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ABSTRACT. Let X be a Hausdorff continuum (a compact connected Hausdorff
space). Let 2X (respectively, Cy (X)) denote the hyperspace of nonempty
closed subsets of X (respectively, nonempty closed subsets of X with at most
n components), with the Vietoris topology. We prove that if X is hereditarily
indecomposable, Y is a Hausdorff continuum and 2% (respectively C, (X)) is
homeomorphic to 2Y (respectively, Cp,(Y)), then X is homeomorphic to Y.

1. Introduction

A Hausdorff continuum is a compact connected Hausdorff space X with more
than one point. A subcontinuum A of X is a closed connected subset of X.
For a Hausdorff continuum X and a positive integer n, define the hyperspaces

X = {A C X : Ais closed and nonempty?},
Cpn(X) ={A € 2% : A has at most n components},
C(X) = (X)),
Fo(X)={A € 2% : A has at most n points}.

The hyperspace 2% is endowed with the Vietoris topology. That is, the basis
for the topology of 2% is the family B = {(Uy,...,U,) : n is a positive integer and
Ui,...,U, are open subsets of X}, where (Uy,...,U,) = {A€2X:AcUU---UU,
and ANU; # 0, for each i € {1,...,n}}.

The Hausdorff continuum X is hereditarily indecomposable provided that given
A,B € C(X), either ANB=0or AC Bor BC A and X is said to have unique
hyperspace 2% (resp., Cn (X)), provided that, if Y is a Hausdorff continuum and
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2% is homeomorphic to 2¥ (resp., C,,(X) is homeomorphic to C,(Y)), then X is
homeomorphic to Y.

Uniqueness of hyperspaces has been widely studied (see [2], [3] p. 285] and [4]).
Macias proved in [7] and [8, Theorem 6.1] that if X is a metric hereditarily inde-
composable Hausdorff continuum, then X has unique hyperspaces 2% and C,, (X)
(for each n). Loncar [6, Theorem 2.4] proved that rim metrizable hereditarily in-
decomposable continua have unique hyperspace C(X). Using techniques of inverse
limits, Peldez generalized these results by proving that if X is a rim metrizable
(X has a basis of neighborhoods with metrizable boundary) hereditarily indecom-
posable Hausdorff continuum, then X has unique hyperspaces 2% and C,, (X) (for
each n).

In this paper we generalize these results by proving:

THEOREM 1.1. If X is a hereditarily indecomposable Hausdorff continuum,
then X has unique hyperspaces 2% and C,,(X) (for each n).

2. Generalized arcs

The proof of Theorem [Tl is based in an analysis of the generalized arcs (see
below) in the hyperspace 2%.

A generalized arc joining p and ¢ in a topological space Z is a subcontinuum «
of Z such that p, ¢ € a and each point z € a — {p, ¢}, separates p and ¢ in a. Given
z€a—{p,q}, let a —{z} = U, UV,, where U, and V, are disjoint open subsets of
asuchthatpe U, andpe V.. Let Uy =0 =V, V, = a — {p} and U, = o — {q}.
If z,w € a and z # w, define z < w if and only if z € U,,.

The following lemma summarizes the basic facts about generalized arcs. For
the proof of (b)), see Theorem 6.16 of [10]. The rest of Lemma 21l is easy to prove.

LEMMA 2.1. Let a be a generalized arc joining points p and q in a topological
space Z. Then:

(a) the relation < is a well defined linear order,

(b) « has the topology induced by <,

(c) given z,w € «, the intervals [z,w), (z,w), (z,w] and [z,w], defined in the nat-
ural way, are connected subsets of a,

(d) (e, <) has the property of the supremum (every nonemptly subset of o has a
supremum in o),

(e) the relation «~ defined in Z by z «~ w if an only if there exists a generalized
arc joining z and w in Z, is an equivalence relation; the equivalence classes are
called g-arcwise components.

Let X be a Hausdorff continuum. Given A, B € 2X, with A C B, an order arc
in 2%, from A to B is a subcontinuum « of 2% such that A ¢ C C B for each
C € a and, for every C, D € «, either C C D or D C C. The fundamental theorem
for order arcs in hyperspaces is the following.

THEOREM 2.2. [5, Theorem 15.3] Let X be a Hausdorff continuum and let
A, B € 2% be such that A C B. Then there exists an order arc in 2%, from A to B
if and only if each component of B intersects A.
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LEMMA 2.3. Let X be a Hausdorff continuum, A, B € 2% and let a be and
order arc in 2%, from A to B. Then o is a generalized arc joining A and B in 2X.

