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THE KERZMAN-STEIN OPERATOR
FOR THE ELLIPSE

Milutin R. Dostanié

Communicated by Stevan Pilipovié

ABSTRACT. We give, in the case of ellipse, a simple connection between the
spectrum of the Kerzman—Stein operator and the eccentricity of the ellipse.

1. Introduction

Let Q C C be a bounded domain with twice differentiable boundary and 7 =
7(£) be the unit tangent vector at a & € 99, oriented positively with respect to .
If |d¢| is the arclength measure on 9€, then the Kerzman—Stein operator is defined
(on L%(0%2)) by

L /7€)  7(2)
Af(z) = [ A(z,8) f(€)|dE|, where A(z,&) =— —=—.
84 211 (§ -z £-— z)

The space L%(09) is defined using the hermitian inner product

(f.9) = / £(6) 9@ |de].
o0

The kernel A(+, -) is bounded at the diagonal—the apparent singularities cancel each
other. Having in mind that A is bounded on 012, it follows that A is a Hilbert—
Schmidt operator. The operator A can be represented in the form A = C' — C*,
where C : L2(0Q2) — L%(99) is a (singular) Cauchy operator defined by

Cf(z) = %/ g(’fl d.
o0

(Here, integral is interpreted in the sense of Principal Value.)
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From this, it follows that A* = —A and the spectrum of the operator A is
discrete and imaginary, except for an accumulation point at zero. The operator A
first appeared in the paper of Kerzman and Stein [3] where they gave a new method
for computing the Riemann map in one dimension. In a later article [4], Kerzman
formulated some problems concerning the operator A, including the following.

PROBLEM 1.1 (Kerzman 1979). Relate the spectrum of the Kerzman—Stein op-
erator to the geometry of the domain.

The first paper giving some results concerning to above problem is [1]. Bolt
therein proved the following theorem.

THEOREM 1.1. The Kerzman—Stein operator for an ellipse has eigenvalues
+i\, where each +i\, has multiplicity two. If ellipse is parametrized by t —
et +pe” (0 < p<1)and \y = Ny = --- >0, then \,, = Bnp?" (1 + 0(1)),
p — 0+, where 0 < B, < 1 and it can be computed explicitly.

In this paper (in the case of ellipse) we give a connection between the spectrum
of the operator A and the eccentricity of ellipse. This connection is expressed
through the Hilbert—Schmidt norm of the operator A using a double integral which
depends on the eccentricity of an ellipse. This integral is hard for computation and
we express it only in the form of a series.

2. Main result
Let A ={z:|z| > 1} and Q = {(z,y) : 2*/a® + y*/b? < 1}.

THEOREM 2.1. a) If A\, (A) denotes the eigenvalues of the operator A for ellipse
0%, then

1 1 —wz?| 1 — wé?| — |1 — wz€|?
A (4) = - /‘ (=W = L= w0 e,
" OA OA

22 € —2P1 - wzeP

1—+v1—¢2
14+v1—e2

b) For ellipses with small (enough) eccentricity, the eccentricity is uniquely
determined by the Hilbert-Schmidt norm of operator A (or by the spectrum of the
operator A).

where w = and e denote the eccentricity of the ellipse 0S2.

REMARK 2.1. The Bolt result relates to the asymptotic behavior of the eigen-
values of the Kerzman—Stein operator for the family of ellipses (not only one ellipse)
“tending" to unit circle.

PROOF. a) For our proof it is suitable to put a = a+ 8, b=a—0, a > > 0.
Then w = B/a, and the function p(§) = af + B/€ realizes a conformal mapping of
A onto C~\ Q. Let Ag : L2(OA) — L?(0A) and V : L2(982) — L2(OA) be linear
operators defined by

Aof(z) = / Ko(= &) f(€)|de], V(=) = Flo()V/ ().
OA
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Here Ko( =4/ \/ &)-Alp (€)) . Let us denote the eigenvalues of the
operator AO by An (AO) The operator V is an isometry and we have A, (A) = A, (Aop)
and so, > A2(A) = > A2(Ap). Having on mind that the eigenvalues of the
operator A (Ap) is imaginary, we have

21 YA = ) = =Y ) - - [ [ Kot Plaag

OA OA

(with s, (T), we denote the singular values of the operator T'; for more information
about singular values see [2]). If £ € 9A we have

¢'() d§ ¢'(€)
0" (&)1 [d€] " (€]

and then we can transform Ky(-,-) to the following form

_EVYOVY () | Z (VEOVE(2)
(22) Ko=) = 50700 — o) *%( 2@ — 2(2) )

Having on mind that for z,£ € 0A, we have
VIOVTE) _ Ja B2 a - BlE _ Vi-wP\1-uw
e(§) — »(2) al + B/ —az— Bz (€ —2)(1 —wzf)
and from we conclude

£ V11— wz? \/1—w§ Z V1—w22y/1—we?
2 (€ - 2)(1 —wz§) T (€ —2)(1 —w2g)

7(p(§)) = = i§

Ko(z,é-)

i.e.,

(2.3)  Ko(z,6) = S [(1—@2 )z (1—w§ )2 (l—wZQ)ﬁ(l_w§2)§

2m(€§ — 2) 1—-wzé 1 —wzg
(because z,£ € OA). From (2.1)) and (2.3]) we obtain
1 1 —
2.4 2(4) = —— — = D - D?|dz|-
(24) SN =g [ [ gD DRl e
" BYNGYN
where

V1 7w22\/1 — w2

D= (1 —wz8)

Now, we prove that

(2.5) = - |dz|\d5|

OA OA
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Indeed, we have

w(z = §)?
QZ BZ e NCICE / / =221 = w2 12 1
// —£)? dz dg
E—2)(€—2)(1 —wz£)? iz i€

-] iif; .

