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Communicated by Slobodan Simić

Abstract. We consider the problem of determining all the members of an
arbitrary family of equiseparable trees. We introduce the concept of satura-
tion (based on the number partitions). After that, we use the same concept to
obtain the least upper bound for the difference in the diameters of two equi-
separable trees with m edges. We prove that this bound is equal to (m−4)/3,
where m is the size of trees.

1. Introduction

Let T be a tree and e an arbitrary edge of T . Then T − e consists of two
components with n1(e) and n2(e) vertices. Conventionally, n1(e) � n2(e). If T ′

and T ′′ are two trees of the same order n and if their edges e′1, e
′
2 . . . , e′n−1 and

e′′1 , e′′2 . . . , e′′n−1 can be labelled so that n1(e′i) = n1(e′′i ) holds for all i = 1, 2, . . . ,
n−1, then T ′ and T ′′ are said to be equiseparable. For the notion of equiseparable
trees and for definition of the values of n1(e) and n2(e) we refer to Gutman [1]. The
definitions of quantities n1(e) and n2(e) in the case of an arbitrary graph is more
complex and it is given also in [1]. It is shown (see [6]) that almost all trees have
equiseparable mates (in the sense that the ratio of the cardinality of trees without
any equiseparable mate to the ones with at least one equiseparable mate converges
to zero when their order tends to infinity). One general method for constructing
the equiseparable trees is presented in [2]. Let T,X and Y be arbitrary trees, each
on more than two vertices. Let u and v be two vertices of T , p a vertex of X and q
a vertex of Y . Let tree T ′ be obtained from T,X and Y by identifying the vertices
u and p and by identifying the vertices v and q. Let T ′′ be obtained in the same
way when p and q change places. In order that T ′ differs from T ′′, the fragments
X and Y (when attached via vertices p and q) are required to be different. If X
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and Y have an equal number of vertices, then trees T ′ and T ′′ are equiseparable.
The statistics of equiseparable trees of order n, (7 � n � 20) is presented in [5]. It
is easy to show that there are no equiseparable mates for n < 7, and the only pair
of such trees for n = 7 is depicted in Figure 1. The largest family of equiseparable
trees for n = 20 has cardinality 603. The notion of equiseparable trees is closely
connected to the Wiener index (mentioned for the first time in [7], and later well
studied in chemistry and graph theory) and the Zenkevich index (see [8]). These
indices can be expressed as

W (G) =
n∑

i=1

n1(ei)n2(ei)

and

Z(G) =
√

gn
n∑

i=1

1√
(gn1(ei) + h)(gn2(ei) + h)

,

where G is an arbitrary graph on n vertices, and g ≈ 14, h ≈ 1. For more details
on equiseparable trees and their implementations one can see [2], [3] and [5].
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Figure 1. Pair of equiseparable trees of the smallest order. Each
edge e is labelled by the corresponding value n1(e).

In Section 2, we present a method for the determination of large families of
equiseparable trees. This method is not only based on graph theory but also on
some notions of number theory. By observating known families of equiseparable
trees we saw that the diameters of two equiseparable trees do not differ too much.
This motivates us to consider (in Section 3), the problem of determining the upper
bound for |dm(T ′)− dm(T ′′)|, where T ′ and T ′′ are two such trees. We prove that
this bound is equal to (m− 4)/3, where m is the size of trees.

2. Determination of Equiseparable Trees of Large Order

Furthermore, let m denote the size of an arbitrary tree. Obviously, every family
of equiseparable trees is uniquely determined by the values

(2.1) n1(e1), n1(e2), . . . , n1(em),

which can be considered as a nondecreasing sequence. We consider the problem of
determining all equiseparable trees for a given sequence (2.1). Firstly we ensure
that the given sequence is graphable (in the sense that it generates at least one tree).
Let e = xy be an arbitrary edge of a tree T and let n1(e) be the corresponding
value. This means that one component of T − e has n1(e) − 1 edges, while the
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other component has at least n1(e) − 1 edges. Suppose that the vertex x belongs
to the first component. Then, the sum of values corresponding to edges different
from e and incident to x, equals n1(e) − 1. In other words, these values represent
one partition of the number n1(e) − 1. (The partition of the number n ∈ N is a
set of positive integers {a1, a2, . . . , ak}, such that ai �= 0, ai � n, i = 1, 2, . . . , k

and
∑k

i=1 ai = n. For more details see [4].) We say that the element k of the
sequence (2.1) is saturated, if there is a partition of the number k − 1 among the
other elements of the same sequence, such that the same element cannot be used
in more than one saturation. Note that the element k = 1 is saturated by default.
By the recursion, we get that for saturation of element k we need exactly k − 1
elements which are less than k. Clearly, the sequence is graphable if and only if each
of its elements is saturated. Also, having a saturation of all elements, we can easily
reconstruct the corresponding tree. For example, in the sequence [1, 1, 1, 1, 2, 3],
3 is saturated by 2, and 2 is saturated by 1, while ones are saturated by default.
This can be written as 3(2(1)), 1, 1, 1 (from which we reconstruct the first tree of
Figure 1). Also, the elements of the same sequence can be saturated in the following
way: 3(1, 1), 2(1), 1 (which leads us to the second tree of Figure 1).

