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A NOTE ON DIFFERENCES OF POWER MEANS

Slavko Simić

Communicated by Stevan Pilipović

Abstract. We give some new inequalities concerning the differences of power
means.

1. Introduction

Let 𝑥̃𝑛 = {𝑥𝑖}𝑛1 , 𝑝𝑛 = {𝑝𝑖}𝑛1 denote two sequences of positive real numbers with∑︀𝑛
1 𝑝𝑖 = 1. From the Theory of Convex Means (cf. [1], [2], [3]), it is well known

that for 𝑡 > 1,

(1)
𝑛∑︁
1
𝑝𝑖𝑥
𝑡
𝑖 >

(︂ 𝑛∑︁
1
𝑝𝑖𝑥𝑖

)︂𝑡
,

and vice versa for 0 < 𝑡 < 1, The equality sign in (1) occurs if and only if all
members of 𝑥̃𝑛 are equal (cf. [1]).

In this article we shall consider the difference

𝑑𝑡 = 𝑑(𝑛)
𝑡 = 𝑑(𝑛)

𝑡 (𝑥̃𝑛, 𝑝𝑛) :=
𝑛∑︁
1
𝑝𝑖𝑥
𝑡
𝑖 −
(︂ 𝑛∑︁

1
𝑝𝑖𝑥𝑖

)︂𝑡
, 𝑡 > 1,

and thus generated sequence 𝑑 = {𝑑𝑚}𝑚>2 of non-negative real numbers.
By the above, if all members of the sequence 𝑥̃𝑛 are equal, then all members

of 𝑑 are zero; hence this trivial case will be excluded in the sequel.
An interesting fact is that there exists an explicit constant 𝑐𝑚, independent of

the sequences 𝑥̃𝑛 and 𝑝𝑛, such that 𝑑𝑚−1𝑑𝑚+1 > 𝑐𝑚(𝑑𝑚)2, 𝑚 > 3.
On the contrary, we show that there is no constant 𝐶𝑚, depending only on 𝑚,

such that 𝑑𝑚−1𝑑𝑚+1 6 𝐶𝑚(𝑑𝑚)2.
Nontrivial lower bound for 𝑑𝑚 and corresponding integral inequalities will also

be given.
Finally we posed an open problem concerning the above matter.
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2. Results

Denote by 𝑆+ the space of all positive sequences. Our main result is

Theorem 1. Let 𝑝𝑛, 𝑥̃𝑛 ∈ 𝑆+ and 𝑑𝑚 = 𝑑(𝑛)
𝑚 :=

∑︀𝑛
1 𝑝𝑖𝑥

𝑚
𝑖 − (

∑︀𝑛
1 𝑝𝑖𝑥𝑖)𝑚;

𝑚 ∈ N. Then

(2) 𝑑𝑚−1𝑑𝑚+1 > 𝑐𝑚(𝑑𝑚)2, 𝑚 > 3,

with the best possible constant 𝑐𝑚 = 1− 2
𝑚(𝑚−1) .

This inequality is very precise. For example

𝑑
(2)
2 𝑑

(2)
4 −

2
3
(︀
𝑑

(2)
3
)︀2 = 1

3(𝑝1𝑝2)2(1 + 𝑝1𝑝2)(𝑥1 − 𝑥2)6.

Non-trivial lower bound for 𝑑𝑚 follows.

Theorem 2. For 𝑑𝑚 defined as above, we have

𝑑𝑚 >

(︂
𝑚

2

)︂
(𝑑3/3)𝑚−2

(𝑑2)𝑚−3 , 𝑚 > 2.

Applying the standard procedure (cf. [1, p. 131]), we pass from finite sums to
definite integrals and obtain

Theorem 3. Let 𝑓(𝑡), 𝑝(𝑡) be non-negative, continuous and integrable functions
for 𝑡 ∈ [𝑎, 𝑏], with

∫︀ 𝑏
𝑎
𝑝(𝑡) 𝑑𝑡 = 1. Denote

𝐷𝑚 = 𝐷𝑚(𝑎, 𝑏 ; 𝑓, 𝑝) :=
∫︁ 𝑏
𝑎

𝑝(𝑡) 𝑓𝑚(𝑡) 𝑑𝑡−
(︂∫︁ 𝑏
𝑎

𝑝(𝑡) 𝑓(𝑡) 𝑑𝑡
)︂𝑚
.

