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THE KERZMAN–STEIN OPERATOR
FOR THE ELLIPSE

Milutin R. Dostanić

Communicated by Stevan Pilipović

Abstract. We give, in the case of ellipse, a simple connection between the
spectrum of the Kerzman–Stein operator and the eccentricity of the ellipse.

1. Introduction

Let Ω ⊂ C be a bounded domain with twice differentiable boundary and 𝜏 =
𝜏(𝜉) be the unit tangent vector at a 𝜉 ∈ 𝜕Ω, oriented positively with respect to Ω.
If |𝑑𝜉| is the arclength measure on 𝜕Ω, then the Kerzman–Stein operator is defined
(on 𝐿2(𝜕Ω)) by

𝐴𝑓(𝑧) =
∫︁
𝜕Ω

𝒜(𝑧, 𝜉) 𝑓(𝜉) |𝑑𝜉|, where 𝒜(𝑧, 𝜉) = 1
2𝜋𝑖

(︂
𝜏(𝜉)
𝜉 − 𝑧

− 𝜏(𝑧)
𝜉 − 𝑧

)︂
.

The space 𝐿2(𝜕Ω) is defined using the hermitian inner product

(𝑓, 𝑔) =
∫︁
𝜕Ω

𝑓(𝜉) 𝑔(𝜉) |𝑑𝜉|.

The kernel𝒜(·, ·) is bounded at the diagonal—the apparent singularities cancel each
other. Having in mind that 𝒜 is bounded on 𝜕Ω, it follows that 𝐴 is a Hilbert–
Schmidt operator. The operator 𝐴 can be represented in the form 𝐴 = 𝐶 − 𝐶*,
where 𝐶 : 𝐿2(𝜕Ω)→ 𝐿2(𝜕Ω) is a (singular) Cauchy operator defined by

𝐶𝑓(𝑧) = 1
2𝜋𝑖

∫︁
𝜕Ω

𝑓(𝜉)
𝜉 − 𝑧

𝑑𝜉.

(Here, integral is interpreted in the sense of Principal Value.)
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From this, it follows that 𝐴* = −𝐴 and the spectrum of the operator 𝐴 is
discrete and imaginary, except for an accumulation point at zero. The operator 𝐴
first appeared in the paper of Kerzman and Stein [3] where they gave a new method
for computing the Riemann map in one dimension. In a later article [4], Kerzman
formulated some problems concerning the operator 𝐴, including the following.

Problem 1.1 (Kerzman 1979). Relate the spectrum of the Kerzman–Stein op-
erator to the geometry of the domain.

The first paper giving some results concerning to above problem is [1]. Bolt
therein proved the following theorem.

Theorem 1.1. The Kerzman–Stein operator for an ellipse has eigenvalues
± 𝑖𝜆𝑛 where each ± 𝑖𝜆𝑛 has multiplicity two. If ellipse is parametrized by 𝑡 ↦→
𝑒𝑖𝑡 + 𝜌𝑒−𝑖𝑡 (0 < 𝜌 < 1) and 𝜆1 > 𝜆2 > · · · > 0, then 𝜆𝑛 = 𝛽𝑛𝜌2𝑛−1(1 + 𝑜(1)),
𝜌→ 0+, where 0 < 𝛽𝑛 6 1 and it can be computed explicitly.

In this paper (in the case of ellipse) we give a connection between the spectrum
of the operator 𝐴 and the eccentricity of ellipse. This connection is expressed
through the Hilbert–Schmidt norm of the operator 𝐴 using a double integral which
depends on the eccentricity of an ellipse. This integral is hard for computation and
we express it only in the form of a series.

2. Main result

Let Δ = {𝑧 : |𝑧| > 1} and Ω =
{︀

(𝑥, 𝑦) : 𝑥2/𝑎2 + 𝑦2/𝑏2 < 1
}︀

.

Theorem 2.1. a) If 𝜆𝑛(𝐴) denotes the eigenvalues of the operator 𝐴 for ellipse
𝜕Ω, then∑︁

𝑛

𝜆2
𝑛(𝐴) = − 1

2𝜋2

∫︁
𝜕Δ

∫︁
𝜕Δ

|1− 𝜔𝑧2| |1− 𝜔𝜉2| − |1− 𝜔𝑧𝜉|2

|𝜉 − 𝑧|2|1− 𝜔𝑧𝜉|2 |𝑑𝑧| |𝑑𝜉|,

where 𝜔 = 1−
√

1− 𝑒2

1 +
√

1− 𝑒2
and 𝑒 denote the eccentricity of the ellipse 𝜕Ω.

b) For ellipses with small (enough) eccentricity, the eccentricity is uniquely
determined by the Hilbert–Schmidt norm of operator 𝐴 (or by the spectrum of the
operator 𝐴).