OA OA

From and (2.5) we get
2 \D|2
;MA) — 2 | [ e el

0A OA

ie.

> [1— w21 - wg?| — |1 —wag]?

b) Let

1= w2211 - we?) — 1 wet?
- // Bt = L e g
e |€ — 22|11 — wz¢|

Now, we prove that the function G is monotone on some interval [0, wo], wo € (0, 1).
From that, the statement b) of Theorem 2 follows.

Let |z| =1, 0 <t < 1. Then we have

I1—tz2? = (1—tz2)3(1—t%?)7 = ZA
where
An(z) — Z (1]/62> (_22)k <n1£2k) (_22)71—]@ n —2n Z (1/2) < 1/2k) Z4k.
k=0 k=0
So, if |z] = |¢| = 1, then we obtain
(2.7) [1—t2°] [1—=t&%| =) Bu(z,6)t
n=0

where By, (2,€) = > 1o Ak(2)An—k(§). If we put z = ¢ in (2.7), we get

ZAk n k' —OfOI‘TL23
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If |z| = 1, by differentiation of both sides of the equality
(1—t2?)2(1— 12727 = > Ay ()"
n=0

with respect to z and multiplying the resulting equality with (1 — tzz)% (1— tz_Q)%
we get

Z " (Z A%(Z)An_k(z)> =t(z7%—2)
n=0  “k=0

ie, Dop_g AL (2)An_k(2) =0 for n > 2. So, we obtained (for |z = 1)

(2.8) > A (2)An k() =0, D Ap(2)An k() =0 forn>3.
k=0

From we get o
(2.9) 1 —w2?|[1 —w€?| - |1 - wzef?
= (B1(2,8) + 2 + 28) w + (Ba(z,£) — 1)w* + i Bn(z,6)w", (0<w<1)
By direct calculation we obtain -
Bi(2,€) + 2 + 2 = —3(: - €)? - 1(-2),
By(z,6) - 1= —4(z - 0z + £2(1 - 7€),

0B
where 2,£ € OA. From 1' it follows that B, (z,z) = 0, ——

and 9¢

(2.10)

=0forn>3
E==z

1 0%B,,
g ae e 6

From ([2.9)), (2.10), and (2.11)), it follows that the integral on the right-hand side in
(2.6) is not singular and so we have

, 1 1 d (|1 —wz?||1 — wé?|
= —— — dz||d€|.
Glw)=-53 // T dw( ol |dz| [d€]
A OA
Since

4 (w2l

dw [1— wz]?
1— 2 1— 2

M

11— wzg]? T (ln(l —wz?) +1In(1 — we?) — 2In(1 — wzg))]

(2.11) B, (z,¢) =

_ 7|1 —w2?| 1 — wé?|

€
|1 — wz§|2 Re Z wnfl(é-n o Zn)2:| 7
n=1
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we get
G/(W) — iwn—l Re i / |1 — w22‘ |1 — w€2| (é-n _ z")2|dz| |d£|
> 272 | | e ARl - vt P |
n= A OA
- [1- w221 - we?)
1 1 —wz?||1 —wf 9
K, =— T — 2" |dz| |dE].
@ =gr5 [ [ e o (€ — ="l
OA IA
It is easy to see that K, is real and so we have
[e )
(2.12) Gw) =) " Ky (w).
n=1
Using the binomial expansion we obtain (for |z| = 1)
(2.13) 11— wz?| = ch(w)z%,
keZ
where 12\ (12
)= X ()17 e
k>0
k—l=n
It is clear that c_,(w) = ¢p(w). If n > 0, we can easily conclude that
12\ (12
2.14 n =(-1)"w" Y.
(214) ente) = 07 S (V) (1)

Since ‘(142)’ < Lin~3/2, (L; does not depend on n) from |D we obtain
L
(L+np3/2 = 7

where the constant Lo does not depend on n and w. Using (12.13]) we calculate K.
Namely

(2.15) len ()] < 0<w<1)

2

_ 20\, |2n+1]
(2.16) Ki(w) = .2 ch(w) w ,
neL
2
n—1
X |n Z A (w)wnt2ml 49 Z(n -r) Z Cm (W) Cmgr (w) W27

meZ r=1 meZ

in the case n > 2. From (2.14)) and (2.16) it follows that
2
(2.18) Kl(w):fl_iojﬂ(lJro(l)), w04
If n > 2, from (2.15) and (2.17)) we obtain the estimate
1

2.19 Ko (w)| < Lynw"———
(219) [Fn(w)] < Lgnoh ——
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where the constant Lz does not depend on n and w € (0,1). From (2.12)), (2.18) and
(2.19) we conclude that there exists wg € (0,1) such that G'(w) < 0 for w € (0,wp)
i.e., the function G is monotone on [0, wp]. Theorem 2 is proved. O
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