Then
(i) 𝐷𝑚−1𝐷𝑚+1 >

(︀
1− 2

𝑚(𝑚−1)
)︀
(𝐷𝑚)2, 𝑚 > 3;

(ii) If 𝑓(𝑡) ̸= 𝐶, 𝑡 ∈ [𝑎, 𝑏], we have

𝐷𝑚 >

(︂
𝑚

2

)︂
(𝐷3/3)𝑚−2

(𝐷2)𝑚−3 , 𝑚 > 2.

3. Proofs

We start with an interesting formula. For 𝑝𝑛, 𝑥̃𝑛 ∈ 𝑆+, making a shift 𝑥𝑖 →
𝑥𝑖 + 𝑡, we obtain

𝑑𝑚(𝑡) :=
𝑛∑︁
1
𝑝𝑖(𝑥𝑖 + 𝑡)𝑚 −

(︂ 𝑛∑︁
1
𝑝𝑖(𝑥𝑖 + 𝑡)

)︂𝑚
=
𝑛∑︁
1
𝑝𝑖(𝑡+ 𝑥𝑖)𝑚 −

(︂
𝑡+

𝑛∑︁
1
𝑝𝑖𝑥𝑖

)︂𝑚
.

Developing, we get

(3) 𝑑𝑚(𝑡) =
𝑛∑︁
2
𝑑𝑖

(︂
𝑚

𝑖

)︂
𝑡𝑚−𝑖.

Therefore 𝑑𝑚(𝑡) belongs to the class of Appell polynomials i.e., 𝑑′𝑚(𝑡) = 𝑚𝑑𝑚−1(𝑡)
(cf [3], [4]).
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If the properties of this class of polynomials lead to the proof of Theorem 1 is
left to the readers to examine. For example, by (1), 𝑑4(𝑡) is non-negative for each
𝑡 ∈ R. Hence by (3),

𝑑4(𝑡) = 𝑑4 + 4𝑑3𝑡+ 6𝑑2𝑡2 > 0.
Putting 𝑡 = − 1

3
𝑑3
𝑑2

, we obtain (2) with 𝑚 = 3.
In this article we turn the other way, noting that (2) can be rewritten in the

form
𝑑𝑚−1

(𝑚− 1)(𝑚− 2)
𝑑𝑚+1

(𝑚+ 1)𝑚 >
(︁ 𝑑𝑚
𝑚(𝑚− 1)

)︁2
, 𝑚 > 3.

Hence, (2) is equivalent to the assertion that 𝑑𝑚
𝑚(𝑚−1) is log-convex for 𝑚 > 3.

Definition. A sequence of positive numbers {𝑐𝑚} is log-convex (𝑐𝑚 ∈ 𝐿𝐶) if
𝑐𝑚−1𝑐𝑚+1 > (𝑐𝑚)2.

We quote here some useful lemmas from log-convex theory (cf [3]).

Lemma 3.1. A positive sequence {𝑐𝑚} is log-convex if and only if the inequality
𝑐𝑚−1𝑢

2 + 2𝑐𝑚𝑢𝑣 + 𝑐𝑚+1𝑣
2 > 0 holds for each real 𝑢, 𝑣.

Lemma 3.2. Let 𝑎𝑚, 𝑏𝑚 ∈ 𝐿𝐶 and 𝐴,𝐵,𝐶 be arbitrary positive constants.
Then: (i) 𝐴𝐶𝑚+𝐵𝑎𝑚 ∈ 𝐿𝐶; (ii) 𝐴𝑎𝑚 +𝐵𝑏𝑚 ∈ 𝐿𝐶.

Now we are able to produce a proof of Theorem 1 by induction on 𝑛.

Proof of Theorem 1. For 𝑛 = 2 we have to prove that

(4) 𝑝1𝑥
𝑚
1 + 𝑝2𝑥𝑚2 − (𝑝1𝑥1 + 𝑝2𝑥2)𝑚

𝑚(𝑚− 1) ∈ 𝐿𝐶,

holds for each positive 𝑥1, 𝑥2, 𝑝1, 𝑝2 with 𝑝1 + 𝑝2 = 1. To this end, we need the
following simple assertion

Lemma 3.3. If 𝐴 > 𝐵 > 0, then 𝐴
𝑚−𝐵𝑚
𝑚 ∈ 𝐿𝐶, holds for 𝑚 > 2.

