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Abstract. We systematically analyze regularization of different kinds of ul-
tradistribution semigroups and sines, in general, with nondensely defined gen-
erators and contemplate several known results concerning the regularization
of Gevrey type ultradistribution semigroups. We prove that, for every closed
linear operator 𝐴 which generates an ultradistribution semigroup (sine), there
exists a bounded injective operator 𝐶 such that 𝐴 generates a global differ-
entiable 𝐶-semigroup (𝐶-cosine function) whose derivatives possess some ex-
pected properties of operator valued ultradifferentiable functions. With the
help of regularized semigroups, we establish the new important characteriza-
tions of abstract Beurling spaces associated to nondensely defined generators
of ultradistribution semigroups (sines). The study of regularization of ul-
tradistribution sines also enables us to perceive significant ultradifferentiable
properties of higher-order abstract Cauchy problems.

1. Introduction and preliminaries

The theory of 𝐶-semigroups and cosine functions is an attractive field of in-
vestigations of many authors and becomes unavoidable in the analysis of ill-posed
abstract Cauchy problems. The essential part of the theory is clearly presented
in the monograph [9] of deLaubenfels. On the other hand, the abstract Cauchy
problems in the framework of the theory of 𝜔-ultradistribution spaces were studied
by Beals [2, 3], Ciorănescu–Zsidó [7, 8] and Kunstmann [20]. The foundation
of the theory of ultradistribution semigroups with densely defined generators can
be attributed to Beals [3], Chazarain [5], Ciorănescu [6], Emami-Rad [10], Ushi-
jima [30] and it turns out that such a concept plays a crucial role in the analysis
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of abstract Cauchy problems in the spaces of operator valued Denjoy–Karleman–
Komatsu’s ultradistributions. The notions of regular ultradistribution semigroups
of the Beurling class and abstract Beurling spaces were introduced by Ciorănescu
in [6] (cf. also [19, Example 1.6], [20, Examples 6.1, 6.2, 6.3] and Example 3.1
given below). The first comprehensive analysis of ultradistribution semigroups and
sines was obtained by Komatsu [13]. The definition of ultradistribution semigroup
and its generator employed therein has been recently reconsidered in [16] following
the approaches of Kunstmann [18] and Wang [31] for distribution semigroups.

The paper is organized as follows. The main objective in Theorem 2.1 and
Corollary 2.1 given below is to precisely profile mutual relations between some sub-
classes of Gevrey type ultradistribution semigroups whose generators possess poly-
nomially bounded resolvent, analytic semigroups of growth order 𝑟 > 0 of Tanaka
[29] and global 𝐶-semigroups. In such a way, we obtain an extension of the well
known result of Kunstmann (cf. [18, Section 5]) which asserts that every generator
of a distribution semigroup of [18] is also the generator of a global 𝐶-semigroup,
and refine several estimates given in [3, Lemma 1], [6, Remark 2.6, Corollary 4.3],
[9, Example 22.31] as well as in the proof of [18, Theorem 5.5]. Although far from
being optimal, we will see in Remark 2.1 how these improvements can be used in a
more detailed analysis of the incomplete higher-order Cauchy problems (cf. for in-
stance [9, Section XXV] and [28]). It is worth pointing out that the essential part of
the proof of Theorem 2.1 follows from the important analysis of Beals [2, 3], which
contains the explicit construction of global 𝐶-semigroups, and the construction of
complex powers of operators presented by Straub in [28]. Furthermore, global 𝐶-
semigroups constructed in Theorem 2.1 and Corollary 2.1 are 𝐶∞-differentiable in
𝑡 > 0 and derivatives of such semigroups possess interesting properties of operator
valued ultradifferentiable functions of the Beurling type; we parenthetically stress
that a similar analysis can be derived in the case of distribution semigroups and
refer the interested reader to the paper [30] of Ushijima.

The central theme of Section 3 is the regularization of ultradistribution semi-
groups whose generators possess ultra-polynomially bounded resolvent. In Theo-
rem 3.1, we reveal the important relation between such classes of ultradistribution
semigroups and local differentiable 𝐶-semigroups. The use of local 𝐶-semigroups
presents the main tool in proving Theorem 3.2, which precisely profiles the solu-
tion space of a generator of an ultradistribution semigroup of the Beurling class
and extends the assertions of [6, Theorem 4.1, Corollary 4.2] to nondensely defined
operators. The main result of Section 3, and of the present paper, is Theorem 3.3
stating that for every generator 𝐴 of an ultradistribution semigroup, there exists
a bounded injective operator 𝐶 such that 𝐴 generates a global differentiable 𝐶-
semigroup whose derivatives possess some expected properties of operator valued
ultradifferentiable functions. Since we mainly work in the spaces of abstract Beurl-
ing ultradistributions, the condition (M.3) is practically imposed throughout the
third section. At this place, it is worth noting that it is not clear whether the
assertions of Theorem 3.1, Theorem 3.2 and Theorem 3.3 remain true if (M.3) is
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replaced by a somewhat weaker condition (M.3)′ (cf. [6, p. 191]). Finally, in The-
orem 3.4 we adapt several results of Beals [2, 3] to the present-day definition of
regularized semigroups.

Concerning the higher-order abstract Cauchy problems, we recall an old result
of Chazarain and Fattorini (cf. for instance [32]) which asserts that the problem

(𝐴𝐶𝑃𝑛) :

⎧⎨⎩
𝑢 ∈ 𝐶𝑛

(︀
[0,∞) : 𝐸

)︀
∩ 𝐶
(︀
[0,∞) : [𝐷(𝐴)]

)︀
,

𝑢(𝑛)(𝑠) = 𝐴𝑢(𝑠), 𝑠 > 0,
𝑢(𝑖)(0) = 𝑥𝑖, 𝑖 ∈ {0, 1, . . . , 𝑛− 1},

is not well posed in the classical sense if 𝐴 is unbounded and 𝑛 > 3. Neubrander
[25] was the first who applied integrated semigroups in the analysis of general-
ized well-posedness of the problem (𝐴𝐶𝑃2). In Theorem 4.3, we extend the well
known result of Xiao and Liang [32, Theorem 6.2, p. 132] which can be viewed as
an essential application of regularized semigroups to (𝐴𝐶𝑃𝑛). As an outcome, we
establish remarkable ultradifferentiable properties of entire solutions of (𝐴𝐶𝑃𝑛).
The assumptions of Theorem 4.3 are no longer applicable to generators of ultradis-
tribution sines whose generators possess an ultra-polynomially bounded resolvent.
This is the main reason for considering Theorem 4.4 which clarifies an interesting
relation between ultradistribution sines and global differentiable 𝐶-cosine functions.

We employ the standard terminology; by 𝐸 and 𝐿(𝐸) are denoted a complex
Banach space and the Banach algebra of bounded linear operators on 𝐸. For a
closed linear operator 𝐴 on 𝐸, 𝐷(𝐴), Kern(𝐴), 𝑅(𝐴), 𝜌(𝐴) denote its domain,
kernel, range and resolvent set, respectively. Put 𝐷∞(𝐴) :=

⋂︀
𝑛∈N0

𝐷(𝐴𝑛); [𝐷(𝐴)]
stands for the Banach space 𝐷(𝐴) equipped with the graph norm.

Definition 1.1. Let 𝜏 ∈ (0,∞]. A strongly continuous family (𝑇 (𝑡))𝑡∈[0,𝜏),
resp. (𝐶(𝑡))𝑡∈[0,𝜏), in 𝐿(𝐸) is said to be a (local, if 𝜏 < ∞) 𝐶-semigroup, resp.
𝐶-cosine function, if:

(i.1) 𝑇 (𝑡+ 𝑠)𝐶 = 𝑇 (𝑡)𝑇 (𝑠), for all 𝑡, 𝑠 ∈ [0, 𝜏) with 𝑡+ 𝑠 < 𝜏 , and
(i.2) 𝑇 (0) = 𝐶,

resp.,
(ii.1) 𝐶(𝑡+ 𝑠)𝐶 + 𝐶(|𝑡− 𝑠|)𝐶 = 2𝐶(𝑡)𝐶(𝑠), for all 𝑡, 𝑠 ∈ [0, 𝜏) with 𝑡+ 𝑠 < 𝜏 ,

and
(ii.2) 𝐶(0) = 𝐶.

The (integral) generator of (𝑇 (𝑡))𝑡∈[0,𝜏), resp. (𝐶(𝑡))𝑡∈[0,𝜏), is defined by{︃
(𝑥, 𝑦) ∈ 𝐸 × 𝐸 : 𝑇 (𝑡)𝑥− 𝐶𝑥 =

𝑡∫︁
0

𝑇 (𝑠)𝑦 𝑑𝑠, 𝑡 ∈ [0, 𝜏)
}︃
, resp.

{︃
(𝑥, 𝑦) ∈ 𝐸 × 𝐸 : 𝐶(𝑡)𝑥− 𝐶𝑥 =

𝑡∫︁
0

(𝑡− 𝑠)𝐶(𝑠)𝑦 𝑑𝑠, 𝑡 ∈ [0, 𝜏)
}︃
,

and it is a closed linear operator.
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Let us recall now the basic definitions and notions from the theory of ultradis-
tributions. In the rest of the paper, we will always assume that (𝑀𝑝) is a sequence
of positive real numbers such that 𝑀0 = 1 and that the following condition holds:
(M.1) 𝑀2

𝑝 6𝑀𝑝+1𝑀𝑝−1, 𝑝 ∈ N. Every employment of the conditions:
(M.2) 𝑀𝑛 6 𝐴𝐻𝑛min𝑝+𝑞=𝑛𝑀𝑝𝑀𝑞, 𝑛 ∈ N, for some 𝐴 > 1 and 𝐻 > 1,

(M.3)′
∞∑︀
𝑝=1

𝑀𝑝−1

𝑀𝑝
<∞, and the condition

(M.3) sup
𝑝∈N

∞∑︀
𝑞=𝑝+1

𝑀𝑝+1𝑀𝑞−1

𝑝𝑀𝑝𝑀𝑞
< ∞, which is slightly stronger than (M.3)′, will be

explicitly emphasized.
If 𝑠 > 1, then the Gevrey sequences (𝑝!𝑠), (𝑝𝑝𝑠) and (Γ(1 + 𝑝𝑠)) satisfy the

above conditions, where Γ(·) denotes the Gamma function. Put 𝑚𝑝 := 𝑀𝑝/𝑀𝑝−1,
𝑝 ∈ N; then (M.1) implies that (𝑚𝑝) is increasing and (M.3)′ simply means that∑︀∞
𝑝=1

1
𝑚𝑝

<∞. The associated function of (𝑀𝑝) is defined by𝑀(𝜌) := sup𝑝∈N ln |𝜌|
𝑝

𝑀𝑝
,

𝜌 ∈ C r {0}, 𝑀(0) := 0. We know that the function 𝑡 ↦→𝑀(𝑡), 𝑡 > 0 is increasing
as well as that lim|𝜆|→∞𝑀(𝜆) = +∞ and that the function 𝑀 vanishes in some
open neighborhood of zero. Let us point out that the use of symbols 𝐴 and 𝑀 in
the continuation of the paper is clear from the context.

Suppose 𝑙 > 0, 𝛼 > 0, 𝛽 ∈ R and denote by Λ𝛼, 𝛽, 𝑙 the ultra-logarithmic
region of type 𝑙; notice that such regions were introduced by Chazarain in [5] (cf.
also [23, Section 2.3]) as follows: Λ𝛼, 𝛽, 𝑙 := {𝜆 ∈ C : Re(𝜆) > 𝛼𝑀(𝑙| Im(𝜆)|) + 𝛽}.
We assume that the boundary of Λ𝛼, 𝛽, 𝑙, denoted by Γ𝑙, is upwards oriented. Next,
for given 𝜃 ∈ (0, 𝜋] and 𝑑 ∈ (0, 1], put Σ𝜃 := {𝜆 ∈ C : 𝜆 ̸= 0, | arg(𝜆)| < 𝜃},
𝐵𝑑 := {𝜆 ∈ C : |𝜆| 6 𝑑}, Ω𝜃,𝑑 := Σ𝜃 ∪ 𝐵𝑑, ⌊𝛽⌋ := sup{𝑘 ∈ Z : 𝑘 6 𝛽} and
⌈𝛽⌉ := inf{𝑘 ∈ Z : 𝛽 6 𝑘}. In the rest of the first section, we assume that (𝑀𝑝)
additionally satisfies (M.2) and (M.3)′. Recall ([11]–[13]), the spaces 𝒟(𝑀𝑝) and
𝒟{𝑀𝑝} of the Beurling, resp. the Roumieu ultradifferentiable functions, are defined
by setting:

𝒟(𝑀𝑝) := ind lim𝐾⊆⊆R𝒟
(𝑀𝑝)
𝐾 , resp., 𝒟{𝑀𝑝} := ind lim𝐾⊆⊆R𝒟

{𝑀𝑝}
𝐾 ,

where
𝒟(𝑀𝑝)
𝐾 := proj limℎ→∞𝒟

𝑀𝑝,ℎ
𝐾 , resp., 𝒟{𝑀𝑝}𝐾 := ind limℎ→0𝒟

𝑀𝑝,ℎ
𝐾 ,

𝒟𝑀𝑝,ℎ𝐾 =:
{︀
𝜑 ∈ 𝐶∞(R) : supp𝜑 ⊆ 𝐾, ‖𝜑‖𝑀𝑝,ℎ,𝐾 <∞

}︀
and

‖𝜑‖𝑀𝑝,ℎ,𝐾 := sup
{︁ℎ𝑝|𝜑(𝑝)(𝑡)|

𝑀𝑝
: 𝑡 ∈ 𝐾, 𝑝 ∈ N0

}︁
.

We refer to [11]–[13] for a more detailed analysis of locally convex space valued
ultradifferentiable functions defined on R and corresponding ultradistributions of
the Beurling, resp., Roumieu type. The classes of Beurling, resp., Roumieu ultra-
distributions which take values in a Banach space 𝐸 are denoted by 𝒟′(𝑀𝑝)(𝐸),
resp., 𝒟′{𝑀𝑝}(𝐸) or simply 𝒟′(𝑀𝑝) and 𝒟′{𝑀𝑝} in the case 𝐸 = R. In what fol-
lows, we denote by * either (𝑀𝑝) or {𝑀𝑝}. The similar terminology is used for
the spaces of Beurling and Roumieu type ultradifferentiable functions. The space
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of all ultradifferentiable functions of *-class with the support in [0,∞) is denoted
by 𝒟*0 (𝒟′*0 (𝐸) in the case of 𝐸-valued ultradistributions); further on, ℰ ′*0 denotes
the space of ultradistributions whose supports are compact subsets of [0,∞). The
convolution of operator valued ultradifferentiable functions and operator valued ul-
tradistributions is understood in the sense of [12]. Recall [11], an entire function
of the form 𝑃 (𝜆) =

∑︀∞
𝑝=0 𝑎𝑝𝜆

𝑝, 𝜆 ∈ C, is of class (𝑀𝑝), resp., of class {𝑀𝑝}, if
there exist 𝑙 > 0 and 𝐶 > 0, resp., for every 𝑙 > 0 there exists a constant 𝐶 > 0,
such that |𝑎𝑝| 6 𝐶𝑙𝑝/𝑀𝑝, 𝑝 ∈ N. The corresponding ultradifferential operator
𝑃 (𝐷) =

∑︀∞
𝑝=0 𝑎𝑝𝐷

𝑝 is of class (𝑀𝑝), resp., of class {𝑀𝑝}.
If 𝑓, 𝑔 : R → C are measurable, put 𝑓 *0 𝑔(𝑡) :=

∫︀ 𝑡
0 𝑓(𝑡 − 𝑠) 𝑔(𝑠) 𝑑𝑠. Then

*0 : 𝒟*×𝒟* → 𝒟* is continuous and this justifies the following definition introduced
in [16].

Definition 1.2. Let 𝐺 ∈ 𝒟′*0 (𝐿(𝐸)). If 𝐺 satisfies
(U.1) 𝐺(𝜑 *0 𝜓) = 𝐺(𝜑)𝐺(𝜓), 𝜑, 𝜓 ∈ 𝒟*,
then 𝐺 is called a pre-(UDSG) of *-class. If 𝐺 additionally satisfies

(U.2) 𝒩 (𝐺) :=
⋂︁
𝜑∈𝒟*0

Kern(𝐺(𝜑)) = {0},

then we say that 𝐺 is an ultradistribution semigroup of *-class, (UDSG) for short.
Further on, 𝐺 is called dense if (U.3) holds, where

(U.3) ℛ(𝐺) :=
⋃︁
𝜑∈𝒟*0

𝑅(𝐺(𝜑)) is dense in 𝐸.

The generator 𝐴 of 𝐺 is defined by{︀
(𝑥, 𝑦) ∈ 𝐸 × 𝐸 : 𝐺(−𝜙, )𝑥 = 𝐺(𝜙)𝑦 for all 𝜙 ∈ 𝒟*0

}︀
.

