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ABSTRACT. The aim of this article is obtain a Krasnoselskii cone compression
theorem for multimaps in the class S-KKM.

1. Introduction

This article discusses various Krasnoselskii cone compression theorems for com-
pact as well as & — ®-contractive multimaps in the S-KKM class. The class of S-
KKM maps was introduced and studied by Chang et al. [5] and further investigated
by Chang et al. [4] and Shahzad [12]. The Krasnoselskii cone compression theorem
is well known for ¥ maps [9] and other classes [1,10]. We mention that S-KKM
class contains the &* maps. The ideas presented in this paper follow closely those
in [9].

2. Preliminaries

Let E be a Hausdorff locally convex space. For a nonempty set Y C E, 2V
denotes the family of nonempty subsets of Y. If L is a lattice with a minimal
element 0, a mapping ® : 2% — L is called a generalized measure of noncompactness
provided that the following conditions hold:

(a) ®(A) =0 if and only if A is compact.
(b) ®(co(A)) = ®(A); here to(A) denotes the closed convex hull of A.
(c) ®(AUB) = max{®(A),®(B)}.
It follows that if A C B, then ®(A) < ®(B). Let C be a nonempty subset

of a Banach space X. The Kuratowski measure of noncompactness is the map
a:2X — R, defined by

a(A) = inf{e > 0: A can be covered by a finite number
of sets each of diameter less than e}
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for A € 2X. The Hausdorff measure of noncompactness is the map x : 2¥ — R
defined by

X(A) = inf{e > 0: A can be covered by a finite number
of balls with radius less than €}

for A € 2X. Examples of the generalized measure of noncompactness are the
Kuratowski measure and the Hausdorff measure of noncompactness (see [11]).

Let C be a nonempty subset of a Hausdorff locally convex space E and F :
C — 2%, Then F is called ®-condensing provided that ®(A4) = 0 for any A C C
with ®(F(A)) > ®(A). Tt is clear that a compact mapping is ®-condensing and
also every mapping defined on a compact set is necessarily ®-condensing. Suppose
that L is a lattice with a minimal element 0 and that for each [ € L and A\ € R,
with A > 0, there is defined an element A\l € L. A mapping F : C — 2F is called a
k-®-contractive map (k € R with k£ > 0) provided that ®(F(A)) < k®(A) for each
A C C and F(C) is bounded. Obviously, if C' is complete, F is k-®-contractive,
with 0 < k < 1, and ® = « or ¥, then F' is ®-condensing.

Let X and Y be subsets of Hausdorff topological vector spaces E; and Fs
respectively. Let F : X — K(Y); here K(Y) denotes the family of nonempty
compact subsets of Y. We say F' is Kakutani if F' is upper semicontinuous with
convex values. A nonempty topological space is said to be acyclic if all its reduced
Cech homology groups over the rationals are trivial. Now F' is acyclic if F is upper
semicontinuous with acyclic values. The map F is said to be an O’Neill map if F
is continuous and if the values of F' consist of one or m acyclic components (here
m is fixed).

Given two open neighborhoods U and V of the origins in F; and E5 respec-
tively, a (U, V')—approximate continuous selection of F': X — K(Y) is a continuous
function s : X — Y satisfying

s(x) e (Fl(x+U)NX]+V)NY, forevery xz € X.

We say F' is approzimable if it is a closed map and if its restriction F|x to any
compact subset K of X admits a (U, V' )—approximate continuous selection for every
open neighborhood U and V of the origins in E; and Fs respectively.

For our next definition let X and Y be metric spaces. A continuous single
valued map p: Y — X is called a Vietoris map if the following two conditions hold:

(i) for each z € X, the set p~!(z) is acyclic
(ii) p is a proper map i.e., for every compact A C X we have that p~1(A4) is
compact.

DEFINITION 2.1. A multifunction ¢ : X — K(Y) is admissible (strongly) in
the sense of Gorniewicz, if ¢ : X — K(Y') is upper semicontinuous, and if there
exists a metric space Z and two continuous maps p: Z — X and ¢ : Z — Y such
that

(i) p is a Vietoris map, and
(i) ¢(x) = q(p~1(x)) for any x € X.
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REMARK 2.1. It should be noted [8, p. 179] that ¢ upper semicontinuous is
superfluous in Definition 2.1.

Suppose X and Y are Hausdorff topological spaces. Given a class X of maps,
X(X,Y) denotes the set of maps F : X — 2Y belonging to X, and X, the set of
finite compositions of maps in X. A class U of maps is defined by the following
properties:

(i) U contains the class C of single valued continuous functions;
(ii) each F € U, is upper semicontinuous and compact valued; and
(iii) for any polytope P, F' € U.(P, P) has a fixed point, where the intermediate
spaces of composites are suitably chosen for each U.

DEFINITION 2.2. F' € U¥(X,Y) if for any compact subset K of X, there is a
G € U(K,Y) with G(z) C F(x) for each z € K.

Examples of U} maps are the Kakutani maps, the acyclic maps, the O’Neill
maps, and the maps admissible in the sense of Gorniewicz.