PROOF. It is enough to show that for each C € « — {A, B}, C separates A and
Bina Let A={De€a:DCC}and B={D € a:C C D}. Itis easy to
show that A and B are closed subsets of a. By the definition of order arc, we have
a=AUB, Ae A—{C}, B€ B—{C} and AN B = {C}. This proves that C
separates A and B in «. O

3. Property of Kelley

A Hausdorff continuum X is said to have the Property of Kelley (see [1}, p. 115]),
provided that for every p € X, A € C(X) and open subset U of C(X) such that
p € A € U, there exists an open subset T" of X such that p € T and, for each ¢ € T,
there exists B € C(X) such that ¢ € B € U.

For metric Hausdorff continua, property of Kelley has been widely studied, see
([6, pp. 167 and 405] and [9], Chapter XIV]). In [9] Theorem 16.27] it is proved that
hereditarily indecomposable Hausdorff metric continua have property of Kelley.
Next, we extend this result to Hausdorff continua.

THEOREM 3.1. Let X be a hereditarily indecomposable Hausdorff continuum.
Then X has property of Kelley.

PROOF. Suppose that X does not have the property of Kelley. Then there
exist pe X, Ae C(X) and V = (V1,..., V) N C(X), a basic set in C(X), such
that p € A € V and for each open subset T" of X such that p € T there exists
a point ¢ € T for which there is no element B € C(X) with the property that
qg € BeV. Note that A # X.

Let W be an open subset of X such that A C W C clx (W) C ViU ---UV,,
and W # X. Let T = {T'C X : T is an open subset of X such that p e T'C W}.
For each T € T, choose a point gr € T for which there is no element B € C(X)
with the property that gr € B € V and let Dy be the component of cly (W) such
that gr € Dr. Since Dy C ViU ---UV,, and Dp ¢ V, there exists ¢ € {1,...,m}
such that DrNV; =0. Let E = {qr € X : T € T}. Then p € clx(FE). For each
ie{l,...omhlet T, ={T €T :DrNV;=0}and E; = {gr € X : T € T;}. Then
T=T1U---UT,and E=FE;U---U E,,. Thus, there exists ¢ € {1,...,m} such
that p € clx (F;). We may assume that p € clx(Eh).

For each Q € T, let F(Q) = clx (U{Dr : T € Ti and qr € Q}). Since
p € clx(E4), it follows that p € F(Q). Thus, F(Q) is a nonempty compact subset
of X. Let F = [{F(Q): Q € T} and let G be the component of F' such that
pE€Q@G.

We need to show that Frx (W)NG # (). Suppose to the contrary that Frx (W)N
G = 0. By [5, Theorem 12.9], there exist disjoint compact subsets K and L of X
such that F = K UL, G C K and K NFrx (W) = 0. Let R and S be disjoint open
subsets of X such that K C R and Frx(W)UL C S. Since F C RU S, there exist
k > 1 and elements Q1,...,Qr € T of X such that FF C F(Q1)N---NF(Qr) C RUS.
Let Qo = Q1N+ -NQ%. Then Qg is an open subset of X such that p € Qo C W and
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F(Qo) C RUS. Since p € RN Qo and p € clx(E1), there exists T' € T such that
gr € RNQoN Dy. Then Dy C F(Qy) C RUS. Since Dy is connected, Dy C R,
so Frx (W) N Dy = (), this contradicts [, Theorem 12.10]. We have shown that
Frx(W) NG 75 (Z)

Recall that G € C(X) and p € GN A. Since X is hereditarily indecomposable,
G CAor ACG. Since Frx(W)NG # 0 and Frx (W) N A = ), we obtain that
A C G. Since ANVy # 0, we can choose a point x € ANV; € FNV;. Then
z € ViN F(W). Thus, there exists T' € 77 such that ViN Dy # (. This contradicts
the definition of 77 and ends the proof of the theorem. O

4. Main results

LEMMA 4.1. Let X be a hereditarily indecomposable Hausdorff continuum. Sup-
pose that A,Bec 2%, CecC(X),AcC, B ¢ C and « is a generalized arc joining
A and B in 2X. Then C € «.