Notice that Definition 1.2 consider ultradistribution semigroups of [5, 6], [10],
[13], [23] and [30] in a great generality.

Let 𝐺 be a (UDSG) of *-class and 𝑇 ∈ ℰ ′*0 . Then 𝑇 * 𝜑 ∈ 𝒟*0 , 𝜑 ∈ 𝒟*0 and the
following definition of the operator 𝐺(𝑇 ) makes sense:

𝐺(𝑇 ) :=
{︀

(𝑥, 𝑦) ∈ 𝐸 × 𝐸 : 𝐺(𝑇 * 𝜑)𝑥 = 𝐺(𝜑)𝑦 for all 𝜑 ∈ 𝒟*0
}︀
.

Note that 𝐴 = 𝐺(−𝛿′) and that 𝐺(𝑇 ) is a closed linear operator [16].
The fiollowing definition of a regular (𝑀𝑝)-ultradistribution semigroup and its

generator was introduced by Ciorănescu in [6].

Definition 1.3. Let 𝐴 be a closed linear operator and let 𝐺 belong to the
space 𝒟

′(𝑀𝑝)
0
(︀
𝐿(𝐸, [𝐷(𝐴)])

)︀
. Then we say that 𝐺 is a regular (𝑀𝑝)-ultradistribution

semigroup generated by 𝐴 if:
(i) 𝐺 * 𝑃 = 𝛿′ ⊗ Id[𝐷(𝐴)] and 𝑃 *𝐺 = 𝛿′ ⊗ Id𝐸 , where 𝑃 = 𝛿′ ⊗ 𝐼 − 𝛿 ⊗ 𝐴 ∈
𝒟
′(𝑀𝑝)
0
(︀
𝐿([𝐷(𝐴)], 𝐸)

)︀
,

(ii) the same as (U.2),
(iii) the linear hull of ℛ(𝐺), denoted by ⟨ℛ(𝐺)⟩, is dense in 𝐸.
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It could be of importance to state the following useful facts concerning ul-
tradistribution semigroups. Arguing as in the proof of [6, Proposition 2.6], one
can verify that the polynomial boundedness of ‖𝑅(· : 𝐴)‖ existing on a suitable
ultra-logarithmic region implies that 𝐴 generates a (UDSG) of (𝑀𝑝)-class. The
previous assertion does not remain true in the case of ultra-polynomial bound-
edness; more precisely, there exists a closed linear operator 𝐴 and an element
𝒟
′(𝑀𝑝)
0
(︀
𝐿(𝐸, [𝐷(𝐴)])

)︀
so that the condition (i) quoted in the formulation of Def-

inition 3 holds and that (U.2) does not hold for 𝐺 (cf. [7, p. 156] and [16]).
The condition (U.2) plays a crucial role in our investigation. Suppose now 𝐺 ∈
𝒟
′(𝑀𝑝)
0
(︀
𝐿(𝐸, [𝐷(𝐴)])

)︀
and 𝐴 is a closed, densely defined operator. Then 𝐺 is a

regular (𝑀𝑝)-ultradistribution semigroup generated by 𝐴 iff 𝐺 is a dense (UDSG)
of (𝑀𝑝)-class generated by 𝐴 [16].

The class of ultradistribution sines can be introduced following the approaches
of Miana [24] and the author [14] for (almost-)distribution cosine functions, or
by means of convolution type equations as it has been done by Komatsu [13].
The concepts presented in [13], [24] and [14] are not so easily comparable in the
ultradistribution case, and in order to simplify our exposition, we shall say that a
closed linear operator 𝐴 generates an ultradistribution sine in 𝐸 iff the operator
𝒜 ≡ ( 0 𝐼

𝐴 0 ) generates an ultradistribution semigroup in 𝐸 × 𝐸.

2. Regularization of Gevrey type ultradistribution semigroups

In this section, we use the construction of complex powers of operators given
by Straub in [28] and refer to [28, 29] for the notion of (analytic) semigroups
of growth order 𝑟 > 0. Our aim is to find the precise relations between Gevrey
type ultradistribution semigroups, analytic semigroups of growth order 𝑟 > 0 and
global 𝐶-semigroups. In order to do that, suppose that (𝑁𝑝) and (𝑅𝑝) are two
sequences of positive numbers which satisfy (M.1). Following Chou (cf. for ex-
ample [11, Definition 3.9, p. 53]), we write 𝑁𝑝 ≺ 𝑅𝑝 if and only if, for every
𝛿 ∈ (0,∞), sup𝑝∈N0 𝑁𝑝𝛿

𝑝/𝑅𝑝 < ∞. The assertions (i), (iv) and (v) of the next
theorem can be attributed to Straub [28]. Herein we notice that the denseness of
𝐴 is not used in the proofs of Propositions 2.2, 2.5, 2.6 and 2.8 as well as Lemmas
2.7 and 2.10 of [28] and that the assertion (v) extends [3, Lemma 1] and some
estimates used in the proof of [18, Lemma 5.4] (cf. also [1, Lemma II-1, Theo-
rem II-3]). The main problem in regularization of ultradistribution semigroups
whose generators do not have polynomially bounded resolvent appears exactly at
this place. Actually, if ‖𝑅(· : 𝐴)‖ is not polynomially bounded on an appropriate
ultra-logarithmic region, then it is not clear whether there exists 𝑛 ∈ N0 such that,
for every 𝑥 ∈ 𝐷(𝐴𝑛+2), the operator 𝑇𝑏(𝑡), defined in the formulation of the next
theorem, fulfills lim𝑡→0+ 𝑇𝑏(𝑡)𝑥 = 𝑥. Then it is not clear how to show that the
operator 𝑇𝑏(𝑡) is injective; see also [3, Lemma 3], [18, Lemma 5.4] and the proof of
[28, Proposition 2.8].
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Theorem 2.1. Suppose, in addition, that there exists a number 𝑏 ∈ (0, 1) such
that
(2.1) 𝑝𝑝/𝑏 ≺𝑀𝑝
and that (𝑀𝑝) satisfies (M.1) and (M.2). If 𝐴 is a closed linear operator such that
there exist 𝛼 > 0, 𝑙 > 0, 𝑀 > 0, 𝛽 ∈ R and 𝑛 ∈ N satisfying

Λ𝛼, 𝛽, 𝑙 ⊆ 𝜌(𝐴) and ‖𝑅(𝜆 : 𝐴)‖ 6𝑀(1 + |𝜆|)𝑛, 𝜆 ∈ Λ𝛼, 𝛽, 𝑙,

then, for every 𝛾 ∈
(︀
0, arctan(cos( 𝑏𝜋2 ))

)︀
, there are an 𝜔 ∈ R and an analytic

operator family (𝑇𝑏(𝑡))𝑡∈Σ𝛾 of growth order 𝑛+1
𝑏 such that the following holds.

(i) For every 𝑡 ∈ Σ𝛾 , the operator 𝑇𝑏(𝑡) is injective.
(ii) For every 𝑡 ∈ Σ𝛾 , 𝐴 generates a global 𝑇𝑏(𝑡)-semigroup (𝑆𝑏,𝑡(𝑠))𝑠>0.
(iii) Let 𝐾 ⊆ [0,∞) be a compact set, 𝑡 ∈ Σ𝛾 and 𝑥 ∈ 𝐸. Then the mapping

𝑠 ↦→ 𝑆𝑏,𝑡(𝑠)𝑥 is infinitely differentiable in 𝑠 > 0 and, for every ℎ > 0,

sup
𝑝∈N0, 𝑠∈𝐾

ℎ𝑝

𝑀𝑝

⃦⃦⃦ 𝑑𝑝
𝑑𝑠𝑝

𝑆𝑏,𝑡(𝑠)𝑥
⃦⃦⃦
<∞.

(iv) There is an 𝐿 > 0 with ‖𝑇𝑏(𝑡)‖ 6 𝐿
(︀

tan(𝛾) Re(𝑡) − | Im(𝑡)|
)︀−(𝑛+1)/𝑏,

𝑡 ∈ Σ𝛾 .
(v) If 𝑥 ∈ 𝐷(𝐴𝑛+2), then there exists lim𝑡→0+

(︀
𝑇𝑏(𝑡)𝑥 − 𝑥

)︀
/𝑡 and, in partic-

ular, lim𝑡→0+ 𝑇𝑏(𝑡)𝑥 = 𝑥.
Furthermore, if 𝐴 is densely defined, then (𝑇𝑏(𝑡))𝑡∈Σ𝛾 is an analytic semigroup of
growth order 𝑛+1

𝑏 whose c.i.g. is −(𝜔 −𝐴)𝑏.

Proof. Let 𝜙 : R → [0,∞) be an infinitely differentiable function satisfying
supp𝜙 ⊆ [0, 1] and

∫︀
R 𝜙(𝑡) 𝑑𝑡 = 1. Put 𝑀1(𝑡) :=

∫︀ 𝑡
0 𝑀(𝑡 − 𝑠)𝜙(𝑠) 𝑑𝑠, 𝑡 ∈ R and

notice that 𝑀1 ∈ 𝐶∞(R) and that [4, Lemma 2.1.3, (2.11)] implies that there exists
a constant 𝐾 > 0 such that
𝑀(𝑡− 𝑠)
𝑀(𝑡) >

𝑀(𝑡− 1)
𝑀(𝑡) >

𝑀(𝑡− 1)
3
2
𝑡
𝑡−1𝑀(𝑡− 1) +𝐾

= 1
3
2
𝑡
𝑡−1 + 𝐾

𝑀(𝑡−1)
→ 2

3 , 𝑡→ +∞.

Thereby, there exist 𝑚 > 0 and 𝑀 > 0 such that:
(2.2) 𝑀(𝑡) 6 𝑚𝑀1(𝑡) +𝑀 6 𝑚𝑀(𝑡) +𝑀, 𝑡 > 0.
Suppose (0, 1) ∋ 𝑏 satisfies 𝑝𝑝/𝑏 ≺𝑀𝑝 and designate by 𝑁(·) the associated function
of the sequence (𝑝𝑝/𝑏). Then 𝑁(|𝜆|) ∼ 1

𝑏𝑒 |𝜆|
𝑏, |𝜆| → ∞ and an application of [11,

Lemma 3.10] gives that, for every 𝜇 > 0, there exist positive real constants 𝑐𝜇 and
𝐶𝜇 such that lim𝜇→0 𝑐𝜇 = 0 and that

(2.3) 𝑀1(𝑙𝜆) 6𝑀(𝑙𝜆) 6 𝑁(𝜇𝑙𝜆) + 𝐶𝜇 6 𝑐𝜇|𝜆|𝑏 + 𝐶𝜇, 𝜆 > 0.
Denote, for 𝜎 > 0 and 𝜍 ∈ R, Λ1

𝜎, 𝜍, 𝑙 :=
{︀
𝜆 ∈ C : Re(𝜆) > 𝜎𝑀1(𝑙| Im(𝜆)|) + 𝜍

}︀
. By

(2.2)–(2.3), we have Λ1
𝛼𝑚, 𝛽+𝛼𝑀, 𝑙 ⊆ Λ𝛼, 𝛽, 𝑙 ⊆ 𝜌(𝐴). Let 𝛾 ∈ (0, arctan(cos( 𝑏𝜋2 )))

and let 𝑎 ∈ (0, 𝜋2 ) satisfy 𝑏 ∈ (0, 𝜋
2(𝜋−𝑎) ) and 𝛾 ∈

(︀
0, arctan(cos(𝑏(𝜋− 𝑎)))

)︀
. Recall,

Ω𝑎,𝑑 = 𝐵𝑑 ∪ Σ𝑎. Thanks to (2.3), one obtains the existence of numbers 𝑑 ∈ (0, 1]
and 𝜔 ∈ R such that Ω𝑎,𝑑 ⊆ Λ1

𝛼𝑚, 𝛽+𝛼𝑀−𝜔, 𝑙 ⊆ 𝜌(𝐴 − 𝜔). Let Γ𝑎,𝑑 and Γ denote
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the upwards oriented boundaries of Ω𝑎,𝑑 and Λ1
𝛼𝑚, 𝛽+𝛼𝑀−𝜔, 𝑙, respectively. Define

𝑇𝑏(𝑡), 𝑡 ∈ Σ𝛾 by

𝑇𝑏(𝑡)𝑥 := 1
2𝜋𝑖

∫︁
Γ𝑎,𝑑

𝑒−𝑡(−𝜆)𝑏𝑅(𝜆 : 𝐴− 𝜔)𝑥 𝑑𝜆, 𝑥 ∈ 𝐸.

By the arguments given in [28, Section 2], we have that (𝑇𝑏(𝑡))𝑡∈Σ𝛾 is an analytic
operator family which satisfies the claimed properties (i), (iv) and (v). Furthermore,
if 𝐴 is densely defined, we have that (𝑇𝑏(𝑡))𝑡∈Σ𝛾 is an analytic semigroup of growth
order 𝑛+1

𝑏 whose c.i.g. is −(𝜔 − 𝐴)𝑏 [28]. Define now, for every 𝑡 = 𝑡1 + 𝑖𝑡2 ∈ Σ𝛾 ,
𝑠 > 0 and 𝑥 ∈ 𝐸,

𝑆1
𝑏,𝑡(𝑠)𝑥 := 1

2𝜋𝑖

∫︁
Γ

𝑒−𝑡(−𝜆)𝑏𝑒𝜆𝑠𝑅(𝜆 : 𝐴− 𝜔)𝑥 𝑑𝜆.

To prove that 𝑆1
𝑏,𝑡(𝑠) ∈ 𝐿(𝐸), notice that, for every 𝜆 /∈ Ω𝑎,𝑑, we have 𝑏 arg(−𝜆) ∈

(𝑏(−𝜋+𝑎), 𝑏(𝜋−𝑎)), cos(𝑏 arg(−𝜆)) ∈ (cos(𝑏(𝜋−𝑎)), 1], tan(𝛾) < cos(𝑏(𝜋−𝑎)) and

|𝑒−𝑡(−𝜆)𝑏 | = 𝑒−𝑡1|𝜆|
𝑏 cos(𝑏 arg(−𝜆))+𝑡2|𝜆|𝑏 sin(𝑏 arg(−𝜆))

6 𝑒−(𝑡1 cos(𝑏 arg(−𝜆))−|𝑡2|)|𝜆|𝑏 6 𝑒−(𝑡1 cos(𝑏(𝜋−𝑎))−|𝑡2|)|𝜆|𝑏 6 𝑒−(𝑡1 tan(𝛾)−|𝑡2|)|𝜆|𝑏 .

This inequality and (2.3) imply that, for all sufficiently small 𝜇 > 0:

(2.4)
⃒⃒
𝑒−𝑡(−𝜆)𝑏𝑒𝜆𝑠‖𝑅(𝜆 : 𝐴− 𝜔)‖

⃒⃒
6𝑀𝑒𝑠(𝛼𝑚𝑀1(𝑙| Im(𝜆)|)+𝛽+𝛼𝑀−𝜔)𝑒−(𝑡1 tan(𝛾)−|𝑡2|)|𝜆|𝑏(1 + |𝜆|+ |𝜔|)𝑛

6𝑀𝜇𝑒
𝑠(𝛽+𝛼𝑀−𝜔)𝑒𝑠𝛼𝑚𝑐𝜇|𝜆|

𝑏

𝑒−(𝑡1 tan(𝛾)−|𝑡2|)|𝜆|𝑏(1 + |𝜆|+ |𝜔|)𝑛, 𝜆 ∈ Γ, |𝜆| > 𝑟.

The use of (2.4) with sufficiently small 𝜇 implies that 𝑆1
𝑏,𝑡(𝑠) ∈ 𝐿(𝐸), as required.