In the following two lemmas we give a necessary and sufficient conditions for
the sequence (2.1) be graphable.

Lemma 2.1. If a nondecreasing sequence n1(ei), i = 1, 2, . . . ,m, is graphable,
then the following inequality holds:

|Ek| � |E1|+ |E2|+ · · ·+ |Ek−1|
k − 1

, k = 2, 3, . . . ,
⌊m + 1

2

⌋
,

where Ek denotes the set of edges ei such that n1(ei) = k, i ∈ {1, 2, . . . ,m}.
Proof. For the saturation of n1(ei) = k we need k − 1 elements which are

less than k (all these elements correspond to the edges of the same component of
T − ei). Therefore, we have

(k − 1)|Ek| � |E1|+ |E2|+ · · ·+ |Ek−1|.
Also, since n2(ei) � n1(ei), we need at least k − 1 elements less than k, which
correspond to the edges of the other component. This implies k � �(m + 1)/2�. �

Lemma 2.2. The nondecreasing sequence n1(ei), i = 1, 2, . . . , m, is graphable
if the followinf two conditions hold:

(i) there is a saturation of each element n1(ei) of the corresponding sequence
(all these elements correspond to the edges of one component of T − ei);

(ii) there are at least k− 1 elements less than k which correspond to the edges
of the other component.

Proof. Obviously, a nondecreasing sequence n1(ei), i = 1, 2, . . . ,m corre-
sponds to some tree if the edges of that tree can be labelled by elements of the
given sequence such that for every edge ei its label n1(ei) determines the order of
one component of T − ei (this is provided by condition (i)), where the order of
this component is less than or equal to the order of the other component (this is
provided by condition (ii)). This completes the proof. �
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Recall that the saturation of an arbitrary element n1(ei) is based on the par-
tition of the number n1(ei) − 1 into the smaller elements of the given sequence.
Therefore, we immediately obtain the following lemma.

Lemma 2.3. The number of different saturations of the element n is less than
or equal to the number of all partitions p(n) of n.

The following table can, therefore, be used to obtain an upper bound for the
number of saturations of an arbitrary element.

n 1 2 3 4 5 6 7 8 9 10 11 12 13
p(n) 1 2 3 5 7 11 15 22 30 42 56 77 101

. . .

Table 1. The cardinality of different partitions of the number n ∈ N.

The concept of saturation yields all equiseparable trees for a given graphable
sequence. For example, the sequence [1, 1, 1, 1, 2, 2, 3, 3, 4] generates three equisep-
arable trees, since we can saturate all its elements in three different ways. These
saturations are⎧⎪⎪⎨

⎪⎪⎩
4(3(2(1)))
3(2(1))
1
1

,

⎧⎨
⎩

4(3(2(1)))
3(1, 1)
2(1)

,

⎧⎨
⎩

4(3(1, 1)) ←− 1. tail
3(2(1)) ←− 2. tail
2(1) ←− 3. tail
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Figure 2. One of the three trees corresponding to the sequence
[1, 1, 1, 1, 2, 2, 3, 3, 4]. Three tails are determined by edges labelled
by 4, 3 and 2 and these edges are incident to the same vertex x.

Note that some elements are not included in the saturation of other elements (in
the third representation these elements are 4, 3 and 2). The edges which correspond
to these elements are incident to the same vertex. One can observe that every
representation can be naturally partitioned into tails (see the third representation).
Each tail is determined by its largest element k and consists of exactly k elements.
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It is an easy exercise to prove that this is a property of all tails. An element of a
tail together with its saturation we call a subtail.

The concept of saturation enables us to avoid searching among all trees of the
same order, and therefore, presents a method for obtaining very large families of
equiseparable trees. Also, the concept of saturation will be a useful tool in the next
Section.

3. Diameter of Equiseparable Trees

Here we consider the difference between the diameters of the equiseparable
trees. Furthermore we do not make any distinction between an element of some
(sub)tail and the corresponding edge. Therefore, when we talk about paths in a
(sub)tail, we think of paths in the corresponding tree.

Lemma 3.1. (i) The longest path in a (sub)tail which includes the largest ele-
ment of the (sub)tail is shorter than or equal to the number of distinct elements of
the (sub)tail.

(ii) For the elimination of element k of a (sub)tail, different from the largest
element, (such that the saturation is preserved) we need k new elements.

