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Abstract. We consider linear SDEs with the generalized positive noise pro-
cess standing for the noisy term. Under certain conditions, the solution, a
Colombeau generalized stochastic process, is proved to exist. Due to the
blowing-up of the variance of the solution, we introduce a “new” positive
noise process, a renormalization of the usual one. When we consider the same
equation but now with the renormalized positive noise, we obtain a solution
in the space of Colombeau generalized stochastic processes with both, the first
and the second moment, converging to a finite limit.

1. Introduction

Stochastic differential equations arise in a natural manner in the description
of “noisy” systems appearing mostly in physical and engineering science. They
have been studied by many authors and by using different approaches. One of
the possible approaches in solving stochastic differential equations uses the Wick
product as is done in [2]. Another one, as in [7], uses weighted L2-spaces. A possible
approach, the one we use in this paper, is considering differential equations in the
framework of Colombeau generalized function spaces as is done in papers [5], [6],
[8] and in a similar way in [1].

One of the fundamental concepts in stochastic differential equations is the white
noise process standing for the noisy term in an equation. Here we are interested
in linear SDEs with a “nonstandard” additive generalized stochastic process. For
nonstandard noise we take the positive noise process. The motivation comes from
the work of Holden, Øksendal, Ubøe and Zhang. In [2] the analysis of positive
noise viewed as a Wick exponential of white noise was developed in detail and a
number of equations containing positive noise were considered. Smoothed positive
noise process, as discussed in [2], appears to be a good mathematical model for
many cases where positive noise occurs. We are interested in considering equations
with such a noise but now viewed as a Colombeau generalized process.
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8 OBERGUGGENBERGER AND RAJTER-ĆIRIĆ

In this paper we consider the linear Cauchy problem

X ′(t) = a(t)X(t) + b(t)W+(t), t > 0
X(0) = X0,

where W+(t) is positive noise viewed as a Colombeau generalized stochastic process
and X0 is a Colombeau generalized random variable.

We show that, under certain mild conditions on the deterministic functions
a(t) and b(t), there exists a Colombeau generalized stochastic process X(t) which
is a solution to the problem above. If, in addition, we suppose that the expectation
of a represenatitive of the initial data X0 converges to a finite limit as ε tends to
zero, then we show that the expectation of a representative of the solution X(t)
converges to a finite limit, too. However, the second moments of the representa-
tives of the solution X(t) diverge as ε tends to zero. That was a motivation for
introducing a “new” positive noise which is, in fact, a renormalization of the usual
positive noise in the sense of asymptotics. We call that new process a renormalized
positive noise process and denote it by W̃+(t). Renormalized positive noise has
mean value converging to zero and variance converging to infinity, as ε tends to
zero. Just as positive noise itself, these properties make it suitable for describing
rapid nonnegative fluctuations. When we consider the Cauchy problem above with
renormalized positive noise instead of W+(t), we again obtain a solution in the
space of Colombeau generalized stochastic processes but now with both, the first
and the second moment, converging to a finite limit. Thus renormalized positive
noise is also suitable as a driving term in linear SDEs.

2. Notation and basic definitions

Let (Ω,Σ, µ) be a probability space. A generalized stochastic process on Rd is
a weakly measurable mapping X : Ω→ D′(Rd). We denote by D′Ω(Rd) the space of
generalized stochastic processes. For each fixed function ϕ ∈ D(Rd), the mapping
Ω→ R defined by ω 7→ 〈X(ω), ϕ〉 is a random variable.