Further on, the Cauchy formula and the previous argumentation enable one to see
that

(2.5)
∫︁
Γ

𝑒𝜆𝑠𝑒−𝑡(−𝜆)𝑏𝑑𝜆 = 0, 𝑠 > 0, 𝑡 ∈ Σ𝛾

and that 𝑇𝑏(𝑡) = 𝑆1
𝑏,𝑡(0), 𝑡 ∈ Σ𝛾 . It is also clear that 𝑆1

𝑏,𝑡(𝑠)𝑇𝑏(𝑡) = 𝑇𝑏(𝑡)𝑆1
𝑏,𝑡(𝑠) and

that 𝑆1
𝑏,𝑡(𝑠)(𝐴− 𝜔) ⊆ (𝐴− 𝜔)𝑆1

𝑏,𝑡(𝑠), 𝑠 > 0, 𝑡 ∈ Σ𝛾 . Using the Fubini theorem, the
resolvent equation and (2.5), one obtains

(𝐴− 𝜔)
𝑠∫︁

0

𝑆1
𝑏,𝑡(𝑟)𝑥 𝑑𝑟 = 1

2𝜋𝑖

𝑠∫︁
0

∫︁
Γ

𝑒𝜆𝑟𝑒−𝑡(−𝜆)𝑏(𝐴− 𝜔)𝑅(𝜆 : 𝐴− 𝜔)𝑥 𝑑𝜆 𝑑𝑟

= 1
2𝜋𝑖

𝑠∫︁
0

∫︁
Γ

𝑒𝜆𝑟𝑒−𝑡(−𝜆)𝑏(𝜆𝑅(𝜆 : 𝐴− 𝜔)𝑥− 𝑥) 𝑑𝜆 𝑑𝑟

= 1
2𝜋𝑖

𝑠∫︁
0

∫︁
Γ

𝑒𝜆𝑟𝑒−𝑡(−𝜆)𝑏𝜆𝑅(𝜆 : 𝐴− 𝜔)𝑥 𝑑𝜆 𝑑𝑟 − 1
2𝜋𝑖

𝑠∫︁
0

∫︁
Γ

𝑒𝜆𝑟𝑒−𝑡(−𝜆)𝑏𝑥 𝑑𝜆 𝑑𝑟
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= 1
2𝜋𝑖

𝑠∫︁
0

∫︁
Γ

𝑒𝜆𝑟𝑒−𝑡(−𝜆)𝑏𝜆𝑅(𝜆 : 𝐴− 𝜔)𝑥 𝑑𝜆 𝑑𝑟

= 1
2𝜋𝑖

∫︁
Γ

[︃ 𝑠∫︁
0

𝑒𝜆𝑟𝑒−𝑡(−𝜆)𝑏𝜆𝑅(𝜆 : 𝐴− 𝜔)𝑥 𝑑𝑟
]︃
𝑑𝜆

= 1
2𝜋𝑖

∫︁
Γ

(𝑒𝜆𝑠 − 1)𝑒−𝑡(−𝜆)𝑏𝑅(𝜆 : 𝐴− 𝜔)𝑥 𝑑𝜆

= 1
2𝜋𝑖

∫︁
Γ

𝑒𝜆𝑠𝑒−𝑡(−𝜆)𝑏𝑅(𝜆 : 𝐴− 𝜔)𝑥 𝑑𝜆− 1
2𝜋𝑖

∫︁
Γ

𝑒−𝑡(−𝜆)𝑏𝑅(𝜆 : 𝐴− 𝜔)𝑥 𝑑𝜆

= 𝑆1
𝑏,𝑡(𝑠)𝑥− 𝑇𝑏(𝑡)𝑥, 𝑠 > 0, 𝑡 ∈ Σ𝛾 , 𝑥 ∈ 𝐸.

This implies that (𝑆1
𝑏,𝑡(𝑠))𝑠>0 is a global 𝑇𝑏(𝑡)-semigroup generated by 𝐴 − 𝜔.

In order to prove differentiability of (𝑆1
𝑏,𝑡(𝑠))𝑠>0, note that the arguments used

in the proof of boundedness of the operator 𝑆1
𝑏,𝑡(𝑠) also show that the integral

1
2𝜋𝑖
∫︀

Γ 𝜆
𝑝𝑒𝜆𝑠𝑒−𝑡(−𝜆)𝑏𝑅(𝜆 : 𝐴 − 𝜔) 𝑑𝜆 converges for all 𝑝 ∈ N. Then the elementary

inequality |𝑒𝜆ℎ − 1| 6 ℎ|𝜆|𝑒Re(𝜆)ℎ, 𝜆 ∈ C, ℎ > 0 and the dominated convergence
theorem yield

𝑑

𝑑𝑠
𝑆1
𝑏,𝑡(𝑠) = 1

2𝜋𝑖

∫︁
Γ

𝜆𝑒𝜆𝑠𝑒−𝑡(−𝜆)𝑏𝑅(𝜆 : 𝐴− 𝜔) 𝑑𝜆, 𝑠 > 0.

Inductively,

(2.6) 𝑑𝑝

𝑑𝑠𝑝
𝑆1
𝑏,𝑡(𝑠) = 1

2𝜋𝑖

∫︁
Γ

𝜆𝑝𝑒𝜆𝑠𝑒−𝑡(−𝜆)𝑏𝑅(𝜆 : 𝐴− 𝜔) 𝑑𝜆, 𝑝 ∈ N0, 𝑠 > 0.

Taking into account (2.3) and (2.6), we easily infer that, for every compact set
𝐾 ⊆ [0,∞), 𝑡 ∈ Σ𝛾 and 𝜇 > 0:

sup
𝑝∈N0, 𝑠∈𝐾

ℎ𝑝

𝑀𝑝

⃦⃦⃦ 𝑑𝑝
𝑑𝑠𝑝

𝑆1
𝑏,𝑡(𝑠)
⃦⃦⃦
6
𝑀

2𝜋

∫︁
Γ

𝑒𝑀(ℎ𝜆)𝑒Re(𝜆)𝑠𝑒−(𝑡1 cos(𝑏(𝜋−𝑎))−|𝑡2|)|𝜆|𝑏

× 𝑒−(𝑡1 tan(𝛾)−|𝑡2|)|𝜆|𝑏(1 + |𝜆|+ |𝜔|)𝑛|𝑑𝜆|

6
𝑀

2𝜋

∫︁
Γ

𝑒𝑀(ℎ𝜆)𝑒𝑠[𝛼𝑀1(𝑙| Im(𝜆)|)+𝛽+𝛼𝑀−𝜔]𝑒−(𝑡1 cos(𝑏(𝜋−𝑎))−|𝑡2|)|𝜆|𝑏

× 𝑒−(𝑡1 tan(𝛾)−|𝑡2|)|𝜆|𝑏(1 + |𝜆|+ |𝜔|)𝑛|𝑑𝜆|

6
𝑀

2𝜋 𝑒
sup𝐾(𝛽+𝛼𝑀−𝜔)

∫︁
Γ

𝑒𝑐𝜇
ℎ𝑏

𝑙𝑏
|𝜆|𝑏+𝐶𝜇𝑒𝛼𝑚 sup𝐾[𝑐𝜇 ℎ

𝑏

𝑙𝑏
|𝜆|𝑏+𝐶𝜇]

× 𝑒−(𝑡1 cos(𝑏(𝜋−𝑎))−|𝑡2|)|𝜆|𝑏(1 + |𝜆|+ |𝜔|)𝑛|𝑑𝜆|

6
𝑀

2𝜋 𝑒
sup𝐾[𝛽+𝛼𝑀−𝜔+𝛼𝑚𝐶𝜇]+𝐶𝜇

∫︁
Γ

𝑒𝑐𝜇
ℎ𝑏

𝑙𝑏
|𝜆|𝑏(1+sup𝐾)

× 𝑒−(𝑡1 cos(𝑏(𝜋−𝑎))−|𝑡2|)|𝜆|𝑏(1 + |𝜆|+ |𝜔|)𝑛|𝑑𝜆|.
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Choosing 𝜇 sufficiently small, we obtain that

sup
𝑝∈N0, 𝑠∈𝐾

ℎ𝑝

𝑀𝑝

⃦⃦⃦ 𝑑𝑝
𝑑𝑠𝑝

𝑆1
𝑏,𝑡(𝑠)
⃦⃦⃦
<∞.

Put now 𝑆𝑏,𝑡(𝑠) := 𝑒𝜔𝑠𝑆1
𝑏,𝑡(𝑠), 𝑠 > 0, 𝑡 ∈ Σ𝛾 and notice that (𝑆𝑏,𝑡(𝑠))𝑠>0 is a global

𝑇𝑏(𝑡)-semigroup generated by 𝐴. Since (𝑀𝑝) satisfies (M.1) and 𝑀0 = 1, it can
be easily seen that 𝑀𝑝+𝑞 > 𝑀𝑝𝑀𝑞, 𝑝, 𝑞 ∈ N0 (cf. for instance [4, Lemma 2.1.1]).
Hence, we have that, for every ℎ1 ∈ [ℎ(2 + 2|𝜔|),∞) and 𝑥 ∈ 𝐸:

sup
𝑝∈N0, 𝑠∈𝐾

ℎ𝑝

𝑀𝑝

⃦⃦⃦ 𝑑𝑝
𝑑𝑠𝑝

𝑆𝑏,𝑡(𝑠)𝑥
⃦⃦⃦

6 𝑒|𝜔| sup𝐾 sup
𝑝∈N0, 𝑠∈𝐾

ℎ𝑝2𝑝(1 + |𝜔|)𝑝

𝑀𝑝

𝑝∑︁
𝑖=0

⃦⃦⃦ 𝑑𝑝−𝑖
𝑑𝑠𝑝−𝑖

𝑆1
𝑏,𝑡(𝑠)𝑥

⃦⃦⃦
𝑀𝑝

6 𝑒|𝜔| sup𝐾 sup
𝑝∈N0, 𝑠∈𝐾

ℎ𝑝(2 + 2|𝜔|)𝑝
𝑝∑︁
𝑖=0

𝐶𝑀𝑝−𝑖

ℎ𝑝−𝑖1 𝑀𝑝

6 𝑒|𝜔| sup𝐾 sup
𝑝∈N0, 𝑠∈𝐾

(︁ℎ(2 + 2|𝜔|)
ℎ1

)︁𝑝 𝑝∑︁
𝑖=0

𝐶ℎ𝑖1
𝑀𝑖

6 𝐶𝑒|𝜔| sup𝐾
∞∑︁
𝑖=0

ℎ𝑖1
𝑀𝑖
6 𝐶𝑒|𝜔| sup𝐾

∞∑︁
𝑖=0

ℎ𝑖1
(2ℎ1)𝑖 sup

𝑝∈N0

(2ℎ1)𝑝

𝑀𝑝

6 2𝐶𝑒|𝜔| sup𝐾𝑒𝑀(2ℎ1) <∞,
where

𝐶 = sup
𝑝∈N0, 𝑠∈𝐾

ℎ𝑝1
𝑀𝑝

⃦⃦⃦ 𝑑𝑝
𝑑𝑠𝑝

𝑆1
𝑏,𝑡(𝑠)𝑥

⃦⃦⃦
.

Therefore, the property (iii) also holds and this completes the proof. �

Before proceeding further, let us notice that every Gevrey sequence satisfies
(2.1) with 𝑏 ∈ ( 1

𝑠 , 1).

Corollary 2.1. Suppose that 𝐴 is a closed operator and that there exist 𝑐 ∈
(0, 1), 𝜎 > 0, 𝑀 > 0, 𝑛 ∈ N and 𝜍 ∈ R such that

Π𝑐, 𝜎, 𝜍 :=
{︀
𝜆 ∈ C : Re(𝜆) > 𝜎| Im(𝜆)|𝑐 + 𝜍

}︀
⊆ 𝜌(𝐴),(2.7)

‖𝑅(𝜆 : 𝐴)‖ 6𝑀(1 + |𝜆|)𝑛, 𝜆 ∈ Π𝑐, 𝜎, 𝜍 .(2.8)

Then, for every 𝑏 ∈ (𝑐, 1) and 𝛾 ∈
(︀
0, arctan(cos( 𝑏𝜋2 ))

)︀
, there is an analytic operator

family (𝑇𝑏(𝑡))𝑡∈Σ𝛾 in 𝐿(𝐸) satisfying the properties (ii), (iv) and (v) stated in the
formulation of Theorem 2.1. Furthermore, the property (iii) holds for every compact
set 𝐾 ⊆ [0,∞) and 𝑀𝑝 = 𝑝𝑝/𝑐, and in the case when 𝐷(𝐴) is dense in 𝐸, we have
that (𝑇𝑏(𝑡))𝑡∈Σ𝛾 is an analytic semigroup of growth order 𝑛+1

𝑏 and that there exists
𝜔 ∈ R such that the c.i.g. of (𝑇𝑏(𝑡))𝑡∈Σ𝛾 is −(𝜔 −𝐴)𝑐.

Proof. Clearly, 𝑝𝑝/𝑏 ≺ 𝑀𝑝 and 𝑀(|𝜆|) ∼ 1
𝑐𝑒 |𝜆|

𝑐, |𝜆| → ∞. This implies that
there exist 𝛼 > 0, 𝑙 > 0 and 𝛽 ∈ R with Λ𝛼, 𝛽, 𝑙 ⊆ Π𝑐, 𝜎, 𝜍 . An application of
Theorem 2.1 ends the proof. �
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Remark 2.1. Suppose 𝐴 generates a distribution semigroup of [18]. Then one
can employ [18, Corollary 3.12] in order to conclude that, for every 𝑐 > 0, there
exist 𝜎 > 0, 𝑀 > 0, 𝑛 ∈ N and 𝜍 ∈ R such that (2.7) and (2.8) hold. Hence, for
every 𝑏 ∈ (0, 1) and 𝛾 ∈

(︀
0, arctan(cos(𝑏𝜋2 ))

)︀
, 𝐴 generates a global 𝑇𝑏(𝑡)-semigroup,

where we define 𝑇𝑏(𝑡) as before; let us remind that Kunstmann [18] proved that this
statement holds for every 𝑏 ∈ (0, 1) and 𝛾 ∈

(︀
0, 𝜋(1−𝑏)

4
)︀

(cf. also [3, p. 302]). Our
estimate is better if 𝑏 ∈ (0, 2

𝜋 ]. This follows from the following simple observation:⃒⃒⃒
arctan

(︁
cos
(︁
𝑏
𝜋

2

)︁)︁
− 𝜋

4

⃒⃒⃒
6
⃒⃒⃒
1− cos

(︁
𝑏
𝜋

2

)︁⃒⃒⃒
= 2 sin2

(︁
𝑏
𝜋

4

)︁
<
𝑏2𝜋2

8 6 𝑏
𝜋

4 .

In conclusion, we obtain that there exists 𝜔 ∈ R such that the solution of the
incomplete Cauchy problem 𝑢(𝑘)(𝑡) = (−1)𝑘+1(𝐴− 𝜔)𝑢(𝑡), 𝑡 > 0, given by 𝑇1/𝑘(·),
𝑘 ∈ N r {1}, can be analytically extended to the larger sector Σarctan(cos(𝑏𝜋2 )).

3. Regularization of ultradistribution semigroups
whose generators possess ultra-polynomially bounded resolvent

In this section, we assume that (𝑀𝑝) satisfies (M.1), (M.2) and (M.3). We define
the abstract Beurling space of (𝑀𝑝) class associated to a closed linear operator 𝐴
as in [6]. Put 𝐸(𝑀𝑝)(𝐴) := proj limℎ→+∞𝐸

{𝑀𝑝}
ℎ (𝐴), where

𝐸
{𝑀𝑝}
ℎ (𝐴) =:

{︁
𝑥 ∈ 𝐷∞(𝐴) : ‖𝑥‖{𝑀𝑝}ℎ = sup

𝑝∈N0

ℎ𝑝‖𝐴𝑝𝑥‖
𝑀𝑝

<∞
}︁
.

Then
(︀
𝐸
{𝑀𝑝}
ℎ (𝐴), ‖ · ‖{𝑀𝑝}ℎ

)︀
is a Banach space, 𝐸{𝑀𝑝}ℎ′ (𝐴) ⊆ 𝐸{𝑀𝑝}ℎ (𝐴) if 0 < ℎ <

ℎ′ < ∞ and 𝐸(𝑀𝑝)(𝐴) is a dense subspace of 𝐸 whenever 𝐴 is the generator of a
regular (𝑀𝑝)-ultradistribution semigroup ([6]). In general, we do not know whether
the space 𝐸(𝑀𝑝)(𝐴) is nontrivial (cf. [3, p. 301] and [6, p. 185]). Notice that the
simple inequality

sup
𝑝∈N0

ℎ𝑝‖(𝐴− 𝑧)𝑝𝑥‖
𝑀𝑝

6 2𝑒𝑀(ℎ(4+4|𝑧|))‖𝑥‖{𝑀𝑝}ℎ(2+2|𝑧|), ℎ > 0, 𝑧 ∈ C,

implies 𝐸(𝑀𝑝)(𝐴) = 𝐸(𝑀𝑝)(𝐴− 𝑧), 𝑧 ∈ C and that, thanks to (M.2), we have that
the part of 𝐴 in 𝐸(𝑀𝑝)(𝐴) is a continuous mapping from 𝐸(𝑀𝑝)(𝐴) into 𝐸(𝑀𝑝)(𝐴).
The next entire function of exponential type zero [11] plays a crucial role in our
investigation: 𝜔(𝑧) =

∏︀∞
𝑖=1(1+ 𝑖𝑧

𝑚𝑝
), 𝑧 ∈ C. We know the following (cf. for instance

[6, pp. 169, 171, 182 and Lemma 3.2, p. 179]):
(P.1) there exist 𝑙0 > 1 and 𝑐0 > 0 such that |𝜔𝑛(𝑧)| 6 𝑐𝑛0𝐴

𝑛−1𝑒𝑀(𝑙0𝐻𝑛−1|𝑧|),
𝑧 ∈ C, 𝑛 ∈ N,

(P.2) there exist 𝐿 > 0 and 𝜎 ∈ (0, 1] such that |𝜔(𝑖𝑧)| > 𝐿|𝜔(|𝑧|)|𝜎, 𝑧 ∈
(Λ𝛼, 𝛽, 𝑙)𝑐,

(P.3) due to [11, Proposition 4.6], the operator 𝜔(𝑙𝐷) =
∏︀∞
𝑝=1
(︀
1 + 𝑖𝑙𝐷𝑚𝑝

)︀
, 𝑙 ∈ C,

is an ultradifferential operator of class (𝑀𝑝). Denote 𝜔𝑛(𝑧) =
∑︀∞
𝑝=0 𝑎𝑛,𝑝𝑧

𝑝

and notice that |𝑎𝑛,𝑝| 6 Const (𝑙0𝐻𝑛−1)𝑝
𝑀𝑝

, 𝑝 ∈ N0, 𝑛 ∈ N, which implies
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that, for every 𝑛 ∈ N and 𝑙 ∈ C, the operator 𝜔𝑛(𝑙𝐷) is an ultradifferential
operator of class (𝑀𝑝) as long as (𝑀𝑝) satisfies (M.3),

(P.4) for every 𝛼 > 1 and 𝑧 ∈ C: |𝜔(|𝑧|)|𝛼 > 1
𝑐0
|𝜔(𝛼𝑙−1

0 |𝑧|)|, and
(P.5) 𝑒(𝑘+1)𝑀(|𝑧|) 6 𝐴𝑘𝑒𝑀(𝐻𝑘|𝑧|), 𝑧 ∈ C.