DEFINITION 2.3. Let X be a convex subset of a Hausdorff topological vector
space and Y a topological space. If S,T : X — 2Y are two set-valued maps
such that T(co(A)) C S(A) for each finite subset A of X, then we say that S
is a generalized KKM map w.r.t. 7. The map T : X — 2V is said to have the
KKM property if for any generalized KKM w.r.t. T map S, the family {S(z) :
x € X} has the finite intersection property. We let KKM(X,Y) = {T": X — 2¥ :
T has the KKM property}.

REMARK 2.2. If X is a convex space, then U (X,Y) C KKM(X,Y) (see [5]).

DEFINITION 2.4. Let X be a nonempty set, ¥ a nonempty convex subset of
a Hausdorff topological vector space and Z a topological space. If S : X — 2V,
T:Y — 2% F: X — 27 are three set-valued maps such that T(co(S(A))) C F(A)
for each nonempty finite subset A of X, then F is called a generalized S-KKM map
w.r.t. T. If the map T : X — 27 is such that for any generalized S-KKM w.r.t.
T map F, the family {F(z) : # € X} has the finite intersection property, then T
is said to have the S-KKM property. The class SKKM(X,Y,Z) = {T:Y — 2% :
T has the S-KKM property}.

REMARK 2.3. If X = Y and S is the identity mapping 1 x, then S-KKM(X,Y, Z)
= KKM(X, Z). Also KKM(Y, Z) is a proper subset of S-KKM(X,Y,Z) for any
S : X — 2Y and so S-KKM(X,Y, Z) is a very large class of maps which includes
other important classes of multimaps (see [4, 5] for examples).

REMARK 2.4. Let X be a convex space, Y a convex subset of a Hausdorff
locally convex space, and Z a normal space. Suppose s : Y — Y is surjective,
F € s KKM(Y,Y, Z) is closed, and f € C(X,Y). Then Fof € 1x —KKM(X, X, Z)
(see [5]).
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The following result [4] will be needed in the sequel.

LEMMA 2.1. Let C be a nonempty, closed, convex subset of a Hausdorff locally
conver space E Suppose s : C — C is surjective and F € s-KKM(C,C,C) is a
closed ®-condensing map. Then F has a fixed point in C.

3. Main Results
Let C be a cone in a normed space E = (E, || -||). For p > 0 let

B,={zeC:|lz[l <p}, B,={zeC:|a|<p}
Sp={zeC: |z =p}, EB,={zrecC:|z|>p}
THEOREM 3.1. Let C be a closed convex cone in a normed space E = (E,|| - |)

and let r, R be constants with 0 < r < R. Suppose s : Br — Bp is surjective and
F € s-KKM(Bg, Bg,C) is a closed and compact map with

(31) F(ST) C EB, and F(SR) - BR.
Then F has a fived point in B, p = {x € C :r < ||z|]| < R}.
PROOF. Define g : C' — Bpg as follows
ro(z), if x € B,
g(x) = x, ifex e Brgr
Rz/||x|, if z € EBg,

where ¢ : B, — S, is a continuous retraction (which exists in our case, indeed if
we fix g € S,, then we may take

(el + 2}
"ol = T Talao + 2]

Note (r — ||z|)zo + 2 # 0 since C N (—C) = {0}). Then g is continuous. Since F' €
s-KKM(Bg, Br, C), by Remark 2.4 G = Fog € 1¢—KKM(C, C, C). Furthermore,
G is closed and compact. Now Lemma 2.1 guarantees that G has a fixed point
x €, ie, zeG(x). If |z <r, then

x € Fro(z) C F(S,) C EB,.
This is a contradiction. If ||z|| > R, then
x € F(Rz/|z||) € F(Sg) C Bg.
This is a contraction. Hence z € B, g and z € G(z) = F(z). O

REMARK 3.1. The condition in (3.1) that F(Sg) C Br may be replaced by
(3.2) x g AFx  for x € Sp and A€ (0,1).

To see this, let = be as in Theorem 3.1. If ||z|| > R, then 2 € F(Rx/||z||). This
implies that y € AF(y) with y = Rz/||z| and A = R/||z||.
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Next let E = (E,||.||) be an infinite dimensional normed space. For p > 0 let
By={veB:lull<p}, By={veF:|al<ph
Sp={rc E:|lz| =p}, EB,={rcE:lz|>p}

THEOREM 3.2. Let E = (E, | -||) be an infinite dimensional normed space and

let v, R be constants with 0 < r < R. Suppose s : Br — Bpg is surjective and
F € s-KKM(Bpg, Bgr,C) is a closed and compact map with

(3.3) (S,) C EB, and F(Sg) C Bg
Then F' has a fized point in By p = {z € E :r < ||z]| < R}.

PRrROOF. It is known [3] that there exists a continuous retraction r¢ : B, — S;.
Essentially the same reasoning as in Theorem 3.1 gives the result. (]

We now establish a general version of the above result.

THEOREM 3.3. Let E = (E, | -||) be an infinite dimensional normed space and
let (_]1 ancj Us be open convex subsets ofE_ wilfh 0 € Uy with Uy C Uy. Suppose
s : Uy — Uy is surjective and F € s-KKM(Us, Us, E) is a closed and compact map
with
(34) F(é)Ul) QE\Ul and F(aUg) QUQ
Then F has a fized point in Uy ~ Uy .