PrOOF. Let D = {D € o : D C C}. Then D is a nonempty proper closed
subset of . Since « is connected, there exists Dy € Fr, (D). Since D is closed in «,
Dy C C. Let < be the order defined, as in the paragraph previous to Lemma 1]
for «a satisfying A < B. We claim that Dy = C. Suppose to the contrary that
Dy # C. Fix a point g € C — Dy. Since (X — {zo}) N« is an open subset
of a containing Dy, by Lemma TI([), we may assume that there exists an element
D; € a, such that Dy < Dy such that [Dg, D1] C (X — {z0}) and [Do, D1] € D.
Let E = |J{F : F € [Dy, D1]}. Notice that Dy C E, 29 ¢ E and E ¢ C. We check
that E is closed in X. Let z € X — E. Then {(X —clx(U)) : x € U and U is an
open subset of X} is an open cover of the compact set [Dg, D1]. Thus, there exists
an open subset Uy of X such that « € Uy and [Do, D1] C (X — clx(Up)). Hence,
UoN E = . This proves that E is closed in X. Fix a point yg € E — C.

We claim that the component G of FE that contains yg intersects C. Suppose
to the contrary that G N C = (. By [5] Theorem 12.9], there exists an open and
closed subset K of E such that ygp € K and KNC = (. Let L = E — K. Then
L is a compact subset of X and Dy C L. Let &€ = {F € [Dy,D;] : F C L} and
F ={F € [Dy,D1] : FN K # 0}. Clearly, £ and F are closed disjoint subsets of
[Do, D1], Do € &, F # () and [Dy, D1] = EUF. This contradicts the connectedness
of [Dg, D1] and completes the proof that G N C # ().

Since X is hereditarily indecomposable, G and C' are subcontinua of X and
GNC #0,wehave GC Cor C CG. Sinceyp e G—C and G C E C X — {x0},
we obtain a contradiction. This ends the proof that C' = Dy € «. (]

The following lemma can be proved imitating the proof of Theorem 11.3 of [9]
and using Theorem

LEMMA 4.2. Let Y be a Hausdorff continuum, n > 1 and A € 2¥ — C(Y).
Then 2¥ — {A} and C,,(Y) — {A} are arcwise connected.

LEMMA 4.3. Let X be a hereditarily indecomposable continuum and n > 1. Let
AeCX)—- ({X}UFi(X)). Let & be the g-arcwise component of Cp(X) — {A}
that contains X. Then £ is the only dense g-arcwise component of C,(X) — {A}.
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PROOF. Let F be a g-arcwise component of Cy,(X) — {A} such that F # £.
Given B € C,,(X) — {A} such that B ¢ A, taking an order arc from B to X, we
obtain that B € £. This implies that 7 C C,(A). Since C,(A) is compact and
Cn(A) # Cp(X), we conclude that F is not dense in C,,(X) — {A}.

Now we check that £ is dense in Cp,(X) — {A}. Let B € Cp(X) — {A} and
U= (Ui,...,Upn)NCr(X) be a basic set in Cy,(X) such that B € U, where each U;
is a nonempty open subset of X. We may assume that B ¢ £&. Then B C A. Let
By, ..., By be the components of B. Then k < n. Fix points p; € B1,...,pr € Bg.
For each i € {1,...,k}, let F; = {j € {1,...,m} : BiNnU; # 0} and UY; = {C €
C(X):CcU{U;:je Fi} and CNU; # 0 for each j € F;}. Then U; is open in
C(X) and B; € U;. By Theorem BJ] there exists an open subset V; of X such that
p; € V; and, if u € V;, then there exists @ € C(X) such that u € Q € U;.

Fix a point © € X — A. Let a be an order arc in C(X) joining {z} to X. Notice
that o C €. Let Ey € a be the first element of a containing A, that is Fy € «,
AC Epand,if E C Eyand E € a, then A ¢ E. Since the set (V1,...,V;, X)NC(X)
is an open subset of C'(X) containing Ejy, there exists F' € « such that E C Ey and
Eec(V,...,Vi,X). For each i € {1,...,k}, choose a point u;, € ENV;. By the
choice of V;, there exists Q; € C'(X) such that u; € Q; € U;. Let D = {uq,...,u}.

Since z € E, E ¢ A. Since X is hereditarily indecomposable and E € C(X),
ENA=0. Thus, DNA=0. Let Q = Q:U---UQy, since D C @, we have that
Q € &. Tt is easy to show that @ € U. This completes the proof of the lemma. O

THEOREM 4.4. If X is a hereditarily indecomposable Hausdorff continuum,
then X has unique hyperspaces 2% and C,,(X), for each n.

PROOF. Let Y be a Hausdorff continuum. Let (X)) denote one of the hyper-
spaces 2% or C,,(X) of X and let K(Y') be the correspondig hyperspace of Y. Sup-
pose that IC(X) is homeomorphic to (Y'). Let h : K(X) — K(Y) be a homeomor-
phism. Since F;(X) (respectively Fy(Y)) is homeomorphic to X (respectively Y)
it is enough to show that h(F1(X)) = F1(Y).