Herein 𝐻 denotes the constant appearing in the formulation of the condition (M.2).
Suppose that 𝐴 is the generator of a (UDSG) 𝐺 of (𝑀𝑝)-class. Then there exist
constants 𝑙 > 1, 𝛼 > 0 and 𝛽 > 0 (cf. [5], [6, Theorem 1.5 and p. 181], [13], [16]
and [23]) which satisfy:

(3.1) Λ𝛼, 𝛽, 𝑙 ⊆ 𝜌(𝐴) and ‖𝑅(𝜆 : 𝐴)‖ 6 Const 𝑒
𝑀(𝐻𝑙|𝜆|)

|𝜆|𝑘
, 𝜆 ∈ Λ𝛼, 𝛽, 𝑙, 𝑘 ∈ N.

Let 𝑛 ∈ N and 𝑛 > 𝐻𝑙0𝑙𝜎
−1. Following the proof of [6, Proposition 3.1], we

define a bounded linear operator 𝐷𝑛 by setting 𝐷𝑛 := 1
2𝜋𝑖
∫︀

Γ𝑙
𝑅(𝜆:𝐴)
𝜔𝑛(𝑖𝜆) 𝑑𝜆, where Γ𝑙

denotes the upwards oriented boundary of Λ𝛼,𝛽,𝑙. Then 𝐷𝑛𝑘 = 𝐷𝑘𝑛, 𝑘 ∈ N and pro-
ceeding similarly as in the proofs of [6, Proposition 3.1] and [6, Theorem 3.8], one
can prove: ℛ(𝐺) ⊆ 𝑅(𝐷𝑛), 𝐸(𝑀𝑝)(𝐴) =

⋂︀
𝑘∈N 𝑅(𝐷𝑛𝑘), and since we have assumed

that 𝐺 satisfies (U.2) (cf. Definition 1.2), 𝐷𝑛 is injective. Unfortunately, it is not
clear whether 𝑅(𝐷𝑛) ⊆ 𝐸(𝑀𝑝)(𝐴). Now we clarify the following important relation-
ship between ultradistribution semigroups and local differentiable 𝐶-semigroups.

Theorem 3.1. Suppose that 𝐴 is the generator of a (UDSG) 𝐺 of (𝑀𝑝)-class.
Then, for every 𝜏 ∈ (0,∞), there exists an injective operator 𝐶𝜏 ∈ 𝐿(𝐸) such that 𝐴
generates a local 𝐶𝜏 -semigroup (𝑆(𝑡))𝑡∈[0,𝜏). Furthermore, (𝑆(𝑡))𝑡∈[0,𝜏) is infinitely
differentiable in [0, 𝜏) and there exists an ℎ ∈ (0,∞), independent of 𝜏 ∈ (0,∞),
such that the next inequality holds:

(3.2) sup
𝑡∈[0,𝜏), 𝑝∈N0

ℎ𝑝

𝑀𝑝

⃦⃦⃦ 𝑑𝑝
𝑑𝑡𝑝

𝑆(𝑡)
⃦⃦⃦
<∞.

Proof. The arguments given in the final part of the proof of Theorem 2.1
imply that we can translate 𝐴 by a convenient multiple of the identity and assume
that constants 𝑙 > 1, 𝛼 > 0 and 𝛽 > 0 satisfy (3.1). Clearly,

(3.3) |𝜔(𝑠)| =
∞∏︁
𝑘=1

⃒⃒⃒
1 + 𝑖𝑠

𝑚𝑘

⃒⃒⃒
> sup
𝑝∈N

𝑝∏︁
𝑘=1

𝑠

𝑚𝑘
= sup
𝑝∈N

𝑠𝑝

𝑀𝑝
> 𝑒𝑀(𝑠), 𝑠 > 0.

Put 𝑛0 = ⌊𝐻𝑙0𝑙𝜎−1⌋ + 1, 𝑘 = max(⌈𝜏𝛼⌉, 2) and fix afterwards an element 𝑥 ∈ 𝐸,
an integer 𝑛 ∈ N with 𝑛 > 𝐻𝑘 + 2 and a number 𝑡 ∈ [0, 𝜏). Then we have

(𝑛− 1)𝑛0𝜎 > (𝑛− 1)𝐻𝑙𝑙0 > 𝑛− 1 > 1,(3.4)
(𝑛− 1)𝑛0𝜎𝑙

−1
0 > (𝐻𝑘 + 1)𝐻𝑙0𝑙𝜎−1𝜎𝑙−1

0 > 𝐻𝑘𝑙.(3.5)

We define the bounded linear operator 𝑆(𝑡) (cf. also [6, pp. 188–189]) by

𝑆(𝑡) := 1
2𝜋𝑖

∫︁
Γ𝑙

𝑒𝜆𝑡
𝑅(𝜆 : 𝐴)
𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝜆.
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In fact, 𝑆(0) = 𝐷𝑛𝑛0 := 𝐶𝜏 ∈ 𝐿(𝐸) is injective since 𝐺 satisfies (U.2) (see the
previous discussion). Notice that 𝑛0𝜎 > 1 and that (3.3)–(3.4), (P.2) and (P.4)–
(P.5) together imply that, for every 𝑝 ∈ N0:

(3.6)

⃦⃦⃦
𝜆𝑝
𝑒𝜆𝑡𝑅(𝜆 : 𝐴)
𝜔𝑛𝑛0(𝑖𝜆)

⃦⃦⃦
6 Const |𝜆|𝑝 𝑒

𝑡(𝛼𝑀(𝑙|𝜆|)+𝛽)𝑒𝑀(𝐻𝑙|𝜆|)

|𝜔(𝑛−1)𝑛0(𝑖𝜆)||𝜔𝑛0(𝑖𝜆)|

6 Const |𝜆|𝑝𝑒𝑡𝛽𝐴
⌈𝑡𝛼⌉−1𝑒𝑀(𝐻⌈𝑡𝛼⌉−1𝑙|𝜆|)𝑒𝑀(𝐻𝑙|𝜆|)

|𝜔(𝑛−1)𝑛0(𝑖𝜆)||𝜔𝑛0(𝑖𝜆)|

6
Const |𝜆|𝑝𝑒𝑡𝛽𝐴⌈𝑡𝛼⌉−1

|𝜔(|𝜆|)|𝑛0𝜎

𝑒2𝑀(𝐻𝑘−1𝑙|𝜆|)

𝐿𝑛𝑛0 |𝜔(|𝜆|)|(𝑛−1)𝑛0𝜎

6
Const |𝜆|𝑝𝑒𝑡𝛽𝐿−𝑛𝑛0𝐴⌈𝑡𝛼⌉

|𝜔(|𝜆|)||𝜔(|𝜆|)|𝑛0𝜎−1
𝑐0|𝜔(𝐻𝑘𝑙|𝜆|)|

|𝜔((𝑛− 1)𝑛0𝜎𝑙
−1
0 |𝜆|)|

6
Const |𝜆|𝑝𝑒𝑡𝛽𝐿−𝑛𝑛0𝐴⌈𝑡𝛼⌉

|𝜔(|𝜆|)|𝑒𝑀(|𝜆|(𝑛0𝜎−1))
𝑐0|𝜔(𝐻𝑘𝑙|𝜆|)|

|𝜔((𝑛− 1)𝑛0𝜎𝑙
−1
0 |𝜆|)|

6 Const |𝜆|𝑝 1
𝑒𝑀(|𝜆|(𝑛0𝜎−1))|𝜆|2

,

where Const. is independent of 𝑝 ∈ N0. The Fubini theorem implies 𝑆(𝑠)𝐶𝜏 =
𝐶𝜏𝑆(𝑠), 𝑠 ∈ [0, 𝜏), and furthermore, it is checked at once that 𝑆(𝑠)𝐴 ⊆ 𝐴𝑆(𝑠),
𝑠 ∈ [0, 𝜏). Since 𝜌(𝐴) ̸= ∅, we have 𝐶−1

𝜏 𝐴𝐶𝜏 = 𝐴. In order to see that (𝑆(𝑡))𝑡∈[0,𝜏)
is a local 𝐶𝜏 -semigroup generated by 𝐴 (cf. [9], [17] and [22]) it is enough to prove
that 𝐴

∫︀ 𝑡
0 𝑆(𝑠)𝑥 𝑑𝑠 = 𝑆(𝑡)𝑥 − 𝐶𝜏𝑥, 𝑡 ∈ [0, 𝜏). To see this, we will first prove the

next equality:

(3.7)
∫︁
Γ𝑙

𝑒𝜆𝑡

𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝜆 = 0.

For a sufficiently large 𝑅 > 0, put Γ𝑅 = {𝑧 ∈ C : |𝑧| = 𝑅, 𝑧 /∈ Λ𝛼, 𝛽, 𝑙}. As above,
(3.4) and (P.4) imply

(3.8) |𝜔(|𝑧|)|(𝑛−1)𝑛0𝜎 >
1
𝑐0

⃒⃒
𝜔((𝑛− 1)𝑛0𝜎𝑙

−1
0 |𝑧|)

⃒⃒
, 𝑧 ∈ C.

Taking into account (P.2) and (3.3), we have the following:

|𝜔𝑛𝑛0(𝑖𝜆)| = |𝜔(𝑛−1)𝑛0(𝑖𝜆)||𝜔𝑛0(𝑖𝜆)|

> 𝐿𝑛𝑛0 |𝜔(𝑛−1)𝑛0𝜎(𝑅)|𝑒𝑀(𝑅)𝑛0𝜎 > Const |𝜔(𝑛−1)𝑛0𝜎(𝑅)|𝑅2, 𝜆 ∈ Γ𝑅.

An employment of (P.5) implies⃒⃒⃒ 𝑒𝜆𝑡

𝜔𝑛𝑛0(𝑖𝜆)

⃒⃒⃒
6
𝑒𝑡(𝛼𝑀(𝑙| Im(𝜆)|)+𝛽)

|𝜔𝑛𝑛0(𝑖𝜆)| 6
Const
𝑅2 𝑒𝑡𝛽

𝑒𝑡𝛼𝑀(𝑙𝑅)

|𝜔(𝑛−1)𝑛0𝜎(𝑅)|

6
Const
𝑅2 𝑒𝑡𝛽

𝐴⌈𝑡𝛼⌉−1𝑒𝑀(𝐻⌈𝑡𝛼⌉−1𝑙𝑅)

|𝜔(𝑛−1)𝑛0𝜎(𝑅)|
.
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Owing to (3.8), we can continue the calculation as follows:

6
Const
𝑅2 𝑐0𝑒

𝑡𝛽𝐴⌈𝑡𝛼⌉−1 |𝜔(𝐻⌈𝑡𝛼⌉−1𝑙𝑅)|
|𝜔((𝑛− 1)𝑛0𝜎𝑙

−1
0 𝑅)|

.

The last inequality and (3.5) imply∫︁
Γ𝑅

𝑒𝜆𝑡

𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝜆→ 0, 𝑅→ +∞.

Then the Cauchy theorem yields (3.7). Applying the Fubini theorem, the resolvent
equation and (3.7), one obtains:

𝐴

𝑡∫︁
0

𝑆(𝑠)𝑥 𝑑𝑠 = 1
2𝜋𝑖

𝑡∫︁
0

∫︁
Γ𝑙

𝑒𝜆𝑠
𝐴𝑅(𝜆 : 𝐴)𝑥
𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝜆 𝑑𝑠 = 1

2𝜋𝑖

𝑡∫︁
0

∫︁
Γ𝑙

𝑒𝜆𝑠
𝜆𝑅(𝜆 : 𝐴)𝑥− 𝑥

𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝜆 𝑑𝑠

= 1
2𝜋𝑖

𝑡∫︁
0

∫︁
Γ𝑙

𝑒𝜆𝑠
𝜆𝑅(𝜆 : 𝐴)𝑥
𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝜆 𝑑𝑠− 1

2𝜋𝑖

𝑡∫︁
0

∫︁
Γ𝑙

𝑒𝜆𝑠
𝑥

𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝜆 𝑑𝑠

= 1
2𝜋𝑖

𝑡∫︁
0

∫︁
Γ𝑙

𝑒𝜆𝑠
𝜆𝑅(𝜆 : 𝐴)𝑥
𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝜆 𝑑𝑠 = 1

2𝜋𝑖

∫︁
Γ𝑙

[︃ 𝑡∫︁
0

𝑒𝜆𝑠
𝜆𝑅(𝜆 : 𝐴)𝑥
𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝑠

]︃
𝑑𝜆

= 1
2𝜋𝑖

∫︁
Γ𝑙

(𝑒𝜆𝑡 − 1)𝑅(𝜆 : 𝐴)𝑥
𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝜆

= 1
2𝜋𝑖

∫︁
Γ𝑙

𝑒𝜆𝑡
𝑅(𝜆 : 𝐴)𝑥
𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝜆− 1

2𝜋𝑖

∫︁
Γ𝑙

𝑅(𝜆 : 𝐴)𝑥
𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝜆 = 𝑆(𝑡)𝑥− 𝐶𝜏𝑥.

As before, we have that, for every 𝑝 ∈ N, the integral
1

2𝜋𝑖

∫︁
Γ𝑙
𝜆𝑝𝑒𝜆𝑡

𝑅(𝜆 : 𝐴)
𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝜆, 𝑡 ∈ [0, 𝜏)

is convergent and that
𝑑

𝑑𝑡
𝑆(𝑡) = 1

2𝜋𝑖

∫︁
Γ𝑙
𝜆𝑒𝜆𝑡

𝑅(𝜆 : 𝐴)
𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝜆.

Inductively,

(3.9) 𝑑𝑝

𝑑𝑡𝑝
𝑆(𝑡) = 1

2𝜋𝑖

∫︁
Γ𝑙

𝜆𝑝𝑒𝜆𝑡
𝑅(𝜆 : 𝐴)
𝜔𝑛𝑛0(𝑖𝜆) 𝑑𝜆, 𝑝 ∈ N0, 𝑡 ∈ [0, 𝜏).

It remains to be shown (3.2). Choose arbitrarily a number ℎ ∈ (0, 𝑛0𝜎 − 1). An
application of (3.6) and (3.9) gives

sup
𝑡∈[0,𝜏), 𝑝∈N0

ℎ𝑝

𝑀𝑝

⃦⃦⃦ 𝑑𝑝
𝑑𝑡𝑝

𝑆(𝑡)
⃦⃦⃦
6

1
2𝜋 sup
𝑡∈[0,𝜏), 𝑝∈N0

ℎ𝑝

𝑀𝑝

∫︁
Γ𝑙

|𝜆|𝑝|𝑒𝜆𝑡| ‖𝑅(𝜆 : 𝐴)‖
|𝜔𝑛𝑛0(𝑖𝜆)| |𝑑𝜆|
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6 Const
∫︁
Γ𝑙

𝑒𝑀(ℎ|𝜆|)

𝑒𝑀(|𝜆|(𝑛0𝜎−1))|𝜆|2
|𝑑𝜆| 6 Const

∫︁
Γ𝑙

|𝑑𝜆|
|𝜆|2

<∞.

The proof is now completed. �

Example 3.1. ([19], [20], [15]) Define

𝐸𝑀𝑝 =:
{︂
𝑓 ∈ 𝐶∞[0, 1] : ‖𝑓‖𝑀𝑝 := sup

𝑝>0

‖𝑓 (𝑝)‖∞
𝑀𝑝

<∞
}︂
,

𝐴𝑀𝑝 := −𝑑/𝑑𝑠, 𝐷(𝐴𝑀𝑝) =: {𝑓 ∈ 𝐸𝑀𝑝 : 𝑓 ′ ∈ 𝐸𝑀𝑝 , 𝑓(0) = 0}.

