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Abstract. Assume that �X and �Y are independent, nonnegative d-dimen-
sional random vectors with distribution function (d.f.) F (�x) and G(�x), respec-
tively. We are interested in estimates for the difference between the product
and the convolution product of F and G, i.e.,

D(�x) = F (�x)G(�x) − F ∗ G(�x).
Related to D(�x) is the difference R(�x) between the tail of the convolution and
the sum of the tails:

R(�x) = (1 − F ∗ G(�x)) − (1 − F (�x) + 1 − G(�x)).
We obtain asymptotic inequalities and asymptotic equalities for D(�x) and
R(�x). The results are multivariate analogues of univariate results obtained by
several authors before.

1. Introduction

Assume that �X and �Y are independent, nonnegative d-dimensional random
vectors with distribution function (d.f.) F (�x) and G(�x), respectively. In this pa-
per, we are interested in estimates for the difference between the product and the
convolution product of F and G, i.e.,

D(�x) = F (�x) G(�x) − F ∗ G(�x).

Here, and throughout the paper, we set

F ∗ G(�x) = P ( �X + �Y � �x) =
∫ �x

�0
F (�x − �y) dG(�y).
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Clearly, we have D(�x) � 0. Related to D(�x) is the difference between the tail of
the convolution and the sum of the tails:

R(�x) = F ∗ G(�x) − F̄ (�x) + Ḡ(�x),

where, here and elsewhere, we use the notation F̄ = 1 − F for the tails of d.fs.
Clearly, we have

R(�x) = D(�x) − F̄ (�x) Ḡ(�x).

In the case of one single d.f. F , we are interested in the following differences:

Dn(�x) = F n(�x) − F ∗n(�x), and Rn(�x) = F ∗n(�x) − nF̄ (�x).

Note that we have

|Rn(�x) − Dn(�x)| � (1 − F (�x))2 n(n − 1)
2

.

The interest in Dn and Rn comes from the class S(Rd) of subexponential distribu-
tions. In Omey (2006) and Baltrunas, Van Gulck and Omey (2006, section 4) we
studied the class of d.f. satisfying

1 − F ∗n(�x)
1 − F (�x)

→ n,

as x0 = min(x1, x2, . . . , xd) → ∞. See also Daley, Omey and Vesilo (2007, Sec-
tion 5). In dimension d = 1, this is the usual subexponential class S. In Omey,
Mallor and Santos (2006), we considered d.fs satisfying a relation of the form

lim
t→∞

1 − F ∗n(t�x + ā)
1 − F (t�x)

= n, for each �a and each �x > �0, with x0 < ∞.

Using Rn and Dn, we are able to study the rate of convergence in these definitions.
We are interested in two types of results. In the first place, we are interested in

general inequalities and upper bounds. Secondly, we are interested in asymptotic
equalities. In the next section, we briefly discuss the one-dimensional case, which
has been studied, among others, by Omey (1994), Daley et al. (2007) and Baltrunas
and Omey (1998).

2. Results in the one-dimensional case

In the one-dimensional case, we start from nonnegative random variables X and
Y with d.f. F and G, respectively. We are interested in the following quantities:

D(x) = F (x) G(x) − F ∗ G(x); Dn(x) = F n(x) − F ∗n(x);
R(x) = F ∗ G(x) − F̄ (x) − Ḡ(x); Rn(x) = F ∗n(x) − nF̄ (x).

To state some of the known results, we need the following classes of positive and
measurable functions, cf. Omey (1994): (throughout, we assume limits as x → ∞.)
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f ∈ L: for all y we have f(x + y)/f(x) → 1;
f ∈ OD(m): for all y we have |f(x + y) − f(x)| = O(1) m(x);
f ∈ D(m, α): for all y we have (f(x + y) − f(x))/m(x) → αy;
f ∈ ORV : for all y > 0 we have f(xy) = O(1)f(x);
f ∈ RV (α): for all y > 0 we have f(xy)/f(x) → yα;
f ∈ Πα(m): for all y > 0 we have (f(xy) − f(x))/m(x) → α log(y).

Note that f ∈ D(m, α) with α �= 0 implies that f(log(x)) ∈ Πα(g(x)), where
g(x) = m(log(x)) ∈ RV (0). For a measurable function f , the upper and lower
Matuszewska indices are defined as follows:

α(f) = lim
x→∞

log lim supt→∞ f(tx)/f(t)
log(x)

,

and

β(f) = lim
x→∞

log lim inf f(tx)/f(t)
log(x)

.

It can be proved that f ∈ ORV if and only if α(f) < ∞ and β(f) > −∞. Properties
of these indices can be found in the books of Bingham et al. (1987) or Geluk and
de Haan (1987).

We have the following representation theorem for the classes OD(m) and
D(m, α).

Theorem 2.1 (Omey 1994, 1995). (i)(Representation theorem for OD(m) and
D(m, 0)) Assume that f ∈ OD(m), resp.f ∈ D(m, 0) and suppose that m(log(x)) ∈
ORV . Then there exist constants C and x0 > 0 such that

f(x) = C + η(x) m(x) +
∫ x

x0
φ(z) m(z) dz, x � x0,

where the measurable functions η(x) and φ(x) are bounded, resp. η(x) = o(1) and
φ(x) = o(1).

(ii) (Representation theorem for D(m, α), α �= 0) Assume that f ∈ D(m, α)
and suppose that α �= 0. Then there exist constants C and x0 > 0 such that

f(x) = C + η(x) m(x) +
∫ x

x0
φ(z) m(z) dz, x � x0,

where η and φ are measurable functions satisfying η(x) = o(1) and φ(x) → α.