White noise Ẇ on Rd can be constructed as follows. We take as probability
space the space of tempered distributions Ω = S ′(Rd) with Σ the Borel σ-algebra
generated by the weak topology. By the Bochner–Minlos theorem [2], there is a
unique probability measure µ on Ω such that∫

ei〈ω,ϕ〉 dµ(ω) = exp
(
−1

2
‖ϕ‖2L2(Rd)

)

for ϕ ∈ S(R). The white noise process Ẇ is defined as the identity mapping

Ẇ : Ω→ D′(Rd), 〈Ẇ (ω), ϕ〉 = 〈ω, ϕ〉
for ϕ ∈ D(Rd). It is a generalized Gaussian process with mean zero and variance

V (Ẇ (ϕ)) = E(Ẇ (ϕ)2) = ‖ϕ‖2L2(Rd),

where E denotes expectation. Its covariance is the bilinear functional

(1) E
(
Ẇ (ϕ)Ẇ (ψ)

)
=
∫

Rd
ϕ(y)ψ(y) dy
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represented by the Dirac measure on the diagonal Rd × Rd, showing the singular
nature of white noise.

A net ϕε of mollifiers given by

ϕε(y) =
1
εd
ϕ
(y
ε

)
, ϕ ∈ D(Rd),

∫
ϕ(y)dy = 1, ϕ > 0,(2)

is called a nonnegative model delta net.
Smoothed white noise process on Rd is defined as

(3) Ẇε(x) = 〈Ẇ (y), ϕε(x− y)〉,
where Ẇ is white noise on Rd and ϕε is a nonnegative model delta net. It follows
from (1) that the covariance of smoothed white noise is

(4) E
(
Ẇε(x)Ẇε(y)

)
=
∫

Rd
ϕε(x− z)ϕε(y − z) dz = ϕε ∗ ϕ̌ε(x− y)

where ϕ̌(z) = ϕ(−z). We define the smoothed positive noise process W+
ε (x) on R

as

(5) W+
ε (x) = exp

(
Ẇε(x)− 1

2
‖ϕε‖2L2

)
,

where Ẇε and ϕε are as in (3). One can easily show that smoothed positive noise is
a family of random stochastic processes, lognormally distributed with mean value
1 and variance V (W+

ε (x)) = eσ
2
ε − 1 for x ∈ Rd, where σ2

ε = ‖ϕε‖2L2 .
For the remainder of this paper we confine ourselves to the one-dimensional case

since that is the case needed for SDEs. We now introduce Colombeau generalized
stochastic processes in the one-dimensional case (see also [4]).

Denote by E(R) the space of nets (Xε)ε, ε ∈ (0, 1), of processes Xε with almost
surely continuous paths, i.e., the space of nets of processes Xε : (0, 1)×R×Ω→ R
such that

(t, ω) 7→ Xε(t, ω) is jointly measurable, for all ε ∈ (0, 1);

t 7→ Xε(t, ω) belongs to C∞(R), for all ε ∈ (0, 1) and almost all ω ∈ Ω.

Definition 1. EΩ
M (R) is the space of nets of processes (Xε)ε belonging to E(R),

ε ∈ (0, 1), with the property that for almost all ω ∈ Ω, for all T > 0 and α ∈ N0,
there exist constants N, C > 0 and ε0 ∈ (0, 1) such that

sup
t∈[0,T ]

|∂αXε(t, ω)| 6 C ε−N , ε 6 ε0.

NΩ(R) is the space of nets of processes (Xε)ε ∈ E(R), ε ∈ (0, 1), with the
property that for almost all ω ∈ Ω, for all T > 0 and α ∈ N0 and all b ∈ R, there
exist constants C > 0 and ε0 ∈ (0, 1) such that

sup
t∈[0,T ]

|∂αXε(t, ω)| 6 C εb, ε 6 ε0.

The differential algebra of Colombeau generalized stochastic processes is the
factor algebra GΩ(R) = EΩ

M (R)/NΩ(R).
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The elements of GΩ(R) will be denoted by X = [Xε], where (Xε)ε is a repre-
sentative of the class.