Proof. The longest path (in a (sub)tail) which contains the largest element
also contains some of the elements labelled by 1 (this path must ends by some
terminal vertex). Such a path is represented by a strictly decreasing subsequence
of the elements in a (sub)tail. Since the length of this path equals to the number of
elements in a such subsequence, statement (i) follows. Furthermore, every element
k is saturated by k − 1 other elements. Also, the element k is included in the
saturation of the largest element of the (sub)tail. If we eliminate the element
k from this (sub)tail (i.e., remove it together with its saturation in some other
(sub)tail, and put the other elements in its place), we must put exactly k new
elements instead of the eliminated element (the saturation of the largest element
must be preserved), and the statement (ii) is proved. �

We illustrate the statements of the previous lemma by an example. Consider
the tail 8(4(3(2(1))), 3(2(1))). The longest path which includes the edge labelled
by 8 consists of edges labelled by 8, 4, 3, 2 and 1, respectively (these edges are
labelled by strictly decreasing elements, and the length of the path is 5). We can
eliminate the element 4 from this tail by forming a new tail in the following way
(the added elements are underlined):{

8(1, 1, 1, 1, 3(2(1)))
4(3(2(1)))

Naturally, the elimination of some element is possible only if we have a suffi-
cient number of new elements in the remaining tails for that and it is not uniquely
determined. Also, the elimination of some element will change the tree, but, af-
ter elimination, we will obtain an equiseparable mate of the given tree. When
eliminating some element k, at most k − 2 elements, which are less than k, can
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be eliminated. Incidentally, in the previous elimination, beside the element 4, we
transfer the elements 3 and 2 in the other tail.

Theorem 3.1. If T ′ and T ′′ are equiseparable mates with m edges, then
|dm(T ′)− dm(T ′′)| � (m− 4)/3.

Proof. We have seen that a tree can be represented by its subtails. The
longest path in a tree (whose length represents a diameter) is determined by two
(sub)tails, so that the largest elements of these (sub)tails correspond to the edges
which belong to this path. With no loss of generality, we can assume that diameter
dm(T ′) = d′ (d′ � 2) is determined by the two tails:{

a(. . . 1) ←− tail A

b(. . . 1) ←− tail B

We have that these tails correspond to exactly a + b edges. Consider the
problem: which is the minimal number of edges in tree T ′ that can be transferred
so that decreasing the diameter (by elimination of some elements) to d′′ (d′′ < d′)
is possible? In this case, we can assume that a + b = d′ (in other words: there
are no equal elements in each of the chosen tails or, equivalently, the tails have a
form A = a(a − 1(a − 2(. . . 2(1)) . . . ))) and B = b(b − 1(b − 2(. . . 2(1)) . . . ))) ). If
a + b > d′, then we have indeed elements which are in excess in tails A and B, in
sense that the corresponding edges do not belong to the largest path.

Suppose that d′′ = a + b − (k + l), 1 � k � a, 1 � l � b. In order to decrease
the diameter a + b to a + b − (k + l), we, certainly, need to decrease the number
of different elements in A to a − k and in B to b − l. Therefore, by Lemma 3.1,
the minimal number of new edges is k + l + 2. After decreasing, we obtain two
new tails: A′ (with k + 1 elements) and B′ (with l + 1 elements) and repeat the
procedure in order to decrease the number of different elements in each of them to
min{a − k, b − l} and so on. Repeation of the procedure stops when the last tails
obtained consist of at most min{a − k, b − l} different elements, each. Therefore,
to decrease the number of different elements in A and B we need α � k + 1 and
β � l + 1 new elements, respectively.

The difference between diameters is equal to d′ − d′′ = k + l. In order to prove
that this difference is less than or equal to (m− 4)/3, it is sufficient to prove:

k + l � (a + b + α + β)− 4
3

,

and, since (m − 4)/3 monotonically increases, it is sufficient to prove the case for
α = k + 1, β = l + 1:

k + l � a + b + k + 1 + l + 1− 4
3

,

In this case a � 2k+1 and b � 2l+1 hold. Hence, if we substitute a by 2k+1, and
b by 2l + 1 in the inequality above we get k + l � k + l, and the proof follows. �
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Figure 3. Equiseparable mates for m = 16. The diameters differ
by �(m− 4)/3� = 4.

Let d′ and d′′ be the diameters of two equiseparable trees, and let d′ � d′′. By
using the same notation as in the previous theorem we get

(3.1) d′ = a + b � 2(k + l) + 2 and α + β � k + l + 2.

Since, for the common size of both trees we have m = d′ + α + β, we get
m � 3(k+ l)+4, where d′−d′′ = k+ l. Therefore, if we have the equalities in (3.1),
we obtain d′ − d′′ � (m− 4)/3, and this explains our upper bound. Equiseparable
trees with extremely different diameters can be obtained in a similar way as those
in Figure 3 (Here, we have k = l = 2 and the mentioned equalities hold). However,
for m = 13, we have �(m− 4)/3� = 3, but this bound is not reached for any pair of
equiseparable trees on 13 edges. One can show that the same holds for m = 13+6s,
s = 1, 2, . . . . In these cases, the integer value of our bound can be decreased by 1.
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