Proceeding as in [19, Example 1.6], one can verify that 𝐴𝑀𝑝 is not stationary dense
and that 𝐴𝑀𝑝 cannot be the generator of a distribution semigroup. Furthermore,
{𝜆 ∈ C : Re(𝜆) > 0} ⊆ 𝜌(𝐴𝑀𝑝) and ‖𝑅(𝜆 : 𝐴𝑀𝑝)‖ 6 𝐶𝑒𝑀(𝑟|𝜆|), Re(𝜆) > 0, for
some 𝐶 > 0 and 𝑟 > 0 [11, 19]. Put now

(𝐺(𝜙)𝑓)(𝑥) :=
𝑥∫︁

0

𝜙(𝑥− 𝑡)𝑓(𝑡) 𝑑𝑡, 𝜙 ∈ 𝒟(𝑀𝑝), 𝑓 ∈ 𝐸𝑀𝑝 , 𝑥 ∈ [0, 1].

Clearly, 𝐺(𝜙)𝑓 ∈ 𝐶∞[0, 1] and

𝑑𝑝

𝑑𝑥𝑝
(𝐺(𝜙)𝑓)(𝑥) =

𝑥∫︁
0

𝜙(𝑝)(𝑥− 𝑡)𝑓(𝑡) 𝑑𝑡+
𝑝−1∑︁
𝑘=0

𝜙(𝑝−1−𝑘)(0)𝑓 (𝑘)(𝑥),

for every 𝜙 ∈ 𝒟(𝑀𝑝), 𝑓 ∈ 𝐸𝑀𝑝 , 𝑥 ∈ [0, 1] and 𝑝 ∈ N0. Since 𝑀𝑝+𝑞 > 𝑀𝑝𝑀𝑞,
𝑝, 𝑞 ∈ N0, the preceding equality implies that, for every 𝑝 ∈ N0, 𝑥 ∈ [0, 1], 𝜙 ∈ 𝒟(𝑀𝑝)

and 𝑓 ∈ 𝐸𝑀𝑝 :⃒⃒⃒ 𝑑𝑝
𝑑𝑥𝑝

(𝐺(𝜙)𝑓)(𝑥) 1
𝑀𝑝

⃒⃒⃒
6 ‖𝜙‖𝑀𝑝,1,[0,1]‖𝑓‖+

𝑝−1∑︁
𝑘=0

⃒⃒⃒⃒
𝜙(𝑝−1−𝑘)(0)

𝑀𝑝−𝑘

⃒⃒⃒⃒
‖𝑓‖

6 ‖𝜙‖𝑀𝑝,1,[0,1]

(︂
1 +

𝑝−1∑︁
𝑘=0

1
𝑚𝑝−𝑘

)︂
‖𝑓‖ 6 ‖𝜙‖𝑀𝑝,1,[0,1]

(︂
1 +

∞∑︁
𝑝=0

1
𝑚𝑝

)︂
‖𝑓‖.

Hence, ‖𝐺(𝜙)‖ 6 ‖𝜙‖𝑀𝑝,1,[0,1](1 +
∑︀∞
𝑝=0

1
𝑚𝑝

) and 𝐺 ∈ 𝒟
′(𝑀𝑝)
0 (𝐿(𝐸)). The condi-

tions (U.1) and (U.2) can be proved trivially, and consequently, 𝐺 is a (UDSG)
of (𝑀𝑝)-class whose generator is obviously the operator 𝐴𝑀𝑝 . By Theorem 3.1,
we have that there exists an injective operator 𝐶 ∈ 𝐿(𝐸𝑀𝑝) such that 𝐴𝑀𝑝 gener-
ates a differentiable local 𝐶-semigroup (𝑆(𝑡))𝑡∈[0,2). Put, for every fixed 𝑓 ∈ 𝐸𝑀𝑝 ,
𝑥 ∈ [0, 1] and 𝑡 ∈ [0, 1], 𝑢(𝑡, 𝑥) := (𝑆(𝑡)𝑓)(𝑥). According to the differentiability
of (𝑆(𝑡))𝑡∈[0,2) and the proof of Theorem 3.1, one immediately obtains that 𝑢 is a
solution of the problem

(𝑃 ) :

⎧⎨⎩ 𝑢 ∈ 𝐶1([0, 1]× [0, 1])
𝑢𝑥 + 𝑢𝑡 = 0
𝑢(0, 𝑥) = (𝐶𝑓)(𝑥), 𝑢(𝑡, 0) = 0.
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Hence, for every (𝑡, 𝑥) ∈ [0, 1]× [0, 1],

(𝑆(𝑡)𝑓)(𝑥) =
{︃

0, 0 6 𝑥 6 𝑡
[𝐶𝑓 ](𝑥− 𝑡), 1 > 𝑥 > 𝑡.

In particular, 𝑆(𝑡) = 0, 𝑡 ∈ [1, 2). Define now 𝑆(𝑡), 𝑡 > 0 by 𝑆(𝑡) := 𝑆(𝑡),
𝑡 ∈ [0, 1] and 𝑆(𝑡) := 0, 𝑡 > 1. Then (𝑆(𝑡))𝑡>0 is a global differentiable 𝐶-semigroup
generated by 𝐴𝑀𝑝 . The previous analysis and Theorem 3.2 given below imply that
there exists an injective operator 𝐶1 ∈ 𝐿(𝐸) such that 𝐴𝑀𝑝 generates a global
differentiable 𝐶1-semigroup (𝑆1(𝑡))𝑡>0 such that 𝑆1(𝑡) = 0, 𝑡 > 1 and that

sup
𝑡>0, 𝑝∈N0

ℎ𝑝

𝑀𝑝

⃦⃦⃦ 𝑑𝑝
𝑑𝑡𝑝

𝑆1(𝑡)
⃦⃦⃦
<∞

for every fixed number ℎ > 0.

The proof of the following lemma essentially follows from the corresponding
one of [6, Theorem 3.8].

Lemma 3.1. Suppose 𝐺 is a (UDSG) of (𝑀𝑝)-class generated by 𝐴, 𝑙 > 1,
𝛼 > 0, 𝛽 > 0, 𝑛 ∈ N, 𝑛 > 𝐻𝑙0𝑙𝜎

−1 (cf. (P.1)–(P.5)) and (3.1) holds. Then
𝐸(𝑀𝑝)(𝐴) =

⋂︀
𝑘∈N 𝐷𝑛𝑘(𝐷∞(𝐴)) and

(3.10)

𝐷−1
𝑛𝑘 (𝐸{𝑀𝑝}2𝑙0𝐻𝑛𝑘+1) ⊆

{︂
𝑥 ∈ 𝐷∞(𝐴) : sup

𝑝∈N0

𝜍𝑝‖𝐴𝑝𝑥‖
𝑀𝑝

<∞ for all 𝜍 ∈ (0, 2𝑙0𝐻𝑛𝑘)
}︂
.

Proof. Fix an integer 𝑘 ∈ N and a number 𝜍 ∈ (0, 2𝑙0𝐻𝑛𝑘). Further, put
ℎ = 2𝑙0𝐻𝑛𝑘+1 and suppose that 𝑦 ∈ 𝐸

{𝑀𝑝}
ℎ and that 𝜔𝑛𝑘(𝑖𝑧) =

∑︀∞
𝑝=0 𝑎𝑘,𝑝𝑧

𝑝,
𝑧 ∈ C. By (P.3), we have that |𝑎𝑘,𝑝| 6 Const (𝑙0𝐻𝑛𝑘)𝑝

𝑀𝑘
, 𝑝 ∈ N and that the series∑︀∞

𝑝=0 𝑎𝑘,𝑝𝐴
𝑝𝑦 := 𝑥 is convergent since

|𝑎𝑘,𝑝| ‖𝐴𝑝𝑦‖ 6 Const ℎ
𝑝‖𝐴𝑝𝑦‖
𝑀𝑝

(︁ 𝑙0𝐻𝑛𝑘
ℎ

)︁𝑝
6 Const ‖𝑦‖{𝑀𝑝}ℎ

(︁ 1
2𝐻

)︁𝑝
.

Proceeding as in the proof of [6, Theorem 3.8, p. 187], one gets that 𝑦 = 𝐷𝑛𝑘𝑥 and
the proof is completed if one shows that 𝑥 ∈ 𝐷∞(𝐴) and that (3.10) holds with 𝜍.
First of all, let us observe that the series

∑︀∞
𝑝=0 𝑎𝑘,𝑝𝐴

𝑚+𝑝𝑦 is also convergent for all
𝑚 ∈ N. Indeed, (M.2) yields

(3.11) |𝑎𝑘,𝑝| ‖𝐴𝑚+𝑝𝑦‖

6 Const ℎ
𝑝+𝑚‖𝐴𝑝+𝑚𝑦‖
𝑀𝑝+𝑚

(︁ 𝑙0𝐻𝑛𝑘
ℎ

)︁𝑝𝑀𝑝+𝑚
𝑀𝑝ℎ𝑚

6 Const ‖𝑦‖{𝑀𝑝}ℎ

(︁ 1
2𝐻

)︁𝑝𝑀𝑝+𝑚
𝑀𝑝ℎ𝑚

6 Const ‖𝑦‖{𝑀𝑝}ℎ

(︁ 1
2𝐻

)︁𝑝𝐴𝐻𝑝+𝑚𝑀𝑚
ℎ𝑚

6 Const ‖𝑦‖{𝑀𝑝}ℎ

(︁1
2

)︁𝑝(︁ 1
2𝑙0𝐻𝑛𝑘

)︁𝑚
𝑀𝑚.

By (3.11), we have that
∞∑︁
𝑝=0
|𝑎𝑘,𝑝| ‖𝐴𝑝+𝑚𝑦‖ 6 Const ‖𝑦‖{𝑀𝑝}ℎ

(︁ 1
2𝑙0𝐻𝑛𝑘

)︁𝑚
𝑀𝑚, 𝑥 ∈ 𝐷∞(𝐴)
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and 𝐴𝑚𝑥 =
∑︀∞
𝑝=0 𝑎𝑘,𝑝𝐴

𝑚+𝑝𝑦. Then the proof of Lemma 3.1 completes an employ-
ment of the estimate (3.11):

sup
𝑚∈N0

𝜍𝑚‖𝐴𝑚𝑥‖
𝑀𝑚

6 Const ‖𝑦‖{𝑀𝑝}ℎ sup
𝑚∈N0

(︁ 𝜍

2𝑙0𝐻𝑛𝑘
)︁𝑚
6 Const ‖𝑦‖{𝑀𝑝}ℎ . �

Now we are in a position to clarify the following analogue of [6, Theorem 4.1,
Corollary 4.2] for nondense ultradistribution semigroups of (𝑀𝑝)-class.

Theorem 3.2. Suppose that 𝐴 generates a (UDSG) of (𝑀𝑝)-class. Then the
abstract Cauchy problem

(𝐴𝐶𝑃 ) :

⎧⎪⎨⎪⎩
𝑢 ∈ 𝐶∞([0,∞) : 𝐸) ∩ 𝐶([0,∞) : [𝐷(𝐴)]),
𝑢′(𝑡) = 𝐴𝑢(𝑡), 𝑡 > 0,
𝑢(0) = 𝑥,

has a unique solution for all 𝑥 ∈ 𝐸(𝑀𝑝)(𝐴). Furthermore, for every compact set
𝐾 ⊆ [0,∞) and ℎ > 0, the solution 𝑢 of (𝐴𝐶𝑃 ) satisfies

sup
𝑡∈𝐾, 𝑝∈N0

ℎ𝑝

𝑀𝑝

⃦⃦⃦ 𝑑𝑝
𝑑𝑡𝑝

𝑢(𝑡)
⃦⃦⃦
<∞.

Proof. We basically follow the terminology given in the proofs of Theorem 3.1
and Lemma 3.1 (cf. also (P.1)–(P.5)). The uniqueness of solution of (ACP) is a con-
sequence of the Ljubich uniqueness theorem (cf. for instance [23, p. 29]). To prove
the existence of solutions of (ACP), let us observe that the proof of Theorem 3.1
implies that there exist a number 𝑛0 ∈ N and a strictly increasing sequence (𝑘𝑙)
in N such that 𝑛0 > 𝐻𝑙0𝑙𝜎

−1 and that, for every 𝑙 ∈ N, the operator 𝐴 is the
generator of a differentiable 𝐷𝑛0𝑘𝑙 -semigroup (𝑆𝑙(𝑡))𝑡∈[0,𝑙). This implies that the
abstract Cauchy problem⎧⎪⎨⎪⎩

𝑢𝑙 ∈ 𝐶1([0, 𝑙) : 𝐸) ∩ 𝐶([0, 𝑙) : [𝐷(𝐴)]),
𝑢′𝑙(𝑡) = 𝐴𝑢𝑙(𝑡), 𝑡 > 0,
𝑢𝑙(0) = 𝑥,

has a unique solution for every 𝑥 ∈ 𝐷𝑛0𝑘𝑙(𝐷(𝐴)) given by 𝑢𝑙(𝑡) = 𝐷−1
𝑛0𝑘𝑙

𝑆𝑙(𝑡)𝑥,
𝑡 ∈ [0, 𝑙). If 𝑥 ∈ 𝐸(𝑀𝑝)(𝐴), then Lemma 3.1 implies that 𝑢𝑙(𝑡) = 𝑆𝑙(𝑡)𝐷−1

𝑛0𝑘𝑙
𝑥,

𝑡 ∈ [0, 𝑙), and due to Theorem 3.1, we get 𝑢𝑙 ∈ 𝐶∞([0, 𝑙) : 𝐸). Therefore, we
automatically obtain the existence of a solution of (𝐴𝐶𝑃 ) for all 𝑥 ∈ 𝐸(𝑀𝑝)(𝐴).
Let 𝐾 ⊆ [0,∞) be a compact set, 𝐾 ⊆ [0, 𝑙) for some 𝑙 ∈ N, ℎ > 0, 𝑙′ ∈ N, 𝑙′ > 𝑙
and 2𝑙0𝐻𝑛0𝑘𝑙′ > ℎ. Then Lemma 3.1 and the proof of Theorem 3.1 imply that, for
every 𝑡 ∈ 𝐾:

ℎ𝑝

𝑀𝑝

⃦⃦⃦ 𝑑𝑝
𝑑𝑡𝑝

𝑢(𝑡)
⃦⃦⃦

= ℎ𝑝

𝑀𝑝

⃦⃦⃦ 𝑑𝑝
𝑑𝑡𝑝

𝑢𝑙′(𝑡)
⃦⃦⃦

= ℎ𝑝

𝑀𝑝

⃦⃦
𝐴𝑝𝑢𝑙′(𝑡)

⃦⃦
= ℎ𝑝

𝑀𝑝

⃦⃦
𝐴𝑝𝐷−1

𝑛0𝑘𝑙′
𝑆𝑙′(𝑡)𝑥

⃦⃦
= ℎ𝑝

𝑀𝑝

⃦⃦
𝑆𝑙′(𝑡)𝐴𝑝𝐷−1

𝑛0𝑘𝑙′
𝑥
⃦⃦
6 sup
𝑠∈[0,𝑙]

‖𝑆𝑙′(𝑠)‖
ℎ𝑝

𝑀𝑝

⃦⃦
𝐴𝑝𝐷−1

𝑛0𝑘𝑙′
𝑥
⃦⃦
<∞

for all 𝑥 ∈ 𝐸(𝑀𝑝)(𝐴), which completes the proof of the theorem. �
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Lemma 3.2. There exists a sequence (𝑁𝑝) of positive real numbers satisfying
𝑁0 = 1, (𝑀.1), (𝑀.2), (𝑀.3) and 𝑁𝑝 ≺𝑀𝑝.

Proof. Define a sequence (𝑟𝑝) of positive real numbers recursively by:

𝑟1 := 1 and 𝑟𝑝+1 := 𝑟𝑝

[︁ 𝑚𝑝
𝑚𝑝+1

+ min
(︁

1− 𝑚𝑝
𝑚𝑝+1

,
1
𝑝

𝑚𝑝
𝑚𝑝+1

)︁]︁
, 𝑝 ∈ N.

Then:

(3.12) 1 > 𝑟𝑝+1

𝑟𝑝
>

𝑚𝑝
𝑚𝑝+1

and 𝑟𝑝+1 6 𝑟𝑝
(︁

1 + 1
𝑝

)︁ 𝑚𝑝
𝑚𝑝+1

, 𝑝 ∈ N.

Using (3.12), one obtains inductively:

𝑟𝑝 6 𝑝
𝑚1

𝑚𝑝
and

𝑝∏︁
𝑖=1

𝑟𝑖 6 𝑝!
𝑚𝑝1
𝑀𝑝

, 𝑝 ∈ N.

Since 𝑝! ≺𝑀𝑝 (cf. [11, p. 74] and [4, Lemma 2.1.2]), one gets that, for every 𝜎 > 0:

(3.13) sup
𝑝∈N0

𝜎𝑝
𝑝∏︁
𝑖=1

𝑟𝑖 <∞.

Put now 𝑁0 := 1 and 𝑁𝑝 := 𝑀𝑝
∏︀𝑝
𝑖=1 𝑟𝑖, 𝑝 ∈ N. Keeping in mind (3.12), one can

simply prove that (𝑁𝑝) satisfies (M.1), (M.2) (with the same constants 𝐴 and 𝐻)
and (M.3). By (3.13), 𝑁𝑝 ≺𝑀𝑝 and this completes the proof. �

Now we are able to state the following important result.