Remark 2.1. The Bolt result relates to the asymptotic behavior of the eigen-
values of the Kerzman–Stein operator for the family of ellipses (not only one ellipse)
“tending" to unit circle.

Proof. a) For our proof it is suitable to put 𝑎 = 𝛼+𝛽, 𝑏 = 𝛼−𝛽, 𝛼 > 𝛽 > 0.
Then 𝜔 = 𝛽/𝛼, and the function 𝜙(𝜉) = 𝛼𝜉 + 𝛽/𝜉 realizes a conformal mapping of
Δ onto C r Ω. Let 𝐴0 : 𝐿2(𝜕Δ) → 𝐿2(𝜕Δ) and 𝑉 : 𝐿2(𝜕Ω) → 𝐿2(𝜕Δ) be linear
operators defined by

𝐴0𝑓(𝑧) =
∫︁
𝜕Δ

𝐾0(𝑧, 𝜉)𝑓(𝜉) |𝑑𝜉|, 𝑉 𝑓(𝑧) = 𝑓(𝜙(𝑧))
√︀
𝜙′(𝑧).
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Here𝐾0(𝑧, 𝜉) =
√︀
𝜙′(𝑧)·

√︀
𝜙′(𝜉)·𝒜 (𝜙(𝑧), 𝜙(𝜉)) . Let us denote the eigenvalues of the

operator𝐴0 by 𝜆𝑛(𝐴0). The operator 𝑉 is an isometry and we have 𝜆𝑛(𝐴) = 𝜆𝑛(𝐴0)
and so,

∑︀
𝑛 𝜆

2
𝑛(𝐴) =

∑︀
𝑛 𝜆

2
𝑛(𝐴0). Having on mind that the eigenvalues of the

operator 𝐴 (𝐴0) is imaginary, we have

(2.1)
∑︁
𝑛

𝜆2
𝑛(𝐴) =

∑︁
𝑛

𝜆2
𝑛(𝐴0) = −

∑︁
𝑛

𝑠2𝑛(𝐴0) = −
∫︁
𝜕Δ

∫︁
𝜕Δ

|𝐾0(𝑧, 𝜉)|2|𝑑𝑧| |𝑑𝜉|

(with 𝑠𝑛(𝑇 ), we denote the singular values of the operator 𝑇 ; for more information
about singular values see [2]). If 𝜉 ∈ 𝜕Δ we have

𝜏(𝜙(𝜉)) = 𝜙
′(𝜉)
|𝜙′(𝜉)|

𝑑𝜉

|𝑑𝜉|
= 𝑖𝜉 𝜙

′(𝜉)
|𝜙′(𝜉)|

and then we can transform 𝐾0(·, ·) to the following form

(2.2) 𝐾0(𝑧, 𝜉) = 𝜉

2𝜋

√︀
𝜙′(𝜉)

√︀
𝜙′(𝑧)

𝜙(𝜉)− 𝜙(𝑧) + 𝑧2𝜋

(︂√︀
𝜙′(𝜉)

√︀
𝜙′(𝑧)

𝜙(𝜉)− 𝜙(𝑧)

)︂
.

Having on mind that for 𝑧, 𝜉 ∈ 𝜕Δ, we have√︀
𝜙′(𝜉)

√︀
𝜙′(𝑧)

𝜙(𝜉)− 𝜙(𝑧) =
√︀
𝛼− 𝛽/𝑧2

√︀
𝛼− 𝛽/𝜉2

𝛼𝜉 + 𝛽/𝜉 − 𝛼𝑧 − 𝛽/𝑧 =

√︀
1− 𝜔𝑧2

√︁
1− 𝜔𝜉2

(𝜉 − 𝑧)(1− 𝜔𝑧 𝜉)

and from (2.2) we conclude

𝐾0(𝑧, 𝜉) = 𝜉

2𝜋

√︀
1− 𝜔𝑧2

√︁
1− 𝜔𝜉2

(𝜉 − 𝑧)(1− 𝜔𝑧 𝜉)
+ 𝑧2𝜋

√
1− 𝜔𝑧2

√︀
1− 𝜔𝜉2

(𝜉 − 𝑧)(1− 𝜔𝑧𝜉)

i.e.,

(2.3) 𝐾0(𝑧, 𝜉) = 𝜉

2𝜋(𝜉 − 𝑧)