The representation theorems can be used to obtain upper bounds.

Proposition 2.1 (Omey 1994, 1995). Suppose that f ∈ OD(m) and assume
that m(x) ∈ ORV . Then there exist constants C and x0 such that

|f(x + y) − f(x)| � C(1 + |y|) m(x), x � x0, |y| � x/2.

If f ∈ D(m, 0), for each ε > 0 we can find x(ε) such that

|f(x + y) − f(x)| � ε(1 + |y|) m(x), x � x(ε), |y| � x/2.
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If F (x) is a d.f. such that F ∈ OD(m), respectively F ∈ D(m, 0), with m ∈
ORV and α(m) < −1, then F̄ (x) = O(1)xm(x), respectively F̄ (x) = o(1)xm(x)
(Omey, 1994, Prop. 3.1.1). In the proposition below, we use integrals of the form

F1(x) =
∫ x

0
y dF (y).

If m ∈ ORV , it is clear that F ∈ OD(m) if and only if F1 ∈ OD(M), where
M(x) = xm(x). If m ∈ ORV , with β(m) > −2, one can prove that F1(x) → ∞
and that F1(x) = O(1)x2m(x).

Using these propositions, Omey (1994) proved the following results.

Theorem 2.2. (a) Suppose that F ∈ OD(m), G ∈ OD(n), with m, n ∈ ORV .
(i) We have D(x) = O(1) m(x) G1(x) + O(1) n(x)F1(x).
(ii) If β(n) > −2, β(m) > −2, then E(X) = E(Y ) = ∞ and D(x) =

O(1)x2n(x) m(x).
(iii) ∀n � 2, Dn(x) = O(1) m(x)F1(x). If β(m) > −2, then Dn(x) =

O(1)x2m2(x).
(b) If F ∈ D(m, 0), G ∈ D(n, 0), with m, n ∈ ORV , then the results of (a)

hold with the O(1)-terms replaced by o(1)-terms.
(c) Suppose that F ∈ OD(m) with m ∈ ORV .

(i) We have Rn(x) = O(1) m(x)F1(x) + O(1)F̄ 2(x).
(ii) If β(m) > −2, then Rn(x) = O(1)x2m2(x) + O(1)F̄ 2(x).
(iii) If β(m) > −2 and α(m) < −1, then Rn(x) = O(1)x2m2(x).

Related results can be found in Baltrunas and Omey (1998) or Baltrunas et al.
(2006).

In the next result, we reformulate some results related to asymptotic equalities.

Theorem 2.3 (Omey, 1994, 1995). Suppose that F ∈ D(m, a), G ∈ D(n, b)
with m, n ∈ ORV ∩ L. Also, suppose that E(X) + E(Y ) < ∞.

(i) We have D(x) = aE(Y ) m(x) + bE(X) n(x) + o(1) m(x) + o(1) n(x).
(ii) For all n � 2, we have Dn(x) = 2a

(
n
2
)
E(X) m(x) + o(1) m(x).

(iii) If α(m) < −1, we have Rn(x) = 2a
(

n
2
)
E(X) m(x) + o(1) m(x).

3. Results in the multidimensional case

3.1. Inequalities. We denote by Fi and Gi (i = 1, . . . , d) the marginal distri-
butions of F and G and let Di(x) = Fi(x) Gi(x) − Fi ∗ Gi(x). The following lemma
is easy to prove.

Lemma 3.1. We have 0 � D(�x) �
∑d

i=1 Di(xi).

Proof. In the bivariate case, let F (x, y) = P (X1 � x, X2 � y) and G(x, y) =
P (Y1 � x, Y2 � y). We have D(x, y) = I + II, where

I = P
(

max(X1, Y1) � x, max(X2, Y2) � y
) − P

(
X1 + Y1 � x, max(X2, Y2) � y

)
and

II = P
(
X1 + Y1 � x, max(X2, Y2) � y

) − P
(
X1 + Y1 � x, X2 + Y2 � y

)
.
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First consider I. Define the following events A = {X1 + Y1 � x},
B = {max(X1, Y1) � x} and C = {max(X2, Y2) � y}. Since A ⊂ B, we have

I = P (B ∩ C) − P (A ∩ C) � P (B) − P (A) = D1(x).

In a similar way, we have II � D2(y). �

From Theorem 2.2, we have the following upper bounds for the marginals.

Lemma 3.2. Suppose that mi, ni ∈ ORV .
(i) If Fi ∈ OD(mi) and Gi ∈ OD(ni), then

Di(x) = O(1)
(

mi(x)
∫ x

0
y dGi(y) + ni(x)

∫ x

0
y dFi(y)

)
.

(ii) If Fi ∈ D(mi, 0) and Gi ∈ D(ni, 0), then

Di(x) = o(1)
(

mi(x)
∫ x

0
y dGi(y) + ni(x)

∫ x

0
y dFi(y)

)
.

Combining Lemmas 3.1 and 3.2, we obtain our first new result. We consider
limits as x0 → ∞.

Theorem 3.1. Suppose that for each i we have mi, ni ∈ ORV .
(i) Suppose that for each i, Fi ∈ OD(mi) and Gi ∈ OD(ni), then

D(�x) = O(1)
( d∑

i=1
mi(xi)

∫ xi

0
y dGi(y) +

d∑
i=1

ni(xi)
∫ xi

0
y dFi(y)

)
.

