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Abstract. Let Fm = (M, F ) be a Finsler manifold and G be the Sasaki–
Finsler metric on the slit tangent bundle T M0 = T M � {0} of M . We express
the scalar curvature ρ̃ of the Riemannian manifold (T M0, G) in terms of some
geometrical objects of the Finsler manifold F

m. Then, we find necessary and
sufficient conditions for ρ̃ to be a positively homogenenous function of de-
gree zero with respect to the fiber coordinates of T M0. Finally, we obtain
characterizations of Landsberg manifolds, Berwald manifolds and Riemannian
manifolds whose ρ̃ satisfies the above condition.

Introduction

The geometry of the tangent bundle T M of a Riemannian manifold (M, g) goes
back to Sasaki [10], who constructed on T M a Riemannian metric G which in our
days is called the Sasaki metric. Then, several papers on the interrelations between
the geometries of (M, g) and (T M, G) have been published (see Gudmundsson and
Kappos [6] for results and references). The extension of the study from Riemann-
ian manifolds to Finsler manifolds is not an easy task. This is because a Finsler
manifold F

m = (M, F ) does not admit a canonical linear connection on M , that
plays the role of the Levi–Civita connection on a Riemannian manifold. Recently,
the first author (cf. [3]) has initiated a study of the interrelations between the ge-
ometries of both the tangent bundle and indicatrix bundle of a Finsler manifold on
one side, and the geometry of the manifold itself, on the other side. The main tool
in the study was the Vrănceanu connection induced by the Levi–Civita connection
on (T M0, G), where G is the Sasaki–Finsler metric on T M0.

We study the geometry of a Finsler manifold F
m = (M, F ) under the assump-

tion that the scalar curvature ρ̃ of (T M0, G) is a positively homogeneous function
of degree zero with respect to the fiber coordinates (yi) of T M0. In the first part

2010 Mathematics Subject Classification: Primary 53C60, 53C15.
Key words and phrases: Berwald manifold, Finsler manifold, Landsberg manifold, Riemann-

ian manifold, scalar curvature, tangent bundle.
57



58 BEJANCU AND FARRAN

we present some geometric objects from the geometries of Fm and (T M0, G) and
following [3] we give some structure equations which relate the curvature tensor
fields of the Levi–Civita connection and the Vrănceanu connection on (T M0, G).
In the second part we express ρ̃ in terms of some geometric objects of the Finsler
manifold F

m (cf. Theorem 2.1) and obtain necessary and sufficient conditions for
ρ̃ to be positively homogeneous of degree zero with respect to (yi) (cf. Theorem
2.2). In particular, we prove that such an F

m is locally Minkowskian, provided
M is a compact connected boundaryless manifold (cf. Corollary 2.1). Finally, we
show that if Fm is a Berwald manifold (cf. Corollary 2.4) or a Riemannian mani-
fold (cf. Corollary 2.5) and ρ̃ satisfies the above condition, then F

m must be locally
Minkowskian or locally Euclidean, respectively. In case of a Riemannian manifold,
our result improves a well known result of Musso–Tricerri [9].

1. Preliminaries

Let F
m = (M, F ) be an m-dimensional Finsler manifold, where F is the fun-

damental function of F
m that is supposed to be of class C∞ on the slit tangent

bundle T M0 = T M � {0}. Denote by (xi, yi), i ∈ {1, . . . , m}, the local coordinates
on T M , where (xi) are the local coordinates of a point x ∈ M and (yi) are the
coordinates of a vector y ∈ TxM . Then, F is positively homogeneous of degree 1
with respect to (yi) and the functions

gij =
1
2

∂2F 2

∂yi∂yj
,

define a symmetric Finsler tensor field of type (0, 2) on T M0. We suppose that the
m × m matrix [gij ] is positive definite and denote its inverse by [gij ].

Next, we consider the vertical bundle V T M0 over T M0, which is the kernel of
the differential of the projection map Π : T M0 → M . Denote by Γ(V T M0) the
F(T M0)-module of sections of V T M0, where F(T M0) is the algebra of smooth
functions on T M0. The same notation will be used for any other vector bundle.
Locally, Γ(V T M0) is spanned by the natural vector fields {∂/∂y1, . . . , ∂/∂ym}.
Then, we define the vector fields

δ

δxi
= ∂

∂xi
− Gj

i

∂

∂yj
, i ∈ {1, . . . , m},

where we put

Gj
i = ∂Gj

∂yi
and Gj = 1

4
gjk

{
∂2F 2

∂yk∂xi
yi − ∂F 2

∂xk

}
.