[︃
(1− 𝜔𝑧2) 1

2 (1− 𝜔𝜉2) 1
2

1− 𝜔𝑧 𝜉
− (1− 𝜔𝑧2) 1

2 (1− 𝜔𝜉2) 1
2

1− 𝜔𝑧𝜉

]︃
(because 𝑧, 𝜉 ∈ 𝜕Δ). From (2.1) and (2.3) we obtain

(2.4)
∑︁
𝑛

𝜆2
𝑛(𝐴) = − 1

4𝜋2

∫︁
𝜕Δ

∫︁
𝜕Δ

1
|𝜉 − 𝑧|2

|𝐷 −𝐷|2 |𝑑𝑧| · |𝑑𝜉|,

where

𝐷 =
√

1− 𝜔𝑧2
√︀

1− 𝜔𝜉2
(1− 𝜔𝑧𝜉) .

Now, we prove that

(2.5)
∫︁
𝜕Δ

∫︁
𝜕Δ

1−𝐷2

|𝜉 − 𝑧|2
|𝑑𝑧| |𝑑𝜉| = 0.
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Indeed, we have∫︁
𝜕Δ

∫︁
𝜕Δ

1−𝐴2

|𝜉 − 𝑧|2
|𝑑𝑧| |𝑑𝜉| =

∫︁
𝜕Δ

∫︁
𝜕Δ

𝜔(𝑧 − 𝜉)2

|𝜉 − 𝑧|2(1− 𝜔𝑧𝜉)2 |𝑑𝑧| |𝑑𝜉|

=
∫︁
𝜕Δ

∫︁
𝜕Δ

𝜔(𝑧 − 𝜉)2

(𝜉 − 𝑧)(𝜉 − 𝑧)(1− 𝜔𝑧𝜉)2
𝑑𝑧

𝑖𝑧

𝑑𝜉

𝑖𝜉

= 𝜔
∫︁
𝜕Δ

∫︁
𝜕Δ

𝑑𝑧𝑑𝜉

(1− 𝜔𝑧𝜉)2 = 0.

From (2.4) and (2.5) we get∑︁
𝑛

𝜆2
𝑛(𝐴) = − 1

4𝜋2

∫︁
𝜕Δ

∫︁
𝜕Δ

2(|𝐷|2 − 1)
|𝜉 − 𝑧|2

|𝑑𝑧| |𝑑𝜉|

i.e.

(2.6)
∑︁
𝑛

𝜆2
𝑛(𝐴) = − 1

2𝜋2

∫︁
𝜕Δ

∫︁
𝜕Δ

|1− 𝜔𝑧2| |1− 𝜔𝜉2| − |1− 𝜔𝑧𝜉|2

|𝜉 − 𝑧|2|1− 𝜔𝑧𝜉|2 |𝑑𝑧| |𝑑𝜉|.

b) Let

𝐺(𝜔) = − 1
2𝜋2

∫︁
𝜕Δ

∫︁
𝜕Δ

|1− 𝜔𝑧2| |1− 𝜔𝜉2| − |1− 𝜔𝑧𝜉|2

|𝜉 − 𝑧|2|1− 𝜔𝑧𝜉|2 |𝑑𝑧| |𝑑𝜉|.

Now, we prove that the function 𝐺 is monotone on some interval [0, 𝜔0], 𝜔0 ∈ (0, 1).
From that, the statement b) of Theorem 2 follows.

Let |𝑧| = 1, 0 6 𝑡 < 1. Then we have

|1− 𝑡𝑧2| = (1− 𝑡𝑧2) 1
2 (1− 𝑡 𝑧2) 1

2 =
∞∑︁
𝑛=0
𝐴𝑛(𝑧) 𝑡𝑛

where

𝐴𝑛(𝑧) =
𝑛∑︁
𝑘=0

(︂
1/2
𝑘

)︂
(−𝑧2)𝑘

(︂
1/2
𝑛− 𝑘

)︂
(−𝑧2)𝑛−𝑘 = (−1)𝑛𝑧−2𝑛

∞∑︁
𝑘=0

(︂
1/2
𝑘

)︂(︂
1/2
𝑛− 𝑘

)︂
𝑧4𝑘.