(ii) Suppose that for each i, Fi ∈ D(mi, 0) and Gi ∈ D(ni, 0), then

D(�x) = o(1)
( d∑

i=1
mi(xi)

∫ xi

0
y dGi(y) +

d∑
i=1

ni(xi)
∫ xi

0
y dFi(y)

)
.

To prove a result for Dn(�x), we need the following closure properties.

Lemma 3.3 (Omey 1994, Corollary 3.3.3). Suppose that mi ∈ ORV .
(i) If Fi ∈ OD(mi) and Gi ∈ OD(mi), then Fi ∗ Gi ∈ OD(mi) and F ∗n

i ∈
OD(mi).

(ii) If Fi ∈ D(mi, 0) and Gi ∈ D(mi, 0), then Fi ∗ Gi ∈ D(mi, 0) and F ∗n
i ∈

D(mi, 0).

Now we can formulate a result for Dn(�x). Again, we consider statements as
x0 → ∞.

Theorem 3.2. Suppose that for each i we have mi ∈ ORV .
(i) Suppose for each i that Fi ∈ OD(mi); then for all n � 2,

Dn(�x) = O(1)
( d∑

i=1
mi(xi)

∫ xi

0
y dFi(y)

)
.
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(ii) Suppose for each i that Fi ∈ D(mi, 0); then for all n � 2,

Dn(�x) = o(1)
( d∑

i=1
mi(xi)

∫ xi

0
y dFi(y)

)
.

Proof. For n = 2, this is the content of Theorem 3.1. Now let G(�x) =
F ∗n−1(�x) and Xi,j (j = 1, · · · , n − 1) be i.i.d. random variables with d.f. Fi. From
Lemma 3.3, we have that Gi ∈ OD(mi). Also note that∫ x

0
y dGi(y) = E

(
I{∑n−1

j=1
Xi,j�x

} n−1∑
j=1

Xi,j

)
= (n − 1)E

(
Xi,1I{∑n−1

j=1
Xi,j�x

})

� (n − 1)E
(
Xi,1I{Xi,1�x}

)
= (n − 1)

∫ x

0
y dFi(y).

Using Theorem 3.1 we obtain that

G(�x)F (�x) − F ∗ G(�x) = O(1)
( d∑

i=1
mi(xi)

∫ xi

0
y dFi(y)

)
.

Now note that Dn(�x) = G(�x)F (�x) − F ∗ G(�x) + F (�x)Dn−1(�x). The proof now
easily follows by induction on n. �

If the means are finite, we obtain from Theorem 3.2(i) that

Dn(�x) = O(1)
( d∑

i=1
mi(xi)

)
.

If mi(x) ∈ ORV with −2 < β(mi), then the means are infinite and then (cf. The-
orem 2.2) it follows that Dn,i(x) = O(1) x2

i m2
i (xi). In this case, Theorem 3.2(i)

gives

Dn(�x) = O(1)
( d∑

i=1
x2

i m2
i (xi)

)
.

In order to formulate a result about R(�x), recall that R(�x) = D(�x)−F̄ (�x) Ḡ(�x).
We have to deal with F̄ (�x) Ḡ(�x). First note that F̄ (�x) �

∑d
i=1 F̄i(xi). Now sup-

pose that Fi ∈ OD(mi), Gi ∈ OD(ni), where mi, ni ∈ ORV with α(mi) < −1
and α(ni) < −1. In this case, we have F̄i(xi) = O(1)ximi(xi) and �Gi(xi) =
O(1)xini(xi), cf. (Omey 1994, Proposition 3.1.1(v)).

(a) In the finite means case, we find that xiF̄i(xi) → 0, as xi → ∞, and it
follows that x0F̄ (�x) � x0F̄ (x0�1) � x0 ∑d

i=1 F̄i(x0) → 0, as x0 → ∞. Hence, as
x0 → ∞, we obtain that

F̄ (�x) Ḡ(�x) � F̄ (x0�1) Ḡ(x0�1) � F̄ (x0�1)
d∑

i=1
x0ni(x0)

= x0F̄ (x0�1)
d∑

i=1
ni(x0) = o(1)

d∑
i=1

ni(x0).
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In a similar way, we have F̄ (�x) Ḡ(�x) = o(1)
∑d

i=1 mi(x0).
(b) If −2 < β(mi) and α(mi) < −1, then E(Xi) = ∞, and we have∫ xi

0
y dFi(y) = O(1) x2

i mi(xi).

In this case, it follows that

F̄ (�x) Ḡ(�x) = O(1)
d∑

i=1
x0mi(x0)

d∑
i=1

x0ni(x0),

D(�x) = O(1)
( d∑

i=1
x2

i mi(xi) ni(xi)
)

.

We conclude

Corollary 3.1. Suppose mi, ni ∈ ORV with α(mi) < −1, α(ni) < −1.
(i) If Fi ∈ OD(mi), Gi ∈ OD(ni) with finite means„ then

R(�x) = O(1)
( d∑

i=1
mi(xi) +

d∑
i=1

ni(xi)
)

+ o(1)
( d∑

i=1
mi(x0) +

d∑
i=1

ni(x0)
)

.

(ii) If also −2 < β(mi), −2 < β(ni), we have

R(�x) = O(1)
( d∑

i=1
x2

i mi(xi) ni(xi)
)

+ O(1)
( d∑

i=1
x0mi(x0)

)( d∑
i=1

x0ni(x0)
)

.

(iii) Similar results hold if we start from Fi ∈ D(mi, 0) and Gi ∈ D(ni, 0).