White noise can be viewed as a Colombeau generalized stochastic processes
having a representative given by (3). This follows from the usual imbedding argu-
ments of Colombeau theory (see e.g. [3]), since its paths are distributions. What
concerns positive noise, a suitably slow scaling in the parameter ε is needed to coun-
terbalance the exponential. Thus taking the scaling η(ε) = | log ε| and replacing
(5) by

(6) W+
ε (x) = exp

(
Ẇη(ε)(x)− 1

2
‖ϕη(ε)‖2L2

)

produces a family of processes which belongs to EΩ
M (R) and thus defines an element

of GΩ(R). We refer to this generalized process as the Colombeau positive noise.
For evaluation of generalized stochastic process at fixed points of time, we

introduce the concept of a Colombeau generalized random variable as follows. Let
ER be the space of nets of measurable functions on Ω.

Definition 2. ERM is the space of nets (Xε)ε ∈ ER, ε ∈ (0, 1), with the
property that for almost all ω ∈ Ω there exist constants N,C > 0, and ε0 ∈ (0, 1)
such that |Xε(ω)| 6 Cε−N , ε 6 ε0.
NR is the space of nets (Xε)ε ∈ ER, ε ∈ (0, 1), with the property that for

almost all ω ∈ Ω and all b ∈ R, there exist constants C > 0 and ε0 ∈ (0, 1) such
that |Xε(ω)| 6 Cεb, ε 6 ε0.

The differential algebra GR of Colombeau generalized random variables is the
factor algebra GR = ERM/NR.

If X ∈ GΩ(R) is a generalized stochastic process and t0 ∈ R, then X(t0) is a
Colombeau generalized random variable, i.e., an element of GR.

3. SDEs with Colombeau generalized positive noise process

We consider the Cauchy problem

X ′(t) = a(t)X(t) + b(t)W+(t), t ∈ R(7)
X(0) = X0,(8)

as stated in the introduction, where W+(t) ∈ GΩ(R) is Colombeau positive noise
and X0 = [X0ε] ∈ GR is a Colombeau generalized random variable. We suppose
that a(t) is a deterministic, smooth function on R and denote

(9) ã(τ) =
∫ τ

0

a(t) dt.

The function b(t) is supposed to be deterministic and smooth on R.

Theorem 1. Under the conditions above, problem (7)–(8) has an almost surely
unique solution X ∈ GΩ(R).
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Proof. Fix ω ∈ Ω and ε ∈ (0, 1). The Cauchy problem (7)-(8) given by
representatives reads

X ′ε(t) = a(t)Xε(t) + b(t)W+
ε (t), t ∈ R(10)

Xε(0) = X0ε,(11)

where (W+
ε )ε ∈ EΩ

M (R) is given by (6) and (X0ε)ε ∈ ERM (R). Problem (10)-(11)
has the solution

(12) Xε(t) = X0εe
ã(t) + eã(t)

∫ t

0

e−ã(τ) b(τ)W+
ε (τ) dτ.

Let us show that (Xε)ε belongs to EΩ
M (R). First, from (12) we have that

sup
t∈[0,T ]

|Xε(t)| 6 |X0ε| exp
(

sup
t∈[0,T ]

ã(t)
)

+ T exp
(

sup
t∈[0,T ]

ã(t)− inf
τ∈[0,T ]

ã(τ)
)

sup
τ∈[0,T ]

|b(τ)| sup
τ∈[0,T ]

|W+
ε (τ)|.

Since (W+
ε )ε ∈ EΩ

M (R) and (X0ε)ε ∈ ERM (R) we obtain

sup
t∈[0,T ]

|Xε(t)| 6 C1ε
b1 + C2Tε

b2 ,

for some b1, b2 ∈ R and some C1, C2 > 0. Thus, supt∈[0,T ] |Xε(t)| has a moderate
bound for any T > 0. A similar argument applies to subintervals of the negative
time axis.

We obtain a moderate bound for the first order derivative of Xε from (10):

sup
t∈[0,T ]

|X ′ε(t)| 6 C1 sup
t∈[0,T ]

|Xε(t)|+ C2 sup
t∈[0,T ]

|W+
ε (t)|.