Now, for fixed 𝑥1, 𝑥2, 𝑝1, 𝑝2 and arbitrary 𝜉 > 1 put 𝐴 = 𝜉, 𝐵 = 𝑝1𝜉 + 𝑝2; note
that 𝐴 > 𝐵 since 𝑝1 + 𝑝2 = 1. By lemmas 1, 3 and 2(i), for arbitrary 𝑢, 𝑣 ∈ R,
𝑚 > 3, we get

𝑝1𝑥
𝑚−1
2

(︁𝜉𝑚−2 − (𝑝1𝜉 + 𝑝2)𝑚−2

𝑚− 2

)︁
𝑢2 + 2𝑝1𝑥𝑚2

(︁𝜉𝑚−1 − (𝑝1𝜉 + 𝑝2)𝑚−1

𝑚− 1

)︁
𝑢𝑣(5)

+ 𝑝1𝑥𝑚+1
2

(︁𝜉𝑚 − (𝑝1𝜉 + 𝑝2)𝑚

𝑚

)︁
𝑣2 > 0.

Integrating (5) with respect to 𝜉 over 𝜉 ∈ [1, 𝑥1/𝑥2], we obtain

𝑝1𝑥
𝑚−1
1 + 𝑝2𝑥𝑚−1

2 − (𝑝1𝑥1+𝑝2𝑥2)𝑚−1

(𝑚− 1)(𝑚− 2) 𝑢2 + 2𝑝1𝑥
𝑚
1 + 𝑝2𝑥𝑚2 − (𝑝1𝑥1+𝑝2𝑥2)𝑚

𝑚(𝑚− 1) 𝑢𝑣

+𝑝1𝑥
𝑚+1
1 + 𝑝2𝑥𝑚+1

2 − (𝑝1𝑥1 + 𝑝2𝑥2)𝑚+1

(𝑚+ 1)𝑚 𝑣2 > 0.

Therefore by Lemma 1 we conclude that (4) is true.
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Let 𝑇 := 1
1−𝑝𝑛
∑︀𝑛−1

1 𝑝𝑖𝑥𝑖. Then

𝑑
(𝑛)
𝑚

𝑚(𝑚− 1) = (1− 𝑝𝑛)
𝑑

(𝑛−1)
𝑚

𝑚(𝑚− 1) + (1− 𝑝𝑛)𝑇𝑚 + 𝑝𝑛𝑥𝑚𝑛 − ((1− 𝑝𝑛)𝑇 + 𝑝𝑛𝑥𝑛)𝑚

𝑚(𝑚− 1) .

Since 𝑑(𝑛−1)
𝑚

𝑚(𝑚−1) ∈ 𝐿𝐶 by induction hypothesis, by (4) and Lemma 2(ii), it follows

that 𝑑(𝑛)
𝑚

𝑚(𝑚−1) ∈ 𝐿𝐶, and the proof is done. �

To see that the constant 𝑐𝑚 = 1 − 2
𝑚(𝑚−1) is best possible, consider the rep-

resentation (3). Since variable 𝑡 is independent of the sequences 𝑝𝑛, 𝑥̃𝑛, we have
𝑑𝑚(𝑡) ∼ 𝑑2

(︀
𝑚
2
)︀
𝑡𝑚−2 (𝑡→∞). Hence

𝑑𝑚−1(𝑡)𝑑𝑚+1(𝑡)
(𝑑𝑚(𝑡))2 ∼

(︀
𝑚−1

2
)︀
𝑡𝑚−3(︀𝑚+1

2
)︀
𝑡𝑚−1(︀(︀

𝑚
2
)︀
𝑡𝑚−2
)︀2 = 𝑐𝑚 (𝑡→∞).