For Rn(�x), the analysis is similar. Now we obtain the following result.

Corollary 3.2. Suppose that mi ∈ ORV with α(mi) < −1.
(i) If Fi ∈ OD(mi) with finite means, then for all n � 2,

Rn(�x) = O(1)
d∑

i=1
mi(xi) + o(1)

d∑
i=1

mi(x0).

(ii) If also −2 < α(mi), we have

Rn(x) = O(1)
d∑

i=1
x2

i m2
i (xi) + O(1)

( d∑
i=1

x0mi(x0)
)2

.

(iii) Similar results hold if we start from Fi ∈ D(mi, 0).

3.2. Asymptotic equalities. In this section, we are seeking an asymptotic
equality in the place of an upper bound. Our starting point is the following useful
inequality (cf. Lemma 3.4). We suppose that �X and �Y are independent nonnegative
random vectors with distribution function F (�x) and G(�x) respectively. We give an
estimate for the difference D(�x) = F (�x) G(�x) − F ∗ G(�x).
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Lemma 3.4. We have D(�x) = A(�x) + B(�x) + C(�x), where

A(�x) =
∫ �x/2

�0
(F (�x) − F (�x − �y)) dG(�y),

B(�x) =
∫ �x/2

�0
(G(�x) − G(�x − �y)) dF (�y),

|C(�x)| � 2(F (�x) − F (�x/2))(G(�x) − G(�x/2)).

Proof. We rewrite F ∗ G(�x) as follows. We have

F ∗ G(�x) = P
(

�X + �Y � �x, �X � �x/2, �Y � �x/2
)

+ P
(

�X + �Y � �x,
{

�X � �x/2
}c

, �Y � �x/2
)

+ P
(

�X + �Y � �x, �X � �x/2,
{

�Y � �x/2
}c)

+ P
(

�X + �Y � �x,
{

�X � �x/2
}c

,
{

�Y � �x/2
}c)

= I + II + III + IV.

For I, it is easy to see that I = F (�x/2) G(�x/2). For II, we have

II =
∫ �x/2

�0
P

(
�X � �x − �y,

{
�X � �x/2

}c)
dG(�y)

=
∫ �x/2

�0

(
F (�x − �y) − F (�x/2)

)
dG(�y)

= −A(�x) +
∫ �x/2

�0

(
F (�x) − F (�x/2)

)
dG(�y)

= −A(�x) +
(
F (�x) − F (�x/2)

)
G(�x/2).

In a similar way, we obtain that III = −B(�x) + (G(�x) − G(�x/2))F (�x/2). Hence,
we obtain that

D(�x) = F (�x) G(�x) − F (�x/2) G(�x/2) + A(�x) + B(�x)
− (F (�x) − F (�x/2)) G(�x/2) − (G(�x) − G(�x/2))F (�x/2) − IV

= (F (�x) − F (�x/2))(G(�x) − G(�x/2)) + A(�x) + B(�x) − IV.

Now note that in IV we have
{

�X + �Y � �x
} ⊂ {

�X � �x
} ∩ {

�Y � �x
}

and we find
that

IV � P
(

�X � �x, �Y � �x/2,
{

�X � �x/2
}c

,
{

�Y � �x/2
}c)

� P
(

�X � �x,
{

�X � �x/2
}c)

P
(
�Y � �x/2,

{
�Y � �x/2

}c)
= (F (�x) − F (�x/2))(G(�x) − G(�x/2)).

This proves the result. �



THE DIFFERENCE BETWEEN THE PRODUCT AND THE CONVOLUTION . . . 27

3.2.1. The class Dd(m, λ). Now we introduce a multivariate analogue of the
class D(m, α).

Definition 1. We say that the d.f. F is in the class Dd(m, λ) if we have
F (t�x) − F (t�x − �a)

m(t)
→ λ(�x,�a), t → ∞,

for all �x > �0, with x0 < ∞ and �a ∈ R
d. The function λ(�x,�a) is called the limit

function.

Note that in the definition, we assume that the defining property holds for each
of the marginals of F . For the i-th marginal we have

Fi(tx) − Fi(tx − a)
m(t) → λi(x, a), for each x > 0, and each a ∈ R.

By taking x = 1, we obtain that
Fi(t) − Fi(t − a)

m(t)
→ λi(1, a), for each x > 0, and each a ∈ R.

If m ∈ L,we obtain that
Fi(t) − Fi(t − a − b)

m(t)
= Fi(t) − Fi(t − a)

m(t)
+ Fi(t − a) − Fi(t − a − b)

m(t − a)
m(t − a)

m(t)
→ λi(1, a) + λi(1, b).

It follows that λi(1, a + b) = λi(1, a) + λi(1, b), and then also that λi(1, a) = αia
for some real constant αi.

Now observe that
Fi(tx) − Fi(tx − a)

m(t)
= Fi(tx) − Fi(tx − a)

m(tx)
m(tx)
m(t)

.

After taking limits, we obtain that

λi(x, a) = αia lim
t→∞

m(tx)
m(t)

.

If αi �= 0 and a �= 0, we obtain that

lim
t→∞

m(tx)
m(t)

= λi(x, a)
αia

.

In this case, it follows under minimal conditions, that m ∈ RV (δ) for some real
number δ, and as a consequence, that λi(x, a) = αix

δa.
In what follows, we will assume that in the definition of Dd(λ, m), m is a

regularly varying function.