Since (W+
ε )ε ∈ EΩ

M (R) and supt∈[0,T ] |Xε(t)| has a moderate bound, we con-
clude that supt∈[0,T ] |X ′ε(t)| has a moderate bound, too.

By successive derivations, one can estimate higher order derivatives of Xε and
obtain their moderate bounds.

Thus, (Xε)ε belongs to EΩ
M (R) and X = [Xε] ∈ GΩ(R) defines a solution to

problem (7)-(8). One can easily show that this solution is almost surely unique in
GΩ(R) by considering the equation

X̃ ′ε(t) = a(t) X̃ε(t) +Nε(t), X̃ε(0) = N0ε,

where (X̃ε)ε = (X1ε − X2ε)ε and (X1ε)ε, (X2ε)ε ∈ EΩ
M (R) are two solutions to

equation (10), (Nε)ε ∈ NΩ(R) and (N0ε)ε ∈ NR.
After a similar procedure as in the existence part of the proof one obtains that

(X1ε − X2ε)ε ∈ NΩ(R). Thus, the solution X to equation (7) is almost surely
unique in GΩ(R). �

For fixed ε ∈ (0, 1) denote E(X0ε) = x0ε. The expectation of the solution Xε(t)
to problem (10)–(11) is

E(Xε(t)) = E(X0ε)eã(t) + eã(t)

∫ t

0

e−ã(τ) b(τ)E
(
W+
ε (τ)

)
dτ,
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i.e., since E (W+
ε (τ)) = 1,

E(Xε(t)) = x0εe
ã(t) + eã(t)

∫ t

0

e−ã(τ) b(τ) dτ.

It is obvious that the expectation of the solution Xε to problem (10)–(11)
coincides with the solution to the equation obtained from equation (10)–(11) by
averaging the coefficients:

X
′
ε(t) = a(t) Xε(t) + b(t), Xε(0) = x0ε.

If, in addition, we suppose that lim
ε→0

x0ε = x0 6= ±∞, then

E(Xε(t))→ x0e
ã(t) + eã(t)

∫ t

0

e−ã(τ) b(τ) dτ, as ε→ 0.

However, the second moment of the solution Xε(t) may diverge as ε tends
to zero. Indeed, assuming that X0ε is independent of W+

ε (t), t ∈ R, the second
moment of Xε(t) is

E(X2
ε (t)) = E(X2

0ε) e
2ã(t) + 2E(X0ε) eã(t)

∫ t

0

e−ã(τ) b(τ) dτ

+ e2ã(τ)E

((∫ t

0

e−ã(τ) b(τ) W+
ε (τ) dτ

)2
)
.

The expectation in the last term in the right-hand side is

(13)

E

((∫ t

0

e−ã(τ) b(τ) W+
ε (τ) dτ

)2
)

= E

(∫ t

0

∫ t

0

e−ã(x) b(x) W+
ε (x)e−ã(y) b(y) W+

ε (y) dx dy
)

=
∫ t

0

∫ t

0

e−ã(x)−ã(y) b(x) b(y) E
(
W+
ε (x)W+

ε (y)
)
dx dy

and we will show that if b is bounded away from zero and the mollifier ϕ is sym-
metric, then the second moments of Xε(t) diverge for all t ∈ R, t 6= 0.

From now on we assume that the mollifier ϕ satisfies (2) and is symmetric.
This entails that

(14) ϕ ∗ ϕ̌(r) < ϕ ∗ ϕ̌(0) for all r ∈ R, r 6= 0,

a property which will be essential later. Indeed, by the symmetry assumption,
ϕ ∗ ϕ̌ = ϕ ∗ ϕ and

(15) ϕ ∗ ϕ(r) =
∫ ∞
−∞

ϕ(z)ϕ(z − r) dz 6 ‖ϕ(·)‖L2(R)‖ϕ(· − r)‖L2(R)

for all r ∈ R by the Cauchy–Schwarz inequality. Further, equality in (15) is attained
if and only if ϕ(·) and ϕ(· − r) are parallel, that is, r = 0. Thus (14) holds. For
technical facilitation we shall also assume that