Proof of Theorem 2. From (2) we get 𝑑𝑚+1/𝑑𝑚 > 𝑐𝑚(𝑑𝑚/𝑑𝑚−1), 𝑚 > 3.
Hence

𝑚∏︁
3

(︂
𝑑𝑘+1

𝑑𝑘

)︂
>
𝑚∏︁
3

(𝑘 + 1)(𝑘 − 2)
𝑘(𝑘 − 1)

𝑚∏︁
3

(︂
𝑑𝑘
𝑑𝑘−1

)︂
,

i.e.,
𝑑𝑚+1

𝑑𝑚
>
(︁ 𝑚+ 1

3(𝑚− 1)

)︁(︁𝑑3
𝑑2

)︁
, 𝑚 > 2.

Therefore, the conclusion follows from

𝑑𝑚
𝑑2

=
𝑚−1∏︁

2

(︂
𝑑𝑘+1

𝑑𝑘

)︂
>
𝑚−1∏︁

2

(︂
𝑘 + 1
𝑘 − 1

)︂𝑚−1∏︁
2

(︂
𝑑3
3𝑑2

)︂
=
(︂
𝑚

2

)︂(︂
𝑑3
3𝑑2

)︂𝑚−2
. �

Proof of Theorem 3. Write 𝑑(𝑛)
𝑚 in the form

𝑑(𝑛)
𝑚 =

∑︀𝑛
1 𝑝𝑛𝑖𝑥

𝑚
𝑛𝑖∑︀𝑛

1 𝑝𝑛𝑖
−
(︂∑︀𝑛

1 𝑝𝑛𝑖𝑥𝑛𝑖∑︀𝑛
1 𝑝𝑛𝑖

)︂𝑚
,

with 𝑝𝑛𝑖 := 𝑝
(︀
𝑎 + 𝑖 𝑏−𝑎𝑛

)︀
, 𝑥𝑛𝑖 := 𝑓

(︀
𝑎 + 𝑖 𝑏−𝑎𝑛

)︀
. Passing to the limit, we obtain

lim𝑛→∞ 𝑑(𝑛)
𝑚 = 𝐷𝑚 and from Theorems 1, 2 the assertions of Theorem 3 follow. �

There remains a problem of inverse inequality for the sequence 𝑑.

Question 1. Is there a constant 𝐶𝑚, independent of 𝑝𝑛, 𝑥̃𝑛 ∈ 𝑆+, such that
𝑑𝑚−1𝑑𝑚+1 6 𝐶𝑚(𝑑𝑚)2, 𝑚 > 2.

The answer to this question is negative.

Proof. We apply a special choice of the sequences 𝑝𝑛, 𝑥̃𝑛 ∈ 𝑆+. Namely, for
fixed 𝑛 > 2 let 𝑝𝑖 :=

(︀
𝑛−1
𝑖−1
)︀
/2𝑛−1; 𝑥𝑖 := (1− 𝑡)𝑖−1(1 + 𝑡)𝑛−𝑖, −1 < 𝑡 < 1. We obtain

a sequence 𝑑* = {𝑑*𝑚(𝑡)} with

𝑑*𝑚(𝑡) =
(︁ (1− 𝑡)𝑚 + (1 + 𝑡)𝑚

2

)︁𝑛−1
− 1.
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For sufficiently large 𝑛, we have
𝑑*2(1/

√
2) ∼ (3/2)𝑛−1; 𝑑*4(1/

√
2) ∼ (17/4)𝑛−1; 𝑑*3(1/

√
2) ∼ (5/2)𝑛−1.

Hence 𝐶3 > (51/50)𝑛−1 →∞ (𝑛→∞). �

Therefore, we have to reformulate the problem.

Question 2. Is there a constant 𝐶𝑚,𝑛 such that 𝑑(𝑛)
𝑚−1𝑑

(𝑛)
𝑚+1 6 𝐶𝑚,𝑛(𝑑

(𝑛)
𝑚 )2,

for each 𝑚,𝑛 > 2, independently of sequences 𝑝𝑛, 𝑥̃𝑛 ∈ 𝑆+?

The best possible constant (if exists) is given by

𝐶𝑚,𝑛 = sup
{︂
𝑑

(𝑛)
𝑚−1𝑑

(𝑛)
𝑚+1

(𝑑(𝑛)
𝑚 )2

| 𝑝𝑛, 𝑥̃𝑛 ∈ 𝑆+

}︂
Examining the sequence 𝑑*, we conclude that 𝐶𝑚,𝑛 > (1 + 𝐶/𝑚2)𝑛−1, where

𝐶 is an absolute constant.
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