Definition 2. We say that the d.f. F is in the class Dd(m, λ) if we have
m ∈ RV (δ) and if

F (t�x) − F (t�x − �a)
m(t)

→ λ(�x,�a), t → ∞,
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for all �x > �0, with x0 < ∞ and �a ∈ R
d. The function λ(�x,�a) is called the limit

function. In this case, the marginals Fi ∈ D(m, λi), where λi(x, a) = αiaxδ.

In the next section, it will be convenient to assume that F ∈ Dd(m, λ), and
that the defining property holds locally uniformly in �x.

Definition 3. We say that the d.f. F is in the class DLd(m, λ) if we have
m ∈ RV (δ) and if

F (t�x) − F (t�x − �a)
m(t) → λ(�x,�a), t → ∞,

for all �x > �0, with x0 < ∞ and �a ∈ R
d, holds locally uniformly in �x.

In this case, we can show that the limit function is an additive function in �a.
To show this, note that we have

F (t�x) − F (t�x − �a −�b)
m(t)

→ λ(�x,�a +�b).

On the other hand, we also have that

F (t�x) − F (t�x − �a −�b)
m(t)

= F (t�x) − F (t�x − �a)
m(t)

+ F (t�x − �a) − F (t�x − �a −�b)
m(t)

= F (t�x) − F (t�x − �a)
m(t)

+ F (t(�x − �a/t)) − F (t(�x − �a/t) −�b)
m(t)

→ λ(�x,�a) + λ(�x,�b)

and it follows that λ(�x,�a +�b) = λ(�x,�a) + λ(�x,�b).
3.2.2. Main result. This is the main result of this section. Recall that �X has

d.f. F and �Y has d.f. G.

Theorem 3.3. Suppose that F ∈ Dd(m, λ), G ∈ Dd(n, θ) have finite means
and that m, n ∈ RV . Then

D(t�x − �a) =
[
Eλ(�x,�a + �Y ) − λ(�x,�a)

]
m(t) +

[
Eθ(�x,�a + �X) − θ(�x,�a)

]
n(t)

+ o(1) n(t) + o(1) m(t).

Proof. We analyze the three terms in Lemma 3.4. First, take A(�x) and
replace �x by t�x − �a. We have

A(t�x − �a) =
∫ (t�x−�a)/2

�0

(
F (t�x − �a) − F (t�x − �a − �y)

)
dG(�y)

=
(
F (t�x − �a) − F (t�x)

)
G((t�x − �a)/2)

+
∫ (t�x−�a)/2

�0

(
F (t�x) − F (t�x − �a − �y)

)
dG(�y)

= I + II.



THE DIFFERENCE BETWEEN THE PRODUCT AND THE CONVOLUTION . . . 29

We first analyze II. Clearly, we have
F (t�x) − F (t�x − �a − �y)

m(t)
→ λ(�x,�a + �y).

We want to apply Lebesgue’s theorem on dominated convergence. Clearly, we have

F (t�x) − F (t�x − �a − �y) �
d∑

i=1
(Fi(txi) − Fi(txi − ai − yi))

and 0 � yi � (txi − ai)/2. Using Proposition 2.1, we get that
Fi(txi) − Fi(txi − ai − yi) � Ci(1 + |ai + yi|) m(txi), txi � x∗.

Using m ∈ RV , and since �x is fixed, we find that for �y � (t�x−�a)/2 and t sufficiently
large, we have

|F (t�x) − F (t�x − �a − �y)| �
d∑

i=1
Ci(1 + |ai + yi|) m(t).

Since, by assumption, the means E(Yi) are finite, we can apply Lebesgue’s theorem
on dominated convergence, and we conclude that

1
m(t)

A(t�x − �a) → −λ(�x,�a) + Eλ(�x,�a + �Y ).

In a similar way, we obtain that
1

n(t)
B(t�x − �a) → −θ(�x,�a) + Eθ(�x,�a + �X).

For C(t�x − �a), we proceed as follows. First, we have that, cf. Proposition 2.1,

F (t�x − �a) − F ((t�x − �a)/2) �
d∑

i=1

(
Fi(txi − ai) − Fi((txi − ai)/2)

)

= O(1)
d∑

i=1
txim(txi) = O(1)tm(t).

Also, we have that

G
(
t�x − �a

) − G((t�x − �a)/2) �
d∑

i=1

(
Gi(txi − ai) − Gi((txi − ai)/2)

)
= o(1)t−1,

since the means are assumed to be finite. It follows that C(t�x −�a) = o(1) n(t). By
changing the role of F and G, we can also deduce that C(t�x −�a) = o(1) m(t). Now,
we can combine the estimates. This proves the result. �

In the special case that m = n, we find that
D(t�x − �a)

m(t)
→ E

[
λ(�x,�a + �Y )

] − λ(�x,�a) + E
[
θ(�x,�a + �X)

] − θ(�x,�a).

Now note that F ∗ G = D + FG. If m = n, it follows from Theorem 3.3 that
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(3.1) F ∗ G(t�x − �a) − F ∗ G(t�x)
m(t)

= D(t�x − �a) − D(t�x)
m(t)

+
(
F (t�x − �a) − F (t�x)

)
G(t�x − �a)

m(t)
+

F (t�x)
(
G(t�x − �a) − G(t�x)

)
m(t)

→ E
[
λ(�x,�a + �Y ) − λ(�x, �Y )

]
+ E

[
θ(�x,�a + �X) − θ(�x, �X)

]
As a consequence, we have F ∗ G ∈ D(m, ξ) for some limit function ξ.
Taking F = G, we get that

F ∗2(t�x − �a) − F ∗2(t�x)
m(t)

= 2E
[
λ(�x,�a + �X) − λ(�x, �X)

]
.