(16) suppϕ = [−1/2, 1/2].
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We now introduce some notation. By (4), the covariance matrix of smoothed
white noise Ẇε at points x0, y0 is

Cε =
(

σ2
ε τ2

ε (r)
τ2
ε (r) σ2

ε

)
,

where r = x0 − y0 and we use the notation

σ2
ε = ‖ϕη(ε)‖2L2 = ϕη(ε) ∗ ϕη(ε)(0), τ2

ε (r) = ϕη(ε) ∗ ϕ̌η(ε)(r) = ϕη(ε) ∗ ϕη(ε)(r)

with the scaling η(ε) = | log ε| introduced in (6).

Lemma 1. Let [W+
ε ] ∈ GΩ(R) be Colombeau positive noise. Then its covariance

at points x0 6= y0 ∈ R equals

(17) E
(
W+
ε (x0)W+

ε (y0)
)

= eτ
2
ε (x0−y0).

Proof. When x0 6= y0, we have that

E
(
W+
ε (x0)W+

ε (y0)
)

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−σ
2
ε

1√
detCε

ex+y exp
(
− 1

2
(x, y)C−1

ε (x, y)T
)
dx dy.(18)

By (14), detCε = σ4
ε − τ4

ε (r) > 0 with r = x0 − y0, so the matrix Cε is positive
definite. Diagonalization gives that

√
C−1
ε = Q diag

(√
σ2
ε + τ2

ε ,
√
σ2
ε − τ2

ε

)
QT , with Q =

1√
2

(
1 −1
1 1

)
.

The change of variables
√
C−1
ε (x, y)T 7→ (x1, y1)T gives

x+ y =
√
σ2
ε + τ2

ε x1 +
√
σ2
ε + τ2

ε y1

and turns (18) into

E
(
W+
ε (x0)W+

ε (y0)
)

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

e−σ
2
ε exp

(√
σ2
ε + τ2

ε (x1 + y1)− x2
1

2
− y2

1

2

)
dx1 dy1.

Using the relation

e−σ
2
ε exp

(√
σ2
ε + τ2

ε (x1 + y1)− x2
1

2
− y2

1

2

)

= eτ
2
ε exp

(
− 1

2

(
x1 −

√
σ2
ε + τ2

ε

)2

− 1
2

(
y1 −

√
σ2
ε + τ2

ε

)2 )

we rewrite this as

E
(
W+
ε (x0)W+

ε (y0)
)

=
1

2π

∫ ∞
−∞

∫ ∞
−∞

eτ
2
ε exp

(
− 1

2

(
x1 −

√
σ2
ε + τ2

ε

)2

− 1
2

(
y1 −

√
σ2
ε + τ2

ε

)2 )
dx1 dy1

= eτ
2
ε (x0−y0),

thereby establishing (17). �
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Proposition 1. Let X ∈ GΩ(R) be the solution to the Cauchy problem (7), (8)
constructed in Theorem 1. Assume that b(t) > b0 for some b0 > 0 and all t ∈ R.
Then

(19) E
(
X2
ε (t)

)→∞, as ε→ 0

for all t ∈ R, t 6= 0.

Proof. We consider the case t > 0. As was deduced above, we have to
estimate the decisive term (13), which by Lemma 1 equals

∫ t

0

∫ t

0

e−ã(x)−ã(y) b(x) b(y) eτ
2
ε (x−y) dx dy.