Using Proposition 6.3 of [9], it is easy to show that every proper subcontinuum
of X has empty interior.

CLamM 1. Let A € C(X) — ({X}UFi(X)). Let € be the g-arcwise component
of K(X) — {A} that contains X. Then & is the only dense g-arcwise component of
K(X)—-{A}.

We prove Claim [[I By Lemma 3], Claim [I] holds for the case that (X)) =
Cn(X). Thus, in the proof of Claim [[, we assume that K(X) = 2¥X. Let F be a
g-arcwise component of 2% — {A} such that F # £. Given B € 2¥ — {A} such
that B ¢ A, taking an order arc from B to X, we obtain that B € £. This implies
that F C 24. Since 24 is compact and 24 # 2% we conclude that F is not dense
in 2% — {A}. Now we check that € is dense in 2%X — {A}. Let B € 2% — {A} and
let U = (Uy,...,Uy) be a basic set in 2% such that B € U, where each U; is a
nonempty open subset of X. Since inty(A4) =0, for each i € {1,...,m}, U; € A.

Given ¢ € {1,...,m}, fix a point p; € U; — A. Let G = {p1,...,pm}. Then
G e UNE. This completes the proof of Claim [
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CLAaM 2. h(C(X)) C C(Y).

In order to prove Claim [2 take an element A € C(X) — ({X} U F1(X)). By
Lemma 1] K(X) — {A} is not g-arcwise connected. By Lemma 2] if h(A) is
not connected, then K(Y) — {h(A)} is g-arcwise connected. Since h is a homeo-
morphism, we conclude that h(A) is connected. That is, h(A) € C(Y). Therefore,
B(C(X) — ({(X}UF (X)) € CY). Since clyx (C(X) — ({X} U Fy(X))) = C(X)
and C(Y') is compact, we conclude that h(C(X)) C C(Y).

Cram 3. Let A € C(X) — {X} and let B € K(X) be such that B C A. Then
h(B) C h(A).

We prove Claim Bl In the case that A € Fy(X), B = A and h(B) = h(A).
Thus, suppose that A ¢ F;(X). By Claim [2 h(A) is connected. We can suppose
that h(A) # Y. Let & (respectively, F) be the g-arcwise component of (X ) —{A}
(respectively, K(Y) — {h(A)}) that contains X (respectively, V). By Lemma 1]
B ¢ £. 1f h(B) € h(A), then taking an order arc from h(B) to Y in K(Y) we can
prove that h(B) € F. Since h is a homeomorphism, h(€) # F, so h(E) N F =0.
Since K(Y) — (2" nK(Y)) € F, (&) € 2" N K(Y). Since h(A) # Y, 2 0
K(Y) is a proper compact subset of (Y'). Thus, h(€) is not dense in K(Y)—{h(A)}.
This implies that £ is not dense in K(X) — {A}, contrary to Claim [Il This proves
that h(B) C h(A).

Cram 4. h(F1 (X)) C Fi(Y).

Suppose, contrary to Claim Ml that there exists a point p € X such that
h({p}) ¢ F1(Y). Since Fy(Y) is compact, there exists an open subset U of X
such that p € U and (U) C K(X) — h™'(Fy(Y)). Taking an order arc from {p} to
X in C(X), it is possible to find two nondegenerate proper subcontinua A and B
of X such that p € A C B C U. Let £ be the g-arcwise connected component of
K(X) — {B} such that {p}, A € £. By Lemma LT} £ C K(X) N 28 c (U). Thus
h(€) C K(Y) — Fi(Y). Since h is a homeomorphism, h(€) is a g-arcwise compo-
nent of K(Y) — {h(B)}. By Claims @ and B, h(A) € C(Y) and h(A) C h(B). Fix
a point y € h(A) and take an order arc 8 from {y} to h(A) in C(Y). Notice that
B C K(Y)—{h(B)}. Since h(A) € h(E), B C h(£). Hence, {y} € h(E)NF1(Y), a
contradiction. Claim [is proved.

CLAIM 5. Let A € C(X). Then h(A) = U{h({p}) € K(Y) : p € A}.

Let B =U{h({p}) € K(Y) :p € A}. By [1 Lemma 2.1], B is a subcontinuum
of Y. In the case that A # X, by Claim Bl B C h(A). Now, we see that, in
the case that A = X, we also have that B C h(A). It is enough to show that, if
p € X, then h({p}) C h(X). Suppose to the contrary that there exists a point
y € h({p}) — h(X). Let W =h"1((Y — {y})). Then W is an open subset of K(X)
such that X € W. Let A be an order arc from {p} to X in C(X). Then there
exists £ € X such that F # X and £ € W. By Claim B h({p}) C h(E). Thus,
y € h(E) € (Y — {y}). This contradiction proves that, in every case, B C h(A).