For convenience, we set

λ1(�x,�a) = λ(�x,�a), λ2(�x,�a) = 2E
[
λ(�x,�a + �X) − λ(�x, �X)

]
.

Now let �X1, �X2, . . . , �Xn denote i.i.d. copies of �X and for i � 1, let �Si = �X1+· · ·+ �Xi.
Taking G = F ∗2 in expression (1), we obtain that

F ∗3(t�x − �a) − F ∗3(t�x)
m(t)

= E
[
λ2(�x,�a + �S2) − λ2(�x, �S2)

]
+ E

[
λ1(�x,�a + �X) − λ1(�x, �X)

]
≡ λ3(�x,�a).

Proceeding in a similar way, we take G = F ∗n−1 in (1) to obtain that
F ∗n(t�x − �a) − F ∗n(t�x)

m(t)
= E

[
λn−1(�x,�a + �Sn−1) − λn−1(�x, �Sn−1)

]
+ E

[
λ1(�x,�a + �X) − λ1(�x, �X)

]
≡ λn(�x,�a).

We have proved the following result.

Corollary 3.3. Suppose that F ∈ Dd(m, λ) has a finite mean and that
m ∈ RV . Then, for each n � 2, we have F ∗n ∈ Dd(m, λn), where λn is defined
recursively above.

If the defining property of F ∈ Dd(m, λ) holds locally uniformly in �x we have
(cf. previous section) that λ(�x,�a +�b) = λ(�x,�a) + λ(�x,�b) and we can simplify the
expressions for λn. We clearly have

λ2(�x,�a) = 2E
[
λ(�x,�a + �X) − λ(�x, �X)

]
= 2λ(�x,�a),

λ3(�x,�a) = E
[
λ2(�x,�a + �X1 + �X2) − λ2(�x, �X1 + �X2)

]
+ E

[
λ1(�x,�a + �X) − λ1(�x, �X)

]
= 2E

[
λ(�x,�a + �X1 + �X2) − λ(�x, �X1 + �X2)

]
+ λ(�x,�a) = 3λ(�x,�a).

The final result is that λn(�x,�a) = nλ(�x,�a).
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3.2.3. A result for Dn. Now, we consider Dn(�x). Clearly, we have
D2(�x) = F 2(�x) − F ∗2(�x),

Dn+1(�x) = F n+1(�x) − F ∗n+1(�x) = F (�x)Dn(�x) + D(�x),

where D(�x) = F (�x) G(�x) − F ∗ G(�x) and G(�x) = F ∗n(x).
As before, let let �X1, �X2, . . . , �Xn denote i.i.d. copies of �X, and let �Sj = �X1 +

�X2 + · · · + �Xj .
From Theorem 3.3 and Corollary 3.3, we have that G(�x) ∈ Dd(m, λn) and

1
m(t)

D(t�x − �a) → E
[
λ(�x,�a + �Sn)

] − λ(�x,�a) + E
[
λn(�x,�a + �X)

] − λn(�x,�a).

From Theorem 3.3, we also have that
1

m(t)
D2(t�x − �a) → 2E(λ(�x,�a + �X) − λ(�x,�a)) = Ψ2(�x,�a).

It follows that 1
m(t) Dn+1(t�x − �a) → Ψn+1(�x,�a), where

Ψn+1(�x,�a) = Ψn(�x,�a) + E
[
λ(�x,�a + �Sn)

] − λ(�x,�a) + E
[
λn(�x,�a + �X)

] − λn(�x,�a).

In the case where λ(�x,�a +�b) = λ(�x,�a) + λ(�x,�b), we have

Ψ2(�x,�a) = 2Eλ(�x, �X),

Ψn+1(�x,�a) = Ψn(�x,�a) + Eλ(�x, �Sn) + Eλn(�x, �X) = Ψn(�x,�a) + 2nEλ(�x, �X).

It easily follows by induction that Ψn(�x,�a) = 2
(

n
2
)
Eλ(�x,�a). Summarizing, we have

proved the following result

Corollary 3.4. Suppose that F ∈ Dd(m, λ) has a finite mean and that m ∈
RV . Then, for each n � 2, we have 1

m(t) Dn(t�x−�a) → Ψn(�x,�a), where Ψn is defined
recursively above. Moreover, if F ∈ DLd(m, λ), we have Ψn(�x,�a) = 2

(
n
2
)
Eλ(�x,�a).

In the case of Rn, we have the following result.

Corollary 3.5. Suppose that F ∈ Dd(m, λ) has a finite mean and that m ∈
RV . Also, assume that

(1 − F (t�x − �a))2

m(t)
→ 0, for all �x > �0 with x0 < ∞ and �a ∈ R

d.

Then, for each n � 2, we have 1
m(t) Rn(t�x − �a) → Ψn(�x,�a), where Ψn is defined

recursively above.

3.2.4. Examples. Example 1. For simplicity, we consider d.fs in R
2. We

say that a positive and measurable function f is regularly varying in the sense
of Yakymiv (1982) if there exists function h ∈ RV such that f(tx,ty)

h(t) → λ(x, y)
locally uniformly in (x, y) > (0, 0). Notation: f ∈ RVY (h, λ). We say a function of
several variables is monotone if it is increasing or decreasing in each variable. If f
is monotone, then pointwise convergence automatically implies convergence locally
uniformly.
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In our first example, we assume that the d.f. F has first partial derivatives
f1 and f2 that are both regularly varying in the sense of Yakymiv, with the same
auxiliary function m ∈ RV . Now we write

F (tx, ty) − F (tx − a, ty − b)

=
∫ tx

tx−a

f1(u, ty) du +
∫ ty

ty−b

f2(tx − a, w) dw

=
∫ 0

−a

f1(tx + u, ty) du +
∫ 0

−b

f2(tx − a, ty + w) dw.