Now ã is bounded from above on the interval [0, t] and by assumption, b is bounded
away from zero. Thus the decisive term above can be estimated from below by

c

∫ t

0

∫ t

0

eτ
2
ε (x−y) dx dy

for some constant c > 0. Recalling that

τ2
ε (x− y) = ϕη(ε) ∗ ϕη(ε)(x− y) =

1
η(ε)

ϕ ∗ ϕ
(

x

η(ε)
− y

η(ε)

)

we obtain that∫ t

0

∫ t

0

eτ
2
ε (x−y) dx dy = η2

∫ t/η

0

∫ t/η

0

exp
(1
η
ϕ ∗ ϕ(x− y)

)
dx dy

with η = η(ε). Since ϕ ∗ ϕ(x − y) > c0 for some c0 > 0 on a set of positive two-
dimensional measure, this latter expression tends to infinity as ε→ 0. This proves
(19). �

The blow-up of the variance of the solution to equation (10)–(11) is a motivation
for introducing a “new” positive noise, a renormalization of the usual positive noise
in the sense of asymptotics.

Renormalized positive noise will depend on the choice of a renormalization
interval [0, T ] and a free parameter C ∈ R, C 6= 0. We introduce it by means of
the representing family

(20) W̃+
ε (t) = exp

(
Ẇη(ε)(t)−

1
2
σ2
ε −

1
2

log
(
C2

∫ T

0

∫ T

0

eτ
2
ε (r−s)dr ds

))
,

where t ∈ R, η(ε) = | log ε)|, σε, τε are defined as before Lemma 1 and (Ẇε)ε ∈
EΩ
M (R) is a representative of smoothed white noise. In fact,

(21) W̃+
ε (t) =

W+
ε (t)

|C|
√∫ T

0

∫ T

0

eτ
2
ε (r−s)dr ds

t ∈ R,

where W+
ε (t) is a representative of Colombeau positive noise. We shall not display

the dependence on T and C in our notation and simply call the class defined by
(20) in GΩ(R) the renormalized positive noise process W̃+.
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In the limit, renormalized positive noise W̃+(t) has mean value zero and infinite
variance. More precisely, the following holds.

Lemma 2. Let W̃+ ∈ GΩ(R) be renormalized positive noise. Then, for any
representative and t ∈ R,

E
(
W̃+
ε (t)

)
→ 0, as ε→ 0,

V
(
W̃+
ε (t)

)
→∞, as ε→ 0.

Proof. The first assertion follows immediately from the arguments in the
proof of Proposition 1:

E
(
W̃+
ε (t)

)
=

E (W+
ε (t))

|C|
√∫ T

0

∫ T

0

eτ
2
ε (r−s)dr ds

=
1

|C|
√∫ T

0

∫ T

0

eτ
2
ε (r−s)dr ds

→ 0, as ε→ 0.

For the second moment of W̃+
ε (t) we have

E

((
W̃+
ε (t)

)2
)

=
E
(

(W+
ε (t))2

)


|C|

√∫ T

0

∫ T

0

eτ
2
ε (r−s)dr ds




2

=
eσ

2
ε

C2

∫ T

0

∫ T

0

eτ
2
ε (r−s)dr ds

=
1

C2

∫ T

0

∫ T

0

eτ
2
ε (r−s)−σ2

εdr ds

.

Since τ2
ε is a symmetric function the denominator of the last term equals

∫ T

0

∫ T

0

eτ
2
ε (r−s)−σ2

εdr ds =
∫ T

0

(T − r)eτ2
ε (r)−σ2

εdr.

By the assumption (16), this in turn equals
∫ ε

0

(T − r)eτ2
ε (r)−σ2

εdr +
∫ T

ε

(T − r)e−σ2
εdr

using that τ2
ε = 0 when r > ε. By (14), the first integrand is bounded; the second

integrand goes to zero as ε → 0. Thus the denominator in question converges to
zero, and so E

(
(W̃+

ε (t))2
)

tends to infinity.
Finally, the divergence of the second moment of the process W̃+

ε (t) implies
divergence of the variance V

(
W̃+
ε (t)

)
. �

Now we consider the equation

X ′(t) = a(t)X(t) + b(t) W̃+(t), t ∈ R(22)