Theorem 3.3. Suppose that 𝐴 generates a (UDSG) 𝐺 of (𝑀𝑝)-class. Then
there exists an injective operator 𝐶 ∈ 𝐿(𝐸) such that 𝐴 generates a global differen-
tiable 𝐶-semigroup (𝑆(𝑡))𝑡>0. Furthermore, for every compact set 𝐾 ⊆ [0,∞) and
ℎ > 0, we have:

sup
𝑡∈𝐾, 𝑝∈N0

ℎ𝑝

𝑀𝑝

⃦⃦⃦ 𝑑𝑝
𝑑𝑡𝑝

𝑆(𝑡)
⃦⃦⃦
<∞.

Proof. By Lemma 3.2, we have the existence of a sequence (𝑁𝑝) of positive
real numbers satisfying 𝑁0 = 1, (M.1), (M.2), (M.3) and 𝑁𝑝 ≺𝑀𝑝. As in the proof
of Theorem 3.1, we may assume that numbers 𝑙 > 1, 𝛼 > 0 and 𝛽 > 0 satisfy (3.1).
Denote by 𝑁(·) the associated function of (𝑁𝑝) and notice that the previously given
arguments combined with [11, Lemma 3.10] indicate that there exist 𝛼1 > 0 and
𝛽1 > 0 such that Λ1

𝛼1, 𝛽1, 𝑙
⊆ Λ𝛼, 𝛽, 𝑙 ⊆ 𝜌(𝐴). Furthermore, one has that, for every

𝜇 > 0, there exists 𝐶𝜇 > 0 such that 𝑀(𝜆) 6 𝑁(𝜇𝜆) + 𝐶𝜇, 𝜆 > 0, and thanks to
[26, Lemma 1.7, p. 140] (cf. also [4, Lemma 2.1.3]), we know that, for every 𝐿 > 1,
there exist a constant 𝐵 > 0 and a constant 𝐸𝐿 > 0 such that
(3.14) 𝐿𝑁(𝜆) 6 𝑁(𝐵𝐿−1𝜆) + 𝐸𝐿, 𝜆 > 0.
Let Γ1 and Γ2 denote the upwards oriented boundaries of Λ𝛼, 𝛽, 𝑙 and Λ1

𝛼1, 𝛽1, 𝑙
,

respectively. Suppose that 𝜚 ∈ 𝒟(𝑁𝑝)
[0,1] satisfies 𝜚(𝑡) > 0, 𝑡 ∈ R,

∫︀
R 𝜚(𝑡) 𝑑𝑡 = 1 and

put 𝜚𝑛(𝑡) := 𝑛𝜚(𝑛𝑡), 𝑡 ∈ R, 𝑛 ∈ N. Then it can be simply verified that, for every
𝜙 ∈ 𝒟(𝑀𝑝), we have 𝜚𝑛 * 𝜙 ∈ 𝒟(𝑁𝑝) ⊆ 𝒟(𝑀𝑝), 𝑛 ∈ N and that lim𝑛→∞ 𝜚𝑛 * 𝜙 = 𝜙
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in 𝒟(𝑀𝑝). Define 𝐺1(𝜙) := 𝐺(𝜙), 𝜙 ∈ 𝒟(𝑁𝑝). Then 𝐺1 ∈ 𝒟
′(𝑁𝑝)
0 (𝐿(𝐸)) and

satisfies (𝑈.1). To prove (U.2), suppose 𝐺1(𝜙)𝑥 = 0 for all 𝜙 ∈ 𝒟(𝑁𝑝)
0 . Then

𝐺(𝜓)𝑥 = lim𝑛→∞𝐺(𝜚𝑛 * 𝜓)𝑥 = lim𝑛→∞𝐺1(𝜚𝑛 * 𝜓)𝑥 = 0 for all 𝜓 ∈ 𝒟(𝑀𝑝)
0 .

So, 𝑥 = 0, 𝐺1 is a (UDSG) of (𝑁𝑝)-class and it can be simply checked that the
generator of 𝐺1 is 𝐴. Set 𝜔𝑁𝑝(𝑧) :=

∏︀∞
𝑖=1
(︀
1 + 𝑖𝑧𝑁𝑝−1

𝑁𝑝

)︀
, 𝑧 ∈ C and notice that

|𝜔𝑁𝑝(𝑠)| > 𝑒𝑁(𝑠), 𝑠 > 0 and that, owing to (P.2), there exist 𝐿1 > 0 and 𝜎1 ∈ (0, 1]
such that |𝜔𝑁𝑝(𝑖𝑧)| > 𝐿1|𝜔𝑁𝑝(|𝑧|)|𝜎1 , 𝑧 ∈ (Λ1

𝛼1, 𝛽1, 𝑙
)𝑐. Since 𝐺1 is a (UDSG)

generated by 𝐴, we have that there exists a sufficiently large 𝑛 ∈ N such that
𝑛 > ⌈ 1

𝜎1
⌉ and that the bounded linear operator

𝐶 := 1
2𝜋𝑖

∫︁
Γ2

𝑅(𝜆 : 𝐴)
𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆

is injective. An elementary application of the Cauchy formula implies that

𝐶 = 1
2𝜋𝑖

∫︁
Γ1

𝑅(𝜆 : 𝐴)
𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆.

Set now

𝑆(𝑡)𝑥 := 1
2𝜋𝑖

∫︁
Γ1

𝑒𝜆𝑡𝑅(𝜆 : 𝐴)𝑥
𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆, 𝑡 > 0, 𝑥 ∈ 𝐸.

Taking into account the simple equality∫︁
Γ1

𝜆𝑝

𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆 = 0,

one can repeat literally the proof of Theorem 3.1 in order to deduce that (𝑆(𝑡))𝑡>0
is a global differentiable 𝐶-semigroup generated by 𝐴 and that, for every 𝑝 ∈ N0,

𝑑𝑝

𝑑𝑡𝑝
𝑆(𝑡) = 1

2𝜋𝑖

∫︁
Γ1

𝜆𝑝𝑒𝜆𝑡
𝑅(𝜆 : 𝐴)
𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆, 𝑝 ∈ N0, 𝑡 > 0.

Suppose now that 𝐾 ⊆ [0,∞) is a compact set and that ℎ > 0. By (3.14), we get
that, for every 𝜇 > 0, there exists 𝑀𝜇 > 0 such that:

sup
𝑡∈𝐾, 𝑝∈N0

ℎ𝑝

𝑀𝑝

⃦⃦⃦ 𝑑𝑝
𝑑𝑡𝑝

𝑆(𝑡)
⃦⃦⃦
6 Const 𝑒𝛽 sup𝐾

∫︁
Γ1

𝑒𝑀(ℎ|𝜆|)+𝛼 sup𝐾𝑀(𝑙|𝜆|)𝑒𝑀(𝐻𝑙|𝜆|)

|𝜔𝑛𝑁𝑝(𝑖𝜆)||𝜆|2 |𝑑𝜆|

6 Const 𝑒𝛽 sup𝐾
∫︁
Γ1

𝑒𝑀(ℎ𝜆)+𝛼 sup𝐾𝑀(𝑙|𝜆|)+𝑀(𝐻𝑙|𝜆|)

|𝜆|2𝐿𝑛1 |𝜔𝑁𝑝(|𝜆|)|𝑛𝜎1
|𝑑𝜆|

6 Const
∫︁
Γ1

𝑒𝑀(ℎ𝜆)+𝛼 sup𝐾𝑀(𝑙|𝜆|)+𝑀(𝐻𝑙|𝜆|)

|𝜆|2𝑒𝑛𝜎1𝑁(|𝜆|) |𝑑𝜆|

6𝑀𝜇

∫︁
Γ1

𝑒𝑁(ℎ|𝜆|𝜇)+𝛼 sup𝐾𝑁(𝑙|𝜆|𝜇)+𝑁(𝐻𝑙|𝜆|𝜇)

|𝜆|2𝑒𝑛𝜎1𝑁(|𝜆|) |𝑑𝜆|(3.15)
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6𝑀𝜇

∫︁
Γ1

𝑒𝑁(ℎ|𝜆|𝜇)+𝑁(𝐵𝛼 sup𝐾 𝑙|𝜆|𝜇)+𝐸𝐾,𝛼+𝑁(𝐻𝑙|𝜆|𝜇)

|𝜆|2𝑒𝑛𝜎1𝑁(|𝜆|) |𝑑𝜆|

6𝑀𝜇𝑒
𝐸𝛼 sup𝐾

∫︁
Γ1

𝑒3𝑁(|𝜆|𝜇[ℎ+𝑙𝐵𝛼 sup𝐾+𝐻𝑙])

|𝜆|2𝑒𝑛𝜎1𝑁(|𝜆|) |𝑑𝜆|

6𝑀𝜇𝑒
𝐸𝛼 sup𝐾+𝐸3

∫︁
Γ1

𝑒𝑁(𝐵2|𝜆|𝜇[ℎ+𝑙𝐵𝛼 sup𝐾+𝐻𝑙])

|𝜆|2𝑒𝑛𝜎1𝑁(|𝜆|) |𝑑𝜆|

6𝑀𝜇𝑒
𝐸𝛼 sup𝐾+𝐸3

∫︁
Γ1

𝑒𝑁(𝐵2|𝜆|𝜇[ℎ+𝑙𝐵𝛼 sup𝐾+𝐻𝑙])

|𝜆|2𝑒𝑁(|𝜆|) |𝑑𝜆|.

Suppose now that 𝜇 ∈
(︀
0, 1/𝐵2(ℎ+ 𝑙𝐵𝛼 sup𝐾 +𝐻𝑙)

)︀
. Then we obtain from (3.15):

sup
𝑡∈𝐾, 𝑝∈N0

ℎ𝑝

𝑀𝑝

⃦⃦⃦ 𝑑𝑝
𝑑𝑡𝑝

𝑆(𝑡)
⃦⃦⃦
6𝑀𝜇𝑒

𝐸𝛼 sup𝐾+𝐸3

∫︁
Γ1

|𝑑𝜆|
|𝜆|2

<∞.

The proof of the theorem is completed. �

Finally, we consider regularization of 𝜔-ultradistribution semigroups in the
sense of [3]. We use the terminology given in [3, p. 308] and suppose that 𝜔 :
[0,∞)→ [0,∞) is a continuous, concave, increasing function satisfying

lim
𝑡→∞

𝜔(𝑡) =∞, lim
𝑡→∞

𝜔(𝑡)
𝑡

= 0 and
∫︁ ∞

1

𝜔(𝑡)
𝑡2

𝑑𝑡 <∞.

Let 𝑥0 ∈ (0,∞) be fixed. Put Ω(𝜔) :=
{︀
𝜆 ∈ C : Re(𝜆) > max(𝑥0, 𝜔(| Im(𝜆)|))

}︀
.

Theorem 3.4. Suppose 𝐴 is a closed, linear operator which satisfies Ω(𝜔) ⊆
𝜌(𝐴) and ‖𝑅(𝜆 : 𝐴)‖ 6𝑀(1 + |𝜆|)𝑛, 𝜆 ∈ Ω(𝜔), for some 𝑀 > 0 and 𝑛 ∈ N. Then
there is a family of bounded injective operators (𝐶(𝑘, 𝜀))𝜀>0 such that, for every
𝜀 > 0, 𝐴 generates a global 𝐶(𝑘, 𝜀)-semigroup.

Proof. Let Γ be the curve employed in the proof of [2, Theorem 1]; note that
Γ is oriented from the lower to the upper half plane and that zero lies to the right
of Γ. If 𝑊 is the region to the left of Γ, then, without loss of generality, one may
translate 𝐴 and assume that 𝑅(· : 𝐴) exists for all 𝑧 /∈𝑊 . We refer to [2, pp. 287–
290] for more details. If 𝜀 > 0 is given, define the function ℎ𝜀(·) in the same way as
in the proof of [2, Theorem 1] (cf. [2, p. 290]) and an operator 𝐶(𝑘, 𝑡, 𝜀) ∈ 𝐿(𝐸) by

𝐶(𝑘, 𝑡, 𝜀)𝑥 := 1
2𝜋𝑖

∫︁
Γ

ℎ𝜀(𝜆)𝑒𝜆𝑡𝑅(𝜆 : 𝐴)𝑥 𝑑𝜆, 𝜀 > 0, 𝑡 > 0, 𝑥 ∈ 𝐸.

Put 𝐶(𝑘, 𝜀) = 𝐶(𝑘, 0, 𝜀), 𝜀 > 0. It is obvious that the operator 𝐶(𝑘, 𝜀) is injec-
tive; see also [3, Lemma 3 and p. 308]. Put 𝐺*(𝑘, 𝜀) := 𝑅(𝐶(𝑘, 𝜀)) and 𝐺*(𝑘) :=⋃︀
𝜀>0 𝐺

*(𝑘, 𝜀). Although we do not have the intrinsic characterization of 𝐺*(𝑘)
as a subspace of 𝐸, we know that the abstract Cauchy problem (𝐴𝐶𝑃 ) is well-
posed if 𝑥 ∈ 𝐺*(𝑘) [3]. An application of [9, Theorem 4.15] gives that, for every
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𝜀 > 0, 𝐴 generates a global 𝐶(𝑘, 𝜀)-semigroup (𝐶(𝑘, 𝑡, 𝜀))𝑡>0. Furthermore, the
constructed 𝐶(𝑘, 𝜀)-semigroup (𝐶(𝑘, 𝑡, 𝜀))𝑡>0 is infinitely differentiable for 𝑡 > 0
(cf. [2, p. 290]). �

4. Ultradifferentiable properties of entire solutions
of higher-order abstract Cauchy problems

and regularization of ultradistribution sines

First of all, we recall the assertion of [32, Theorem 6.2, p. 132] with 𝛼 = 𝑁 ∈ N:

Theorem 4.1. Suppose 𝑛 ∈ N, 𝑛 > 2, 𝜃 ∈ (0, 𝜋2 ), 𝑀 > 0, 𝑧0 ∈ C and 𝑧0 ̸= 0.
If a closed linear operator 𝐴 satisfies:

𝑒𝑖 arg(𝑧0)(|𝑧0|+ Σ𝜃) ⊆ 𝜌(𝐴),(4.1)

‖𝑅(𝜆 : 𝐴)‖ 6𝑀(1 + |𝜆|)𝑁 , 𝜆 ∈ 𝑒𝑖 arg(𝑧0)(|𝑧0|+ Σ𝜃),(4.2)
(i) For every 𝜖 > 0, there exists a unique solution 𝑢 of the abstract Cauchy

problem (𝐴𝐶𝑃𝑛) with initial data 𝑥0, . . . , 𝑥𝑛−1 ∈ 𝑅(𝐶𝜖) and

(4.3) ‖𝑢(𝑡)‖ 6𝑀(𝑡)
𝑛−1∑︁
𝑖=0
‖𝐶−1
𝜖 𝑥𝑖‖, 𝑡 > 0,

for some non-negative and locally bounded function 𝑀(𝑡), 𝑡 > 0.
(ii)
⋃︀
𝜖>0 𝐶𝜖(𝐷(𝐴𝑁+2)) is dense in 𝐷(𝐴𝑁+2).