By our assumption, we have fi(tx, ty)/m(t) → λi(x, y), locally uniformly in
(x, y) > (0, 0). Considering the term with f1 and using

f1(tx + u, ty)
m(t)

= f1(t(x + u/t), ty)
m(t)

→ λ1(x, y),

and, similarly, for the term containing f2, we find that

F (tx, ty) − F (tx − a, ty − b)
m(t)

→ aλ1(x, y) + bλ2(x, y).

If also the marginals are in some class D(m, αi), we obtain that F ∈ D2(m, λ),
where λ(x, y) = aλ1(x, y) + bλ2(x, y).

Example 2. Assume F (x, y) = F1(x)F2(y)(1 + θF̄1(x)F̄2(y)). We have

F (x + a, y + b) − F (x, y)
= F1(x + a)F2(y + b)

(
1 + θF̄1(x + a)F̄2(y + b)

)
− F1(x)F2(y)

(
1 + θF̄1(x)F̄2(y)

)
=

(
F1(x + a) − F1(x)

)
F2(y + b)

(
1 + θF̄1(x + a)F̄2(y + b)

)
+ F1(x)

(
F2(y + b) − F2(y)

)(
1 + θF̄1(x + a)F̄2(y + b)

)
+ θF1(x)F2(y)

(
F̄1(x + a)F̄2(y + b) − F̄1(x)F̄2(y)

)
= (1 + o(1))

(
F1(x + a) − F1(x) + F2(y + b) − F2(y)

)
+ θ(1 + o(1))

((
F̄1(x + a) − F̄1(x)

)
F̄2(y + b) + F̄1(x)

(
F̄2(y + b) − F̄2(y)

))
= (1 + o(1))

(
F1(x + a) − F1(x) + F2(y + b) − F2(y)

)
+ θ(1 + o(1))

((
F1(x + a) − F1(x)

)
F̄2(y + b) + F̄1(x)

(
F2(y + b) − F2(y)

))
.

If F1 ∈ D(m, α) and F2 ∈ D(m, β), where m ∈ RV (λ), we obtain that

F (tx + a, ty + b) − F (tx, ty)
= (1 + o(1))

(
F1(tx + a) − F1(tx) + F2(ty + b) − F2(ty)

)
+ θ(1 + o(1))

((
F1(tx + a) − F1(tx)

)
F̄2(ty + b)

+ F̄1(tx)
(
F2(ty + b) − F2(ty)

))
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and then
F (tx + a, ty + b) − F (tx, ty)

m(t) → αaxλ + βbyλ, min(x, y) < ∞.

Example 3. Now suppose that

F (x, y) = F1(x)F2(y)
1 + θF̄1(x)F̄2(y)

.

We obtain a similar result to Example 2.

Example 4. Suppose the bivariate distribution function, F , of (X, Y ) is given
by the copula function Ψ defined by F (x, y) = Ψ(F1(x), F2(y)), where F1 and F2
are the marginal distribution functions of X and Y , respectively.

Suppose F1 ∈ Dd(m, λ1), with λ1(x, a) = αax−ρ (α > 0), and F2 ∈ Dd(m, λ2),
with λ2(x, a) = βax−ρ (β > 0). We determine whether F ∈ Dd(m, λ3) for some
function λ3.

Start by considering

F (tx + a, ty + b) − F (tx, ty) = Ψ(F1(tx + a), F2(ty + b)) − Ψ(F1(tx), F2(ty)).

Assume that ψ has continuous derivatives of order 2. Using Taylor’s Theorem
with remainder, there exists z = (z1, z2) with 0 � z1 � x and 0 � z2 � y such that

Ψ(x + a, y + b) − Ψ(x, y)
= aΨ1(x, y) + bΨ2(x, y) + a2

2
Ψ1,1(z1, z2) + b2

2
Ψ2,2(z1, z2) + abΨ1,2(z1, z2),

where Ψi and Ψi,j are the first and second partial derivatives of Ψ. If the derivatives
of order 2 are bounded, then

Ψ(x + a, y + b) − Ψ(x, y) = aΨ1(x, y) + bΨ2(x, y) + O(1)(a2 + b2 + ab)

which gives

Ψ(F1(tx + a), F2(ty + b)) − Ψ(F1(tx), F2(ty))
= [F1(tx + a) − F1(tx)] Ψ1(F1(tx), F2(ty))

+ [F2(ty + b) − F2(ty)] Ψ2(F1(tx), F2(ty))

+ O(1) [F1(tx + a) − F1(tx)]2 + O(1) [F2(ty + b) − F2(ty)]2

+ O(1) [F1(tx + a) − F1(tx)] [F2(ty + b) − F2(ty)] .

This gives

(3.2) Ψ(F1(tx + a), F2(ty + b)) − Ψ(F1(tx), F2(ty))
m(t)

∼ αaxρΨ1(F1(tx), F2(ty))βbyρΨ2(F1(tx), F2(ty)) + O(1) m(t),

for some α, β.
From Omey (1994, p. 113) we have that m(t) = O(F̄1(t)) and m(t) = O(F̄2(t)).