X(0) = X0,(23)

where W̃+(t) ∈ GΩ(R) is renormalized positive noise and X0 = [X0ε] ∈ GR is a
generalized random variable. Let a(t) be as before, i.e., a deterministic, smooth
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function on R and let ã(τ) be given by (9). Also, b(t) is supposed to be deterministic
and smooth on R, b(t) > b0 > 0 for all t ∈ R. Problem (22)–(23) in terms of
representatives reads

X ′ε(t) = a(t)Xε(t) + b(t) W̃+
ε (t), t ∈ R(24)

Xε(0) = X0ε,(25)

where (W̃+
ε )ε ∈ EΩ

M (R) and (X0ε)ε ∈ ERM .
The following assertion can be proved similarly as in Theorem 1; we skip the

proof.

Theorem 2. Under the conditions above, problem (22)–(23) has an almost
surely unique solution X ∈ GΩ(R) given by

(26) Xε(t) = X0εe
ã(t) + eã(t)

∫ t

0

e−ã(τ) b(τ) W̃+
ε (τ) dτ.

Denote E(X0ε) = x0ε and E(X2
0ε) = x̃0ε and suppose

(27) lim
ε→0

x0ε = x0 6= ±∞, and lim
ε→0

x̃0ε = x̃0 <∞.

We will show below that the first and the second moment of the solution Xε to
problem (24)–(25) converge to a finite limit as ε tends to zero, which was exactly
what we wanted to achieve by introducing renormalized positive noise W̃+(t).

Theorem 3. Let Xε be the solution to problem (24)-(25) and t ∈ R. Then

E(Xε(t))→ x0e
ã(t), as ε→ 0,

E(X2
ε (t))→ x̃0e

2ã(t) +
e2ã(t)

C2T

∫ t

0

e−2ã(y)b2(y) dy, as ε→ 0.

Proof. Note that the expectation of Xε(t) given by (26) is now

E(Xε(t)) = E(X0ε)eã(t) + eã(t)

∫ t

0

e−ã(τ) b(τ)E
(
W̃+
ε (τ)

)
dτ.

Since E
(
W̃+
ε (τ)

) → 0, as ε → 0, by using (27) we obtain E(Xε(t)) → x0e
ã(t), as

ε→ 0. The second moment of the solution Xε(t) is

E(X2
ε (t)) = x̃0ε e

2ã(t) + 2x0ε e
ã(t)

∫ t

0

e−ã(τ) b(τ) E
(
W̃+
ε (τ)

)
dτ

+ e2ã(t)E

((∫ t

0

e−ã(τ) b(τ) W̃+
ε (τ) dτ

)2)
.
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The expectation in the last term in the right-hand side is

E

((∫ t

0

e−ã(τ) b(τ) W̃+
ε (τ) dτ

)2
)

= E

(∫ t

0

∫ t

0

e−ã(x) b(x) W̃+
ε (x)e−ã(y) b(y) W̃+

ε (y) dx dy
)

=
∫ t

0

∫ t

0

e−ã(x)−ã(y) b(x) b(y) E
(
W̃+
ε (x) W̃+

ε (y)
)
dx dy.

Using the relation (21) one easily obtains

E
(
W̃+
ε (x) W̃+

ε (y)
)

=
E (W+

ε (x)W+
ε (y))

C2

∫ T

0

∫ T

0

eτ
2
ε (r−s)dr ds

, t ∈ [0, T ].