Our essential contribution is related to the estimate (4.3) quoted in the for-
mulation of Theorem 4.1. Actually, by inspecting the proof of [32, Theorem 6.2,
p. 132], we are in a position to conclude that, for every 𝜖 > 0, the solution 𝑢 of
(𝐴𝐶𝑃𝑛) can be analytically extended to an entire function taking values in 𝐸. Fur-
thermore, the derivatives of such a solution possess some interesting properties of
operator valued ultradifferentiable functions and this is the substantial part of the
following assertion which reads as follows:

Theorem 4.2. Let (𝑀𝑝) satisfy (M.1) and (M.3)′. Suppose 𝑛 ∈ N, 𝑛 > 2, 𝜃 ∈
(0, 𝜋2 ), 𝑀 > 0, 𝑧0 ∈ C, 𝑧0 ̸= 0, 𝑁 ∈ N and 𝐴 is a closed linear operator satisfying
(4.1) and (4.2). Then, for every 𝑏 ∈

(︀ 1
𝑛 ,

𝜋
2(𝜋−𝜃)

)︀
and 𝛾 ∈

(︀
0, arctan(cos(𝑏(𝜋−𝜃)))

)︀
,

there exists an analytic operator family (𝑇𝑏(𝑡))𝑡∈Σ𝛾 so that:
(i) For every 𝑡 ∈ Σ𝛾 , 𝑇𝑏(𝑡) is injective and there exists 𝐶 > 0 with ‖𝑇𝑏(𝑡)‖ 6

𝐶(tan(𝛾) Re(𝑡)− | Im(𝑡)|)−(𝑁+1)/𝑏, 𝑡 ∈ Σ𝛾 .
(ii) If 𝑥 ∈ 𝐷(𝐴𝑁+2), then there exists lim𝑡→0+(𝑇𝑏(𝑡)𝑥−𝑥)/𝑡, and particularly,

we have lim𝑡→0+ 𝑇𝑏(𝑡)𝑥 = 𝑥.
(iii) For every 𝑡 ∈ Σ𝛾 , there exists a unique solution 𝑢(·; 𝑡) of the abstract

Cauchy problem (𝐴𝐶𝑃𝑛) with initial data 𝑥0, . . . , 𝑥𝑛−1 ∈ 𝑅(𝑇𝑏(𝑡)) and
𝑢(·; 𝑡) can be analytically extended to the whole complex plane. Further-
more, for every compact set 𝐾 ⊆ C, ℎ > 0 and 𝑡 ∈ Σ𝛾 :

(4.4)
𝑛−1∑︁
𝑙=0

sup
𝑧∈𝐾, 𝑝∈N

ℎ𝑝

𝑀𝑛𝑝−1+𝑙

⃦⃦⃦
𝐴𝑝

𝑑𝑙

𝑑𝑧𝑙
𝑢(𝑧; 𝑡)

⃦⃦⃦
6 Const

𝑛−1∑︁
𝑖=0
‖𝑇𝑏(𝑡)−1𝑥𝑖‖.
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Proof. Let 𝑡 ∈ Σ𝛾 and 𝑑 ∈ (0, 1] be fixed. Choose a set of initial data
{𝑥0, . . . , 𝑥𝑛−1} ⊆ 𝑅(𝑇𝑏(𝑡)), an 𝜔 ∈ (|𝑧0| + 𝑑,∞) and an 𝑎 ∈ (0, 𝜃) such that 𝑏 ∈
( 1
𝑛 ,

𝜋
2(𝜋−𝑎) ) and 𝛾 ∈

(︀
0, arctan(cos(𝑏(𝜋 − 𝑎)))

)︀
. Here we would like to notice that

1
𝑛 <

𝜋
2(𝜋−𝜃) since 𝑛 > 2. Put 𝐴0 := 𝑒−𝑖 arg(𝑧0)𝐴. Then we know that |𝑧0| + Σ𝜃 ⊆

𝜌(𝐴0) and that 𝑅(𝜆 : 𝐴0) = 𝑒𝑖 arg(𝑧0)𝑅(𝑒𝑖 arg(𝑧0)𝜆 : 𝐴), 𝜆 ∈ |𝑧0| + Σ𝜃. Thereby,
‖𝑅(𝜆 : 𝐴0)‖ 6𝑀(1 + |𝜆|)𝑁 , 𝜆 ∈ |𝑧0|+ Σ𝜃. Designate by Γ𝑎,𝑑 the upwards oriented
boundary of Ω𝑎,𝑑 and define the bounded operator 𝑇𝑏(𝑡) by:

𝑇𝑏(𝑡)𝑥 := 1
2𝜋𝑖

∫︁
Γ𝑎,𝑑

𝑒−𝑡(−𝜆)𝑏𝑅(𝜆 : 𝐴0 − 𝜔)𝑥 𝑑𝜆, 𝑥 ∈ 𝐸.

As before, 𝑇𝑏(𝑡) is injective and (𝑇𝑏(𝑧))𝑧∈Σ𝛾 is an analytic operator family which
satisfies the items (i) and (ii) stated in the formulation of the theorem. In order to
prove that there exists a solution 𝑢(·; 𝑡) of the abstract Cauchy problem (𝐴𝐶𝑃𝑛)
with initial data 𝑥0, . . . , 𝑥𝑛−1 and that 𝑢(·; 𝑡) can be analytically extended to C, we
will slightly modify the arguments given in the proof of [32, Theorem 6.2, p. 132].
Put, for every 𝑧 ∈ C and 𝑘 ∈ {0, 1, . . . , 𝑛− 1}:

𝑆𝑘(𝑧; 𝑡)𝑥 := 1
2𝜋𝑖

∫︁
Γ𝑎,𝑑

𝑒−𝑡(−𝜆)𝑏
∞∑︁
𝑗=0

𝑧𝑛𝑗+𝑘(𝜆+ 𝜔)𝑗

(𝑛𝑗 + 𝑘)! 𝑅(𝜆 : 𝐴0 − 𝜔)𝑥 𝑑𝜆, 𝑥 ∈ 𝐸,

where 00 := 1 by common consent. Notice that:

(4.5)
⃒⃒⃒⃒ ∞∑︁
𝑗=0

𝑧𝑛𝑗+𝑘(𝜆+ 𝜔)𝑗

(𝑛𝑗 + 𝑘)!

⃒⃒⃒⃒
6 |𝑧|𝑘𝑒|𝑧||𝜆+𝜔|1/𝑛 6 |𝑧|𝑘𝑒|𝑧|(|𝜆|

1/𝑛+|𝜔|1/𝑛).

Put 𝜂 := Re(𝑡) tan(𝛾)− | Im(𝑡)|. Then 𝜂 > 0 and, for every 𝜆 ∈ Γ𝑎,𝑑:

|𝑒−𝑡(−𝜆)𝑏 | = 𝑒−Re(𝑡)|𝜆|𝑏 cos(𝑏 arg(−𝜆))+Im(𝑡)|𝜆|𝑏 sin(𝑏 arg(−𝜆))

6 𝑒−(Re(𝑡) cos(𝑏 arg(−𝜆))−| Im(𝑡)|)|𝜆|𝑏 6 𝑒−(Re(𝑡) cos(𝑏(𝜋−𝑎))−| Im(𝑡)|)|𝜆|𝑏

6 𝑒−(Re(𝑡) tan(𝛾)−| Im(𝑡)|)|𝜆|𝑏 = 𝑒−𝜂|𝜆|
𝑏

.

These arguments and (4.5) imply 𝑆𝑘(𝑧; 𝑡) ∈ 𝐿(𝐸). An elementary application of
the Cauchy formula (see also the proof of Theorem 2.1) yields:

1
2𝜋𝑖

∫︁
Γ𝑎,𝑑

𝑒−𝑡(−𝜆)𝑏
∞∑︁
𝑗=0

𝑧𝑛𝑗+𝑘(𝜆+ 𝜔)𝑗

(𝑛𝑗 + 𝑘)! 𝑑𝜆 = 0,

and the argumentation given in the proof of [32, Theorem 6.2] (cf. [32, (6.5)–(6.12),
pp. 132–133]) implies that, for every 𝑧 ∈ C and 𝑘, 𝑙 ∈ {0, 1, . . . , 𝑛− 1}:

(4.6) 𝑑𝑛

𝑑𝑧𝑛
𝑆𝑘(𝑧; 𝑡) = 𝐴0𝑆𝑘(𝑧; 𝑡) and 𝑆

(𝑙)
𝑘 (0; 𝑡) = 𝛿𝑘𝑙𝑇𝑏(𝑡),

where 𝛿𝑘𝑙 is the Kronecker delta. Define

𝑢(𝑧; 𝑡) :=
𝑛−1∑︁
𝑘=0

𝑆𝑘
(︀
𝑒𝑖

arg(𝑧0)
𝑛 𝑧; 𝑡

)︀
𝑆0(0; 𝑡)−1𝑒−𝑖

𝑘 arg(𝑧0)
𝑛 𝑥𝑘, 𝑧 ∈ C.
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Clearly, the mapping 𝑧 ↦→ 𝑢(𝑧; 𝑡), 𝑧 ∈ C is analytic and the use of (4.6) en-
ables one to show that the restriction 𝑢(𝑧; 𝑡)|[0,∞) solves (𝐴𝐶𝑃𝑛) with initial data
𝑥0, . . . , 𝑥𝑛−1. The uniqueness follows as in [32] and it remains to be proved (4.4).
In order to simplify the notation, let us reach the agreement 𝑧𝑛𝑗+𝑘−𝑙

(𝑛𝑗+𝑘−𝑙)! := 0, if 𝑧 ∈ C,
𝑘, 𝑙 ∈ {0, 1, . . . , 𝑛 − 1}, 𝑗 ∈ N0 and 𝑛𝑗 + 𝑘 − 𝑙 < 0. Put 𝑀1 :=

∑︀𝑛−1
𝑖=0 ‖𝑇𝑏(𝑡)−1𝑥𝑖‖

and assume 𝐾 ⊆ C is a compact set, 𝑝 ∈ N and |𝑧| 6 𝐿, 𝑧 ∈ 𝐾 for an appropriate
𝐿 > 1. Due to the resolvent equation and Cauchy formula, we get:

⃦⃦⃦
𝐴𝑝

𝑑𝑙

𝑑𝑧𝑙
𝑢(𝑧; 𝑡)

⃦⃦⃦
6𝑀1

⃦⃦⃦⃦ 𝑛−1∑︁
𝑘=0

𝑒𝑖(𝑝+1) arg(𝑧0)

2𝜋𝑖

×
∫︁

Γ𝑎,𝑑

𝑒−𝑡(−𝜆)𝑏
∞∑︁
𝑗=0

𝑧𝑛𝑗+𝑘−𝑙(𝑒𝑖
arg(𝑧0)
𝑛 )𝑛𝑗+𝑘(𝜆+ 𝜔)𝑝+𝑗

(𝑛𝑗 + 𝑘 − 𝑙)! 𝑅(𝑒𝑖 arg(𝑧0)(𝜆+ 𝜔) : 𝐴) 𝑑𝜆
⃦⃦⃦⃦
.

Since |𝜆+ 𝜔|𝑝+𝑗(1 + |𝜆+ 𝜔|)𝑁 6 (1 + 𝜔)𝑝+𝑗+𝑁 (1 + |𝜆|)𝑝+𝑗+𝑁 , 𝑗 ∈ N0, 𝜆 ∈ C, one
can continue the calculus:⃦⃦⃦

𝐴𝑝
𝑑𝑙

𝑑𝑧𝑙
𝑢(𝑧; 𝑡)

⃦⃦⃦
6𝑀𝑀1

𝑛−1∑︁
𝑘=0

1
2𝜋

⃒⃒⃒⃒
⃒
∫︁

Γ𝑎,𝑑

𝑒−𝜂|𝜆|
𝑏
∞∑︁
𝑗=0

|𝑧|𝑛𝑗+𝑘−𝑙

(𝑛𝑗 + 𝑘 − 𝑙)! (1 + 𝜔)𝑝+𝑗+𝑁 (1 + |𝜆|)𝑝+𝑗+𝑁𝑑𝜆

⃒⃒⃒⃒
⃒

6𝑀𝑀1(1 + 𝜔)𝑁+𝑝
𝑛−1∑︁
𝑘=0

∞∑︁
𝑗=0

|𝑧|𝑛𝑗+𝑘−𝑙(1 + 𝜔)𝑗

(𝑛𝑗 + 𝑘 − 𝑙)!

⃒⃒⃒⃒
⃒ 1
2𝜋

∫︁
Γ𝑎,𝑑

𝑒−𝜂|𝜆|
𝑏

(1 + |𝜆|)𝑝+𝑗+𝑁𝑑𝜆

⃒⃒⃒⃒
⃒,

and by the proofs of [28, Proposition 2.2] and Theorem 2.1,⃒⃒⃒⃒
⃒ 1
2𝜋

∫︁
Γ𝑎,𝑑

𝑒−𝜂|𝜆|
𝑏

(1 + |𝜆|)𝑝+𝑗+𝑁𝑑𝜆

⃒⃒⃒⃒
⃒

6 2𝑝+𝑗+𝑁
[︁
(1− 𝑑)𝑒−𝜂𝑑

𝑏

+ 1
𝑏

Γ
(︁𝑝+ 𝑗 +𝑁 + 1

𝑏

)︁
𝜂−

𝑝+𝑗+𝑁+1
𝑏

]︁
+ 2𝑝+𝑗+𝑁𝑒−𝜂𝑑

𝑏

6 2𝑝+𝑗+𝑁
[︁
2 + 1

𝑏
Γ
(︁𝑝+ 𝑗 +𝑁 + 1

𝑏

)︁
𝜂−

𝑝+𝑗+𝑁+1
𝑏

]︁
, 𝑗 ∈ N0.

Hence,

⃦⃦⃦
𝐴𝑝

𝑑𝑙

𝑑𝑧𝑙
𝑢(𝑧; 𝑡)

⃦⃦⃦
6𝑀𝑀12𝑝+𝑁+1(1 + 𝜔)𝑁+𝑝

𝑛−1∑︁
𝑘=0

∞∑︁
𝑗=0

𝐿𝑛𝑗+𝑘−𝑙(2 + 2𝜔)𝑗

(𝑛𝑗 + 𝑘 − 𝑙)!

+ 𝑀𝑀1(2 + 2𝜔)𝑁+𝑝

𝜂
𝑁+𝑝+1
𝑏 𝑏

𝑛−1∑︁
𝑘=0

∞∑︁
𝑗=0

𝐿𝑛𝑗+𝑘−𝑙(2 + 2𝜔)𝑗

(𝑛𝑗 + 𝑘 − 𝑙)!
Γ(𝑝+𝑗+𝑁+1

𝑏 )
𝜂
𝑗
𝑏

.
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Denote 𝐴 =
𝑛−1∑︀
𝑘=0

∞∑︀
𝑗=0

𝐿𝑛𝑗+𝑘−𝑙(2 + 2𝜔)𝑗

(𝑛𝑗 + 𝑘 − 𝑙)! . Then

𝐴 6
𝑛−1∑︁
𝑘=0

(︂
𝐿𝑘−𝑙

(𝑘 − 𝑙)! +
∞∑︁
𝑗=1

𝐿𝑛𝑗+𝑘−𝑙(2 + 2𝜔)𝑗

(𝑛𝑗 + 𝑘 − 𝑙)!

)︂

6 𝑒𝐿 +
𝑛−1∑︁
𝑘=0

𝑒𝐿
∞∑︁
𝑗=1

(2 + 2𝜔)𝑗𝐿𝑗

𝑗! 6 𝑒𝐿 + 𝑛𝑒(3+2𝜔)𝐿 6 (𝑛+ 1)𝑒(3+2𝜔)𝐿.

Fix an ℎ > 0. Then

sup
𝑝∈N

𝑀𝑀12𝑝+𝑁+1(1 + 𝜔)𝑁+𝑝𝐴ℎ
𝑝

𝑀𝑝

6𝑀𝑀12𝑁+1(1 + 𝜔)𝑁 (𝑛+ 1)𝑒(3+2𝜔)𝐿𝑒𝑀(2ℎ(1+𝜔)) <∞,

which simply gives

sup
𝑝∈N

𝑀𝑀12𝑝+𝑁+1(1 + 𝜔)𝑁+𝑝 𝐴ℎ𝑝

𝑀𝑛𝑝−1+𝑙
<∞.

Denote 𝜅 = (2 + 2𝜔)𝜂−1/𝑏; the proof is completed if one shows that:

(4.7) 𝑆 := sup
𝑝∈N

(︂
𝜅𝑝

𝑀𝑛𝑝−1+𝑙

𝑛−1∑︁
𝑘=0

∞∑︁
𝑗=0

𝐿𝑛𝑗+𝑘−𝑙

(𝑛𝑗 + 𝑘 − 𝑙)!𝜅
𝑗Γ
(︁𝑝+ 𝑗 +𝑁 + 1

𝑏

)︁)︂
<∞.

Note, the choice of 𝑏 implies 𝑝+𝑗+𝑁+1
𝑏 > (𝑝+ 𝑗+𝑁 +1) 2(𝜋−𝑎)

𝜋 > 2 and since Γ(·) is
increasing in (𝜉,∞), where 𝜉∼1.4616..., we have Γ(𝑝+𝑗+𝑁+1

𝑏 )6
(︀
⌈𝑝+𝑗+𝑁+1

𝑏 ⌉−1
)︀
!.

Further on, 𝑀0 = 1 and (M.1) imply 𝑀𝑝+𝑞 > 𝑀𝑝𝑀𝑞, 𝑝, 𝑞 ∈ N0 and, as a
consequence of (M.1) and (M.3)′, we obtain 𝑝! ≺ 𝑀𝑝, i.e., for every ℎ1 > 0:
sup𝑝∈N ℎ

𝑝
1𝑝!/𝑀𝑝 <∞. Therefore,

𝑆 6 sup
𝑝∈N

𝜅𝑝(𝑛𝑝+ 𝑛𝑁)!
𝑀𝑛𝑝−1

𝑛−1∑︁
𝑘=0

∞∑︁
𝑗=0

𝐿𝑛𝑗+𝑘−𝑙𝜅𝑗

𝑀𝑙(𝑛𝑗 + 𝑘 − 𝑙)!(𝑛𝑝+ 𝑛𝑁)!

(︁⌈︁𝑝+ 𝑗 +𝑁 + 1
𝑏

⌉︁
− 1
)︁

!