Hence,



34 OMEY AND VESILO

(3.3) Ψ(F1(tx + a), F2(ty + b)) − Ψ(F1(tx), F2(ty))
m(t)
∼ αaxρΨ1(F1(tx), F2(ty)) + βbyρΨ2(F1(tx), F2(ty)).

As a specific example, suppose we define Ψ(x, y) by an Archimedian copula (see,
for example, Balakrishnan and Lai (2009), p. 37) that is defined by a continuous,
decreasing generator function φ from [0, 1] to [0, ∞) such that φ(Ψ(x, y)) = φ(x) +
φ(y).

Ψ is a copula if and only if its pseudoinverse, given by

φ[−1] =

{
φ−1(t), 0 � t � φ(0)
0, φ(0) � t � ∞,

is decreasing and convex, in which case, Ψ(x, y) = φ−1(φ(x) + φ(y)).
The complementary copula is defined by

Ψ̂(x, y) = x + y − 1 + Ψ(1 − x, 1 − y),

so that
Ψ(x, y) = x + y − 1 + Ψ̂(1 − x, 1 − y).

A particular type of Archimedian copula is the bivariate Pareto copula for
which φ(t) = t−1/δ − 1, δ > 0. This gives Ψ̂(x, y) = (x−1/δ + y−1/δ − 1)−δ and

Ψ(x, y) = x + y − 1 + ((1 − x)−1/δ + (1 − y)−1/δ − 1)−δ.

Differentiating Ψ gives

Ψ1(x, y) = 1 − [
(1 − x)−1/δ + (1 − y)−1/δ − 1

]−δ−1(1 − x)−1−1/δ

= 1 − [
(1 − x)1/δ

(
(1 − x)−1/δ + (1 − y)−1/δ − 1

)]−δ−1

= 1 −
[
1 +

(1 − x

1 − y

)1/δ

− (1 − x)1/δ
]−δ−1

.

Substituting F1 and F2 gives

Ψ1(F1(tx), F2(ty)) = 1 −
[
1 +

(
F̄1(tx)
F̄2(ty)

)1/δ

− F̄1(x)1/δ

]−δ−1

.

If α > β, then F̄1(tx) = o(F̄2(ty)) and Ψ1(F1(tx), F2(ty)) → 0.
If α < β, then, F̄1(x)/F̄2(x) ∈ RV−α+β and

Ψ1(F1(tx), F2(ty)) ∼ 1 − (x/y)(−α+β)(−δ−1)/δ → 1.

If F̄1 ∼ F̄2 ∈ RV−α, so that α = β, then

Ψ1(F1(tx), F2(ty)) → 1 −
[
1 + (x/y)−α/δ

]−δ−1
.

After deriving similar results for Ψ2(F1(tx), F2(ty)) we can obtain expressions
for (3.3).
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4. Concluding remarks

(1) To obtain inequalities, we only need detailed information about the marginal
distributions. In order to obtain asymptotic equalities, we have to assume that in
each of the tails we can use the same auxiliary regularly varying function m(t). We
can relax this assumption by looking at the following class of d.f.. For simplicity,
we only give the definition in R

2.

Definition 4. We say that the d.f. F is in the class Dd(m,�c, λ) if we have
m(t), c1(t), c2(t) ∈ RV and if

F (c1(t)x1, c2(t)x2) − F (c1(t)x1 − a1, c2(t)x2 − a2)
m(t)

→ λ(�x,�a),

for all �x > �0 with x0 < ∞ and �a ∈ R
2.

(2) It is not clear under what general conditions F ∈ Dd(m, λ) implies that the
defining property holds locally uniformly in �x.

(3) In our future research, we will discuss properties of the classes defined
below. In each case, we consider limits as x0 → ∞.

f ∈ OD(m) : ∀�y, |f(�x + �y) − f(�x)| = O(1) m(�x);
f ∈ D(m, λ) : ∀�y, (f(�x + �y) − f(�x))/m(�x) → λ(�y);
f ∈ L(λ) : ∀�y, f(�x + �y)/f(�x) → λ(�y);

and, so on.
Suppose, for example, that F is a d.f.with marginals Fi ∈ OD(mi). Using the

inequality |F (�x + �y) − F (�x)| � ∑d
i=1 |Fi(xi + yi) − Fi(xi)| and Fi ∈ OD(mi), we

obtain that |F (�x + �y) − F (�x)| = O(1)
∑d

i=1 mi(xi), as x0 → ∞. It follows that
F ∈ OD(m) with m(�x) =

∑d
i=1 mi(xi). Note that if mi(x) ∈ ORV , then as

x0 → ∞,

m(x1y1, . . . , xdyd) =
d∑

i=1
mi(xiyi) = O(1)

d∑
i=1

mi(xi) = O(1) m(�x).

(4) In Corollary 3.5, we provided conditions under which
1

m(t)
(
1 − F ∗n(t�x − �a) − n(1 − F (t�x − �a))

) → Ψn(�x,�a).

Taking �a = �0, we have the following probabilistic interpretation. We have
1 − F ∗n(t�x) = P

(
maxi(Sn,i/xi) > t

)
,

1 − F (t�x) = P
(
maxi(Xi/xi) > t

)
.

It follows that
P

(
maxi(Sn,i/xi) > t

)
∼ nP

(
maxi(Xi/xi) > t

)
and that

P
(
maxi(Sn,i/xi) > t

) − nP
(
maxi(Xi/xi) > t

)
∼ m(t)Ψn(�x,�0).
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