Suppose that B # h(A). Let V=K(Y) - (28 NK(Y)) and U = h=1(V). Then
U is an open subset of K(X) such that A € U. Fix a point py € A and let « be an
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order arc from {po} to A in C(X). Then there exists C € a — {A, {po}} such that
C e€U. Then {po} C C € A. Fix a point go € A — C. Since h({po}), h({q}) C B,
taking order arcs in C(Y), it is possible to construct a generalized arc § joining
h({po}) and h({qo}) in 28 N K(Y). Thus, h=1(B) is a generalized arc in K(X)
joining {po} and {qo}. By Lemma Il C € h=1(B). Thus, h(C) € B C 2B nK(Y).
Hence, h(C) € 282 N K(Y) NV, a contradiction. We have shown that B = h(A).
This ends the proof of Claim Bl

CrAam 6. Let A € K£(X). Then h(A) C h(X).

In order to prove claim 6], we may assume that A # X. By Claim [2 h(X) is
connected. In order to prove Claim [B] since 2*) N KC(Y) is compact, it is enough
to show that h(A) € clyy (2MX) N IC(Y)). Let V be an open subset of K(Y) such
that h(A) € V. Let U = (Uy,...,Un) N K(X) be a basic open subset of IC(X)
such that A € U C h™'(V) and X ¢ U, where each U; is open in X. Note that
X ¢ UyU---UUpy,. Fix a point p € X and let a be an order arc from {p} to X in
C(X). We analyze two cases:

Case 1. K(X) = 2X. Since X € (Uy,...,Upn, X), there exists B € an
(Uy,...,Un, X) such that B # X. For each i € {1,...,m}, choose a point p; €
BnNU;. Let C = {p1,...,pm}. Then C C B, C € U and h(C) € V. By Claim [3]
h(C) C h(B). By Claim B, h(B) = U{h({b}) € 2¥ : b € B} c U{r({z}) € 2¥ :
r € X} = h(X). Hence, h(C) € 2MX). Hence, h(A) € cloyy 2" N K(Y)) =
2MX) N K(Y).

Case 2. K(X) = Cp(X). Let Ay,..., A be the components of A. Then
k < n. For each i € {1,...,k}, choose a point a; € A;, let F; ={j € {1,...,m}:
AiﬁUj #* (Z)} and U; = {C S C(X) :C C U{Uj 1 J € Fz} and CﬂUj # )
for each j € F;}. Then U; is open in C(X) and A; € U;. By Theorem BT
there exists an open subset V; of X such that a; € V; and, if u € V;, then there
exists @ € C(X) such that v € Q € U;. Since X € (V4,..., Vi, X) N K(X),
there exists B € (o — {X}) N (Vi,..., Vs, X). For each i € {1,...,k}, fix a point
b; € BNV; and let Q; € C(X) be such that b; € Q; € U;. Let Q = QU --- U Q.
Then Q € C,(X) and Q € U. Since @ C U1U--- U Uy, Q # X. Since X is
hereditarily indecomposable and B # X, we obtain that BU @ # X. Notice that
B U Q is a subcontinuum of X. By Claim Bl ~A(Q) C h(B U Q) and, by Claim [l
h(BUQ) = J{r({b}) € 2Y : b€ BUQ} C | J{h({x}) €2Y : 2 € X} = h(X). Thus,
h(Q) € h(X) and h(Q) € V. Therefore, h(A) € clyy 2" NK(Y)) = 2 NK(Y).
Claim [6] is proved.

We are ready to show that h(Fi(X)) = F1(Y). Let y € Y and B = h='({y}).
By Claim B, {y} = h(B) C h(X). By Claim B h(X) = U{h({z}) € 2¥ : 2 € X}.
Thus, there exists © € X such that y € h({z}). By Claim @] h({z}) is a one-
point set. Hence, {y} = h({z}) € h(F1(X)). We have shown that F;(Y) C
h(F1(X)). Thus, Claim @ implies that h(F1 (X)) = F1(Y). This ends the proof of
the theorem. O

QUESTION 1. (see [3 Problem 37]) Let X be a hereditarily indecomposable
Hausdorff continuum. Is it true that X has a unique hyperspace F,,(X), for each
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> 27 That is, suppose that Y is a Hausdorfl continuum such that F,(X) is

homeomorphic to F,,(Y), does it follows that X is homeomorphic to Y'?

The answer to this question is not known even for the case that X is a metric

continuum and n = 2.
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