our method, we have to find

C
(3.16) mi(y, w) > TS -exp(

the value of A, so that the expression A;/z -exp(—lA3/2) is as large as possible.
Treating this expression as a function of As when [ is fixed, and computing its
derivative, we get that this expression is maximal precisely for the choice A = 1/I.
Thus, we get that the number of numbers n € Dj (x) arising from the fixed value
of s with s <", s€ L is

T 1 T

Cs
3.17 =z = -
(3.17) > (logz)1—1/1 ~ @+ (logz)i-1/1"

and the lower bound (3.17) is uniform in our range for s. Summing up over s, we
get that
(3.18)
N 1 T 1 1 x l 1
#Dj (z) > O+ (logz)i-1/1 Zz:u s O (loga)—1/1 <W - ; g)-
SEL SSEL




98 LICA AND SANKARANARAYANAN

Comparing the lower bound from (3.18) with the lower bound asserted by our Main
Theorem, it follows that the proof of our Main Theorem is completed once we show
that the estimate
1 l
(3.19) > = =—=o(1)
wiaer® 20
holds, where o(1) is some function that tends to zero when x tends to infinity
uniformly in our range for [. Let s € L be a number so that s > [*. Then, there
exists a prime divisor p of s, so that if p®||s, then p® > %/« In particular,
- ulogl U

a>— > —

o logp = w(l)’
with the last inequality in (3.20) following from the fact that p <! (because p is a
divisor of [). This argument shows that

1 1 1 l 1
(3.21) Z§<ZW'Z§:W'ZPWW(”

(3.20)

s> p|l s1€L pll
seL
l w(l) l ulog 2
< — . - . _
< exp( 0 + logw(l))

(1) 2u/«® — (1)
! 10g2 . 10g2 €T _ I
=30 .exp<fW + log (w(l))) =30 So(1),

where the last estimate in (3.21) follows from the fact that lw(l)log(w(l)) <
lw?(l) = o(log, ), therefore the expression
log?2 - log, x
O lw(l)
appearing inside the last exponential in (3.21) goes to minus infinity when z tends
to infinity, uniformly in our range for [.

+ log (w(1))
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