PrOOF. Define g : E — 90U, by

ri(z), ifzel;
g(x) =< =, if v € Uy N\ Uy
x/p(x) ifxe EXUs.
where p is the Minkowski functional on Uy and v, : Uy — OU; is a c_onti_nuous
retraction (which exists [2]). Then g is continuous. Since F € s-KKM(Us, Us, E),
by Remark 2.4 G = Fog € 1z — KKM(E, E, E). Furthermore, G is closed and
compact. Now as in Theorem 3.1 G has a fixed point = € F, i.e., x € G(z). If
x € Uy, then
x € Fri(x) C F(OU;) C ENUs.
This is a contradiction. If z € E ~\ Us, then
x € F(x/p(x)) C F(0Us) C Us.
This is a contraction. Hence z € Uy \ U and x € G(z) = F(z). O
It is known [3,7] that if E is an infinite dimensional normed space, then there

exits a Lipschitzian retraction ry : B, — S, with Lipschitz constant ko > 1. We
are now in a position to improve Theorem 3.2.

THEOREM 3.4. Let E = (E, |- ||) be an infinite dimensional normed space and
let v, R be constants with 0 < r < R. Suppose s : Br — Bp is surjective and
F € - KKM(Bg, Bg,C) is a closed k — ®-contractive map, 0 < k < 1/ko, with
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Then F' has a fized point in By p = {z € E :r < ||z]| < R}.

PROOF. Let rg : B, — S, be the retraction with Lipschitz constant ky. Define
g : C — Bp as follows

ro(z), if z € B,
g(z) =< =, if x € By g
Rz/||z||, if z € EBg.

Then g is continuous. Since F' € s-KKM(Bg, Bg,C), by Remark 2.4 G = F o
g € 1g — KKM(E, E,E). Furthermore, g is kg — ®-contractive; indeed if Q is
bounded subset of E, then =y Uy U3, where Q; = QN B, Q9 = QN B, g,
Q3 =0n{x € E:|z| >R} and

P(g(€2)) < max{®(g()), 2(9(22)), (9(2s))}
g max{k()q)(ﬂl), kQ(I)(QQ), ko‘b(Qg)}
< ko®(92)

since g(23) C co(Q3U{0})). Consequently, G is kko— ®-contractive and also closed.
Now Lemma 2.1 guarantees that G has a fixed point = € E, i.e., z € G(x). As
before, x € B, g and = € G(z) = F(x). O

References

[1] R.P. Agarwal and D. O’Regan, A generalization of the Krasnoselskii—Petryshyn compression
and expansion theorem: an essential map approach, J. Korean Math. Soc. 38 (2001), 669
681.

[2] R.P. Agarwal and D. O’'Regan, A note on the topological traneversality theorem for acyclic
maps, Applied Math. Letters, to appear.

[3] Y. Benyamini and Y. Sternfeld, Spheres in infinite dimensional normed spaces and Lipschitz
contractibility, Proc. Amer. Math. Soc. 88 (1983), 439-445.

[4] T.H. Chang, Y.Y. Huang and J. C. Jeng, Fized point theorems for multifunctions in S-KKM
class, Nonlinear Anal. 44 (2001), 1007-1017.

[5] T.H. Chang, Y.Y. Huang, J. C. Jeng and K. H. Kuo, On S-KKM property and related topics,
J. Math. Anal. Appl. 229 (1999), 212-227.

[6] T.H. Chang and C.L. Yen, KKM property and fized point theorems, J. Math. Anal. Appl.
203 (1996), 224-235.

[7] K. Goebel and W. Kirk, Topics in Metric Fized Point Theory, Cambridge University Press,
Cambridge, 1990.

[8] L. Gorniewicz and M. Slosarski, Topological essentiality and differential inclusions, Bull.
Austral. Math. Soc. 45 (1992), 177-193.

[9] D. O’'Regan, A Krasnoselskii cone compression theorem for L{f maps, Math. Proc. Royal
Irish Acad. 103A (2003), 55-99.

[10] W. V. Petryshyn, Ezistence of fized points of positive k-set-contractive maps as consequences
of suitable boundary conditions, J. London Math. Soc. 38 (1988), 503-512.



FIXED POINT RESULTS 85

[11] W.V. Petryshyn and P.M. Fitzpatrick, Fized point theorems for multivalued noncompact
inward maps, J. Math. Anal. Appl. 46 (1974), 756-767.

[12] N. Shahzad, Fized point and approzimation results for multimaps in S-KKM class, Nonlinear
Anal. (to appear).

Department of Mathematics (Received 19 01 2004)
National University of Ireland (Revised 03 03 2005)
Galway, Ireland

donal.oregan@nuigalway.ie

Department of Mathematics
King Abdul Aziz University
P.O. Box 80203, Jeddah 21589
Saudi Arabia
nshahzad@kaau.edu.sa

Department of Mathematical Sciences
Florida Institute of Technology
Melbourne, Florida 32901

USA

agarwal@fit.edu