We saw in Lemma 1 that E (W+
ε (x)W+

ε (y)) = eτ
2
ε (x−y). That means

E

((∫ t

0

e−ã(τ) b(τ) W̃+
ε (τ) dτ

)2
)

=

∫ t

0

∫ t

0

e−ã(x)e−ã(y) b(x) b(y) eτ
2
ε (x−y) dx dy

C2

∫ T

0

∫ T

0

eτ
2
ε (x−y) dx dy

,

for t ∈ [0, T ]). We want to evaluate the limit of the term

(28)

∫ t

0

e−ã(y) b(y) dy
∫ t

0

e−ã(x) b(x) eτ
2
ε (x−y) dx

C2

∫ T

0

dy

∫ T

0

eτ
2
ε (x−y) dx

as ε tends to zero. Since τ2
ε (r) = 0 whenever r 6∈ [−ε, ε], we may rewrite (28) as

(29)

∫ t

0

e−ã(y) b(y) dy
(∫ y+ε

y−ε
e−ã(x) b(x) eτ

2
ε (x−y) dx+Aε(y)

)

C2

∫ T

0

dy

(∫ y+ε

y−ε
eτ

2
ε (x−y) dx+Bε(y)

) ,

where

Aε(y) =
∫ y−ε

0

e−ã(x) b(x) dx+
∫ t

y+ε

e−ã(x) b(x) dx

Bε(y) =
∫ y−ε

0

dx+
∫ T

y+ε

dx.

First, note that as ε tends to zero, both the numerator and the denominator in
(29) tend to infinity. On the other hand, it is obvious that the quantities Aε and
Bε remain finite as ε tends to zero.
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Therefore, for evaluating the limit (as ε tends to zero) of (29) it is enough to
consider the limit (as ε tends to zero) of

(30)

∫ t

0

e−ã(y) b(y) dy
∫ y+ε

y−ε
e−ã(x) b(x) eτ

2
ε (x−y) dx

C2

∫ T

0

dy

∫ y+ε

y−ε
eτ

2
ε (x−y) dx

.

Since τ2
ε is symmetric, we have that

∫ y+ε

y−ε
eτ

2
ε (x−y) dx = 2

∫ y+ε

y

eτ
2
ε (x−y) dx.

Thus (30) equals
(31)∫ t

0

e−ã(y) b(y) dy
(∫ y+ε

y

e−ã(x) b(x) eτ
2
ε (x−y) dx+

∫ y

y−ε
e−ã(x) b(x) eτ

2
ε (x−y) dx

)

2C2

∫ T

0

dy

∫ y+ε

y

eτ
2
ε (x−y) dx

.

We shall compute the limit (as ε tends to zero) of the first summand in (31);
due to its structural similarity, the second summand will have the same limit. By
the change of variables x− y 7→ x the first term becomes

(32)

∫ t

0

e−ã(y) b(y) dy
∫ ε

0

e−ã(x+y) b(x+ y) eτ
2
ε (x) dx

2C2

∫ T

0

dy

∫ ε

0

eτ
2
ε (x) dx

.

Introduce

Rε =
∫ ε

0

eτ
2
ε (x) dx.

The denominator of (32) is then C2TRε. By adding and subtracting the term
∫ t

0

e−ã(y) b(y) dy
∫ ε

0

e−ã(y) b(y) eτ
2
ε (x) dx,

the numerator of (32) becomes

Rε

∫ t

0

e−2ã(y) b2(y) dy

+
∫ t

0

e−ã(y) b(y) dy
∫ ε

0

(
e−ã(x+y) b(x+ y)− e−ã(y) b(y)

)
eτ

2
ε (x) dx.

By supposition, e−ã(y) b(y) is a smooth function and so
∫ t

0

e−ã(y) b(y) dy
∫ ε

0

(
e−ã(x+y) b(x+ y)− e−ã(y) b(y)

)
eτ

2
ε (x) dx ∼ εRε,
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for small ε. Therefore, we have to compute the limit of

1
2C2TRε

Rε

∫ t

0

e−2ã(y) b2(y) dy + εRε

as ε tends to zero, which, however, obviously equals

1
2C2T

∫ t

0

e−2ã(y) b2(y) dy.

Together with the same result for the second summand, this implies that

E(X2
ε (t))→ x̃0e

2ã(t) +
e2ã(t)

C2T

∫ t

0

e−2ã(y)b2(y) dy

as ε→ 0, as claimed. �
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