6 2𝑛𝑁 sup
𝑝∈N

2𝑛𝑝𝜅𝑝(𝑛𝑝− 1)!(𝑛𝑁 + 1)!
𝑀𝑛𝑝−1

×
𝑛−1∑︁
𝑘=0

∞∑︁
𝑗=0

𝐿𝑛𝑗+𝑘−𝑙𝜅𝑗

𝑀𝑙(𝑛𝑗 + 𝑘 − 𝑙)!(𝑛𝑝+ 𝑛𝑁)!

(︁⌈︁𝑝+ 𝑗 +𝑁 + 1
𝑏

⌉︁
− 1
)︁

!

6 2𝑛𝑁 (𝑛𝑁 + 1)! sup
𝑝∈N

(2𝑛𝜅)𝑝(𝑛𝑝− 1)!
𝑀𝑛𝑝−1

×
𝑛−1∑︁
𝑘=0

∞∑︁
𝑗=0

𝐿𝑛𝑗+𝑘−𝑙𝜅𝑗2𝑛𝑗+𝑛𝑝+𝑛𝑁+𝑘−𝑙

𝑀𝑙(𝑛𝑗 + 𝑛𝑝+ 𝑛𝑁 + 𝑘 − 𝑙)!

(︁⌈︁𝑝+ 𝑗 +𝑁 + 1
𝑏

⌉︁
− 1
)︁

!

6 2(2𝑁+1)𝑛(𝑛𝑁 + 1)! sup
𝑝∈N

(4𝑛𝜅)𝑝(𝑛𝑝− 1)!
𝑀𝑛𝑝−1
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×
𝑛−1∑︁
𝑘=0

∞∑︁
𝑗=0

𝐿𝑛𝑗+𝑘−𝑙(2𝑛𝜅)𝑗

𝑀𝑙(𝑛𝑗 + 𝑛𝑝+ 𝑛𝑁 + 𝑘 − 𝑙)!

(︁⌈︁𝑝+ 𝑗 +𝑁 + 1
𝑏

⌉︁
− 1
)︁

!

6 2(2𝑁+1)𝑛(𝑛𝑁 + 1)! sup
𝑝∈N

(4𝑛𝜅)𝑝(𝑛𝑝− 1)!
𝑀𝑛𝑝−1

×

× 𝐿𝑛−1
𝑛−1∑︁
𝑘=0

∞∑︁
𝑗=0

𝐿𝑛𝑗(2𝑛𝜅)𝑗⌈ 1
𝑏 ⌉!2

𝑛𝑗+𝑛𝑝+𝑛𝑁+𝑘−𝑙+⌈ 1
𝑏 ⌉

𝑀𝑙
(︀
𝑛𝑗 + 𝑛𝑝+ 𝑛𝑁 + 𝑘 − 𝑙 + ⌈ 1

𝑏 ⌉
)︀
!

(︁⌈︁𝑝+ 𝑗 +𝑁 + 1
𝑏

⌉︁
− 1
)︁

!

6
⌈︁1
𝑏

⌉︁
!𝐿𝑛−12(3𝑁+1)𝑛+𝑛−1+⌈ 1

𝑏 ⌉(𝑛𝑁 + 1)! sup
𝑝∈N

(8𝑛𝜅)𝑝(𝑛𝑝− 1)!
𝑀𝑛𝑝−1

×
𝑛−1∑︁
𝑘=0

∞∑︁
𝑗=0

𝐿𝑛𝑗(4𝑛𝜅)𝑗

𝑀𝑙
(︀
𝑛𝑗 + 𝑛𝑝+ 𝑛𝑁 + 𝑘 − 𝑙 + 𝑉 ⌈ 1

𝑏 ⌉
)︀
!

(︁⌈︁𝑝+ 𝑗 +𝑁 + 1
𝑏

⌉︁
− 1
)︁

!

6 Const
𝑛−1∑︁
𝑘=0

𝐶𝑝,𝑘,

where Const. is independent of 𝑘, 𝑗 and 𝑝 and

𝐶𝑝,𝑘 :=
∞∑︁
𝑗=0

𝐿𝑛𝑗(4𝑛𝜅)𝑗

𝑀𝑙
(︀
𝑛𝑗 + 𝑛𝑝+ 𝑛𝑁 + 𝑘 − 𝑙 + ⌈ 1

𝑏 ⌉
)︀
!

(︁⌈︁𝑝+ 𝑗 +𝑁 + 1
𝑏

⌉︁
− 1
)︁

!.

Let 𝑘 ∈ {0, 1, . . . , 𝑛 − 1} be fixed. It is clear that (4.7) holds if we prove that
sup𝑝∈N 𝐶𝑝,𝑘 <∞. This follows from the next computation:

𝐶𝑝,𝑘 6
∞∑︁
𝑗=0

(𝐿𝑛4𝑛𝜅)𝑗

𝑀𝑙
(︀
𝑛𝑗 + 𝑛𝑝+ 𝑛𝑁 − 𝑙 + ⌈ 1

𝑏 ⌉ − ⌈
𝑝+𝑗+𝑁+1

𝑏 ⌉+ 1
)︀
!

6
∞∑︁
𝑗=0

(𝐿𝑛4𝑛𝜅)𝑗

𝑀𝑙
(︀
𝑛𝑗 + 𝑛𝑝+ 𝑛𝑁 − 𝑙 + ⌈ 1

𝑏 ⌉ − ⌈
𝑝
𝑏 ⌉ − ⌈

𝑗
𝑏⌉ − ⌈

𝑁
𝑏 ⌉ − ⌈

1
𝑏 ⌉+ 1

)︀
!

6
∞∑︁
𝑗=0

(𝐿𝑛4𝑛𝜅)𝑗 𝑙!
𝑀𝑙
(︀
𝑛𝑗 − ⌈ 𝑗𝑏⌉ − 𝑙 + 1

)︀
! 𝑙!
6 2 sup

𝑚∈N0

𝑚!
𝑀𝑚

∞∑︁
𝑗=0

(8𝑛𝐿𝑛𝜅)𝑗(︀
𝑛𝑗 − ⌈ 𝑗𝑏⌉+ 1

)︀
!
<∞,

since 𝑝! ≺𝑀𝑝 and, for every 𝑠 ∈ R:
∑︀∞
𝑗=0

𝑠𝑗

(𝑛𝑗−⌈𝑗/𝑏⌉+1)! <∞. �

Concerning regularization of ultradistribution sines whose generators possess
ultra-polynomially bounded resolvent, we have the following analogue of Theo-
rem 3.3.

Theorem 4.3. Suppose (𝑀𝑝) satisfies (M.1), (M.2) and (M.3). If 𝐴 generates
an ultradistribution sine of (𝑀𝑝)-class, then there exists an injective operator 𝐶 ∈
𝐿(𝐸) such that 𝐴 generates a global 𝐶-cosine function (𝐶(𝑡))𝑡>0. Furthermore,
the mapping 𝑡 ↦→ 𝐶(𝑡), 𝑡 > 0 is infinitely differentiable and, for every compact set
𝐾 ⊆ [0,∞) and ℎ > 0:

(4.8) sup
𝑝∈N0, 𝑡∈𝐾

ℎ𝑝

𝑀𝑝

(︁⃦⃦⃦ 𝑑𝑝+1

𝑑𝑡𝑝+1𝐶(𝑡)
⃦⃦⃦

+
⃦⃦⃦ 𝑑𝑝
𝑑𝑡𝑝

𝐶(𝑡)
⃦⃦⃦)︁

<∞.
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Proof. We will use the same terminology as in the preceding section. The
operator 𝒜 generates a (UDSG) of (𝑀𝑝)-class and one can argue as in the proofs
of Theorem 3.1 and [14, Lemma 1.10] to deduce that there exist constants 𝑙 > 1,
𝛼 > 0 and 𝛽 > 0 such that Λ𝛼, 𝛽, 𝑙 ⊆ 𝜌(𝒜) and that:

‖𝑅(𝜆2 : 𝐴)‖ 6 ‖𝑅(𝜆 : 𝒜)‖ 6 Const 𝑒𝑀(𝐻𝑙|𝜆|)|𝜆|−𝑘, 𝜆 ∈ Λ𝛼, 𝛽, 𝑙, 𝑘 ∈ N.

By Lemma 3.2, we infer that there exists a sequence (𝑁𝑝) of positive real numbers
satisfying 𝑁0 = 1, (M.1), (M.2), (M.3) and 𝑁𝑝 ≺ 𝑀𝑝. Furthermore, there exists
𝑛 ∈ N such that the operator 𝒟𝑛 ∈ 𝐿(𝐸 × 𝐸), defined by

𝒟𝑛(𝑥 𝑦)𝑇 := 1
2𝜋𝑖

∫︁
Γ𝑙

𝑅(𝜆 : 𝒜)
𝜔𝑛𝑁𝑝(𝑖𝜆) (𝑥 𝑦)𝑇 𝑑𝜆, 𝑥, 𝑦 ∈ 𝐸

is injective (cf. Section 3) and that the following expression defines a bounded linear
operator for every 𝑡 > 0:

(4.9) 𝐶(𝑡)𝑥 := 1
2𝜋𝑖

∫︁
Γ𝑙

𝜆cosh(𝜆𝑡)𝑅(𝜆2 : 𝐴)𝑥
𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆, 𝑥 ∈ 𝐸.

By standard argumentation, 𝐶(𝑡)𝐴 ⊆ 𝐴𝐶(𝑡), 𝑡 > 0, (𝐶(𝑡))𝑡>0 is strongly continu-
ous and:

(4.10) 1
2𝜋𝑖

∫︁
Γ𝑙

𝑒±𝜆𝑠𝜆𝑝

𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆 = 0, 𝑝 ∈ N0, 𝑠 > 0.

Let us prove that 𝐴
∫︀ 𝑡

0 (𝑡−𝑠)𝐶(𝑠)𝑥 𝑑𝑠 = 𝐶(𝑡)𝑥−𝐶𝑥, 𝑥 ∈ 𝐸, 𝑡 > 0, where 𝐶 = 𝐶(0).
Fix, for the time being, a number 𝑡 > 0 and note that, for every 𝜆 ∈ Γ𝑙, we have
𝜆3 ∫︀ 𝑡

0 (𝑡 − 𝑠) cosh(𝜆𝑠) 𝑑𝑠 = 𝜆 cosh(𝜆𝑡) − 𝜆. Then the Fubini theorem, the simple
equality 𝐴𝑅(𝜆2 : 𝐴)𝑥 = 𝜆2𝑅(𝜆2 : 𝐴)𝑥− 𝑥, 𝜆 ∈ Γ𝑙, 𝑥 ∈ 𝐸 and (4.10) imply:

𝐴

𝑡∫︁
0

(𝑡− 𝑠)𝐶(𝑠)𝑥 𝑑𝑠 =
𝑡∫︁

0

(𝑡− 𝑠) 1
2𝜋𝑖

∫︁
Γ𝑙

[︂
𝜆 cosh(𝜆𝑠)𝜆

2𝑅(𝜆2 : 𝐴)𝑥− 𝑥
𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆

]︂
𝑑𝑠

=
𝑡∫︁

0

(𝑡− 𝑠) 1
2𝜋𝑖

∫︁
Γ𝑙

[︂
𝜆3 cosh(𝜆𝑠)𝑅(𝜆2 : 𝐴)𝑥

𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆

]︂
𝑑𝑠

= 1
2𝜋𝑖

∫︁
Γ𝑙

[︃
𝜆3

𝑡∫︁
0

(𝑡− 𝑠) cosh(𝜆𝑠) 𝑑𝑠
]︃
𝑅(𝜆2 : 𝐴)𝑥
𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆

= 1
2𝜋𝑖

∫︁
Γ𝑙

(𝜆 cosh(𝜆𝑡)− 𝜆)𝑅(𝜆2 : 𝐴)𝑥
𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆 = 𝐶(𝑡)𝑥− 𝐶𝑥,
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for every 𝑥 ∈ 𝐸. Arguing as in the proof of Theorem 3.1, one can differentiate (4.9)
under the integral sign and, in such a way, one gets that, for every 𝑡 > 0 and 𝑥 ∈ 𝐸:

𝑑𝑝

𝑑𝑡𝑝
𝐶(𝑡)𝑥 = 1

2𝜋𝑖

∫︁
Γ𝑙

𝜆𝑝+1cosh(𝜆𝑡)𝑅(𝜆2 : 𝐴)𝑥
𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆, 2 | 𝑝, 𝑝 ∈ N and(4.11)

𝑑𝑝

𝑑𝑡𝑝
𝐶(𝑡)𝑥 = 1

2𝜋𝑖

∫︁
Γ𝑙

𝜆𝑝+1sinh(𝜆𝑡)𝑅(𝜆2 : 𝐴)𝑥
𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆, 2 | 𝑝− 1, 𝑝 ∈ N.(4.12)

The proof of (4.8) follows by means of (4.11)–(4.12) and the estimations given in
the proof of Theorem 3.1. It remains to be shown that the operator 𝐶 is injective.
Suppose 𝐶𝑥 = 0, for some 𝑥 ∈ 𝐸. Put 𝐶(−𝑡) := 𝐶(𝑡), 𝑡 > 0 and notice that the
previous argumentation simply implies that, for every 𝑦 ∈ 𝐸 and 𝑡, 𝑠 ∈ R:

𝑠∫︁
0

(𝑠− 𝑟)𝐶(𝑟)(𝐶(𝑡)𝑦 − 𝐶𝑦) 𝑑𝑟 = (𝐶(𝑠)− 𝐶)
𝑡∫︁

0

(𝑡− 𝑟)𝐶(𝑟)𝑦 𝑑𝑟.

Now an application of [27, Theorem 1.2] yields:

𝐶(𝑡+ 𝑠)𝐶𝑦 + 𝐶(|𝑡− 𝑠|)𝐶𝑦 = 2𝐶(𝑡)𝐶(𝑠)𝑦, 𝑦 ∈ 𝐸, 𝑡 > 0, 𝑠 > 0.

Thereby, 𝐶(𝑡)𝑥 = 0, 𝑡 > 0 and the use of (4.12), with 𝑛 = 1 and 𝑡 = 0, gives:

(4.13) 1
2𝜋𝑖

∫︁
Γ𝑙

𝜆2𝑅(𝜆2 : 𝐴)𝑥
𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆 = 0.

According to the proof of [14, Lemma 1.10]:

𝑅(𝜆 : 𝒜)
(︂
𝑥

0

)︂
=
(︂
𝜆𝑅(𝜆2 : 𝐴)𝑥
𝐴𝑅(𝜆2 : 𝐴)𝑥

)︂
, 𝜆 ∈ Λ𝛼, 𝛽, 𝑙,

and, as a consequence of (4.10), (4.13) and the resolvent equation, we easily infer
that

1
2𝜋𝑖

∫︁
Γ𝑙

𝐴𝑅(𝜆2 : 𝐴)𝑥
𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆 = (−1)

2𝜋𝑖

∫︁
Γ𝑙

𝑑𝜆

𝜔𝑛𝑁𝑝(𝑖𝜆) + 1
2𝜋𝑖

∫︁
Γ𝑙

𝜆2𝑅(𝜆2 : 𝐴)𝑥
𝜔𝑛𝑁𝑝(𝑖𝜆) 𝑑𝜆 = 0.

Therefore, 𝒟𝑛(𝑥 0)𝑇 = 0 and 𝑥 = 0, as required. This completes the proof of the
theorem. �

It can be straightforwardly justified that the following profiling of the abstract
Beurling space associated to the operator 𝒜 holds whenever the corresponding
sequence (𝑀𝑝) satisfies (M.1), (M.2) and (M.3):

(𝐸2)(𝑀𝑝)(𝒜) = 𝐸(𝑀𝑝)(𝐴)× 𝐸(𝑀𝑝)(𝐴).

Keeping in mind Theorem 3.2, the preceding equality immediately implies the fol-
lowing theorem which ends the paper.
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Theorem 4.4. Suppose that (𝑀𝑝) satisfies (M.1), (M.2) and (M.3) and that
𝐺 is an ultradistribution sine of (𝑀𝑝)-class generated by 𝐴. Then, for every 𝑥 ∈
𝐸(𝑀𝑝)(𝐴) and 𝑦 ∈ 𝐸(𝑀𝑝)(𝐴), the abstract Cauchy problem

(𝐴𝐶𝑃2) :

⎧⎨⎩ 𝑢 ∈ 𝐶∞([0,∞) : 𝐸) ∩ 𝐶([0,∞) : [𝐷(𝐴)]),
𝑢′′(𝑡) = 𝐴𝑢(𝑡), 𝑡 > 0,
𝑢(0) = 𝑥, 𝑢′(0) = 𝑦,

has a unique solution. Furthermore, for every compact set 𝐾 ⊆ [0,∞) and ℎ > 0,
the solution 𝑢 of (𝐴𝐶𝑃2) satisfies

sup
𝑡∈𝐾, 𝑝∈N0

ℎ𝑝

𝑀𝑝

(︁⃦⃦⃦ 𝑑𝑝
𝑑𝑡𝑝

𝑢(𝑡)
⃦⃦⃦

+
⃦⃦⃦ 𝑑𝑝

𝑑𝑡𝑝+1𝑢(𝑡)
⃦⃦⃦)︁

<∞.
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