So, if |𝑧| = |𝜉| = 1, then we obtain

(2.7) |1− 𝑡𝑧2| |1− 𝑡 𝜉2| =
∞∑︁
𝑛=0
𝐵𝑛(𝑧, 𝜉)𝑡𝑛

where 𝐵𝑛(𝑧, 𝜉) =
∑︀𝑛
𝑘=0𝐴𝑘(𝑧)𝐴𝑛−𝑘(𝜉). If we put 𝑧 = 𝜉 in (2.7), we get

𝐵𝑛(𝑧, 𝑧) =
𝑛∑︁
𝑘=0
𝐴𝑘(𝑧)𝐴𝑛−𝑘(𝑧) = 0 for 𝑛 > 3.
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If |𝑧| = 1, by differentiation of both sides of the equality

(1− 𝑡𝑧2) 1
2 (1− 𝑡𝑧−2) 1

2 =
∞∑︁
𝑛=0
𝐴𝑛(𝑧)𝑡𝑛

with respect to 𝑧 and multiplying the resulting equality with (1− 𝑡𝑧2) 1
2 (1− 𝑡𝑧−2) 1

2

we get
∞∑︁
𝑛=0
𝑡𝑛
(︂ 𝑛∑︁
𝑘=0
𝐴′𝑘(𝑧)𝐴𝑛−𝑘(𝑧)

)︂
= 𝑡 (𝑧−3 − 𝑧)

i.e.,
∑︀𝑛
𝑘=0𝐴

′
𝑘(𝑧)𝐴𝑛−𝑘(𝑧) = 0 for 𝑛 > 2. So, we obtained (for |𝑧| = 1)

(2.8)
𝑛∑︁
𝑘=0
𝐴′𝑘(𝑧)𝐴𝑛−𝑘(𝑧) = 0,

𝑛∑︁
𝑘=0
𝐴𝑘(𝑧)𝐴𝑛−𝑘(𝑧) = 0 for 𝑛 > 3.

From (2.7) we get

(2.9) |1− 𝜔𝑧2| |1− 𝜔𝜉2| − |1− 𝜔𝑧𝜉|2

=
(︀
𝐵1(𝑧, 𝜉) + 𝑧𝜉 + 𝑧𝜉

)︀
𝜔 + (𝐵2(𝑧, 𝜉)− 1)𝜔2 +

∞∑︁
𝑛=3
𝐵𝑛(𝑧, 𝜉)𝜔𝑛, (0 < 𝜔 < 1)

By direct calculation we obtain

(2.10)
𝐵1(𝑧, 𝜉) + 𝑧𝜉 + 𝑧𝜉 = − 1

2 (𝑧 − 𝜉)2 − 1
2
(︀
𝑧 − 𝜉

)︀2
,

𝐵2(𝑧, 𝜉)− 1 = − 1
8 (𝑧 − 𝜉)2(𝑧 + 𝜉)2(︀1− 𝑧2𝜉2)︀2

,

where 𝑧, 𝜉 ∈ 𝜕Δ. From (2.8) it follows that 𝐵𝑛(𝑧, 𝑧) = 0, 𝜕𝐵𝑛
𝜕𝜉

⃒⃒⃒
𝜉=𝑧

= 0 for 𝑛 > 3
and

(2.11) 𝐵𝑛(𝑧, 𝜉) = 1
2!
𝜕2𝐵𝑛
𝜕𝜉2

⃒⃒⃒
𝜉=𝑧

(𝜉 − 𝑧)2 + · · ·

From (2.9), (2.10), and (2.11), it follows that the integral on the right-hand side in
(2.6) is not singular and so we have

𝐺′(𝜔) = − 1
2𝜋2

∫︁
𝜕Δ

∫︁
𝜕Δ

1
|𝜉 − 𝑧|2

𝑑

𝑑𝜔

(︂
|1− 𝜔𝑧2| |1− 𝜔𝜉2|
|1− 𝜔𝑧𝜉|2

)︂
|𝑑𝑧| |𝑑𝜉|.

Since
𝑑

𝑑𝜔

(︂
|1− 𝜔𝑧2| |1− 𝜔𝜉2|
|1− 𝜔𝑧𝜉|2

)︂
= |1− 𝜔𝑧

2| |1− 𝜔𝜉2|
|1− 𝜔𝑧𝜉|2 Re

[︂
𝑑

𝑑𝜔

(︀
ln(1− 𝜔𝑧2) + ln(1− 𝜔𝜉2)− 2 ln(1− 𝜔𝑧𝜉)

)︀]︂
= −|1− 𝜔𝑧

2| |1− 𝜔𝜉2|
|1− 𝜔𝑧𝜉|2 Re

[︂ ∞∑︁
𝑛=1
𝜔𝑛−1(𝜉𝑛 − 𝑧𝑛)2

]︂
,
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we get

𝐺′(𝜔) =
∞∑︁
𝑛=1
𝜔𝑛−1 Re

(︃
1

2𝜋2

∫︁
𝜕Δ

∫︁
𝜕Δ

|1− 𝜔𝑧2| |1− 𝜔𝜉2|
|𝜉 − 𝑧|2|1− 𝜔𝑧𝜉|2 (𝜉𝑛 − 𝑧𝑛)2|𝑑𝑧| |𝑑𝜉|

)︃
.

Let
𝐾𝑛(𝜔) = 1

2𝜋2

∫︁
𝜕Δ

∫︁
𝜕Δ

|1− 𝜔𝑧2| |1− 𝜔𝜉2|
|𝜉 − 𝑧|2|1− 𝜔𝑧𝜉|2 (𝜉𝑛 − 𝑧𝑛)2|𝑑𝑧| |𝑑𝜉|.

It is easy to see that 𝐾𝑛 is real and so we have

(2.12) 𝐺′(𝜔) =
∞∑︁
𝑛=1
𝜔𝑛−1𝐾𝑛(𝜔).

Using the binomial expansion we obtain (for |𝑧| = 1)

(2.13) |1− 𝜔𝑧2| =
∑︁
𝑘∈Z
𝑐𝑘(𝜔)𝑧2𝑘,

where
𝑐𝑛(𝜔) =

∑︁
𝑘,𝑙> 0
𝑘−𝑙=𝑛

(︂
1/2
𝑘

)︂(︂
1/2
𝑙

)︂
(−𝜔)𝑘+𝑙.

It is clear that 𝑐−𝑛(𝜔) = 𝑐𝑛(𝜔). If 𝑛 > 0, we can easily conclude that

(2.14) 𝑐𝑛(𝜔) = (−1)𝑛𝜔𝑛
∞∑︁
𝜈=0

(︂
1/2
𝜈

)︂(︂
1/2
𝜈 + 𝑛

)︂
𝜔2𝜈 .

Since
⃒⃒(︀1/2
𝑛

)︀⃒⃒
6 𝐿1𝑛

−3/2, (𝐿1 does not depend on 𝑛) from (2.14) we obtain

(2.15) |𝑐𝑛(𝜔)| 6 𝐿2

(1 + |𝑛|)3/2 𝜔
|𝑛|, (0 < 𝜔 < 1)

where the constant 𝐿2 does not depend on 𝑛 and 𝜔. Using (2.13) we calculate 𝐾𝑛.
Namely

(2.16) 𝐾1(𝜔) = − 2
1− 𝜔2

∑︁
𝑛∈Z
𝑐2𝑛(𝜔) · 𝜔|2𝑛+1|,

(2.17) 𝐾𝑛(𝜔) = − 2
1− 𝜔2

×

[︃
𝑛
∑︁
𝑚∈Z
𝑐2𝑚(𝜔)𝜔|𝑛+2𝑚| + 2

𝑛−1∑︁
𝑟=1

(𝑛− 𝑟)
∑︁
𝑚∈Z
𝑐𝑚(𝜔) 𝑐𝑚+𝑟(𝜔)𝜔|𝑛+2𝑚+𝑟|

]︃
in the case 𝑛 > 2. From (2.14) and (2.16) it follows that

(2.18) 𝐾1(𝜔) = − 2𝜔
1− 𝜔2 (1 + 𝑜(1)), 𝜔 → 0 + .

If 𝑛 > 2, from (2.15) and (2.17) we obtain the estimate

(2.19) |𝐾𝑛(𝜔)| 6 𝐿3 𝑛𝜔
𝑛 1

1− 𝜔2
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where the constant 𝐿3 does not depend on 𝑛 and 𝜔 ∈ (0, 1). From (2.12), (2.18) and
(2.19) we conclude that there exists 𝜔0 ∈ (0, 1) such that 𝐺′(𝜔) < 0 for 𝜔 ∈ (0, 𝜔0)
i.e., the function 𝐺 is monotone on [0, 𝜔0]. Theorem 2 is proved. �
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