Thus, we obtain the horizontal bundle HT M0 over T M0, which is locally spanned
by {δ/δx1, . . . , δ/δxm}. Moreover, we have the decomposition

T T M0 = HT M0 ⊕ V T M0,

which enables us to define the Sasaki–Finsler metric G on T M0 as follows (cf. Be-
jancu–Farran [4, p. 35])

(1.1) G

(
δ

δxj
, δ

δxi

)
= G

(
∂

∂yj
, ∂

∂yi

)
= gij(x, y), G

(
δ

δxj
, ∂

∂yi

)
= 0.
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Now, we define some geometric objects of Finsler type on T M0. First, we
express the Lie brackets of the above vector fields as follows:[

δ

δxi
, δ

δxj

]
= Rk

ij
∂

∂yk
,

[
δ

δxi
, ∂

∂yj

]
= Gi

k
j

∂

∂yk
,

where we put

Rk
ij = δGk

i

δxj
− δGk

j

δxi
, Gi

k
j =

∂Gk
j

∂yi
.

If Rk
ij = 0 for all i, j, k ∈ {1, . . . , m}, we say that F

m is a flat Finsler manifold.
This name is justified by the fact that in this case the flag curvature of Fm vanishes
identically on T M0. Also, the functions

Fi
k

j =
1
2 gkh

{
δghi

δxj
+

δghj

δxi
− δgij

δxh

}
,

represent the local coefficients of Chern–Rund connection. Then, we define a Finsler
tensor field of type (1, 2) whose local components are given by Bi

k
j = Fi

k
j − Gi

k
j .

Finally, the Cartan tensor field is given by its local components

Ci
k

j = 1
2

gkh ∂gij

∂yh
·

Next, we denote by h and v the projection morphisms of T T M0 on HT M0

and V T M0, respectively. Then, by using the above Finsler tensor fields Rk
ij , Ci

k
j

and Bi
k

j we define the following adapted tensor fields:

(1.2) R : Γ(HT M0) × Γ(HT M0) → Γ(V T M0), R(hX, hY ) = Rk
ijY iXj ∂

∂yk

(1.3) C : Γ(HT M0) × Γ(HT M0) → Γ(V T M0), C(hX, hY ) = Ci
k

jY iXj ∂

∂yk
,

(1.4) B : Γ(V T M0) × Γ(V T M0) → Γ(HT M0), B(vU, vW ) = Bi
k

jW iU j δ

δxk
,

where we set

hX = Xj δ

δxj
, hY = Y i δ

δxi
, vU = U j ∂

∂yj
, vW = W i ∂

∂yi
·

For each of the above tensor fields R, C and B we define a twin (denoted by the
same symbol) as follows:

(1.5)
R : Γ(HT M0) × Γ(V T M0) → Γ(HT M0),

g(R(hX, vY ), hZ) = G(R(hX, hZ), vY ),

(1.6)
C : Γ(HT M0) × Γ(V T M0) → Γ(HT M0),
G(C(hX, vY ), hZ) = G(C(hX, hZ), vY ),

(1.7)
B : Γ(HT M0) × Γ(V T M0) → Γ(V T M0),
G(B(hX, vY ), vZ) = G(B(vY, vZ), hX).
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Locally, we have the following formulas:

(1.8)
(a) R

(
δ

δxj
, δ

δxi

)
= Rk

ij
∂

∂yk
, (b) C

(
δ

δxj
, δ

δxi

)
= Ci

k
j

∂

∂yk
,

(c) B

(
∂

∂yj
, ∂

∂yi

)
= Bi

k
j

δ

δxk
,

(1.9)
(a) R

(
δ

δxj
, ∂

∂yi

)
= Rk

ij
δ

δxk
, (b) C

(
δ

δxj
, ∂

∂yi

)
= Ci

k
j

δ

δxk
,

(c) B

(
δ

δxj
, ∂

∂yi

)
= Bi

k
j

∂

∂yk
,

(1.10) (a) Rk
ij = gih Rh

tj gtk, (b) Ci
k

j = Ci
k

j , (c) Bi
k

j = Bi
k

j .

Now, let ∇̃ be the Levi–Civita connection on (T M0, G) and ∇ be the Vrănceanu
connection induced by ∇̃ given by (cf. Ianuş [7])

∇XY = v∇̃vXvY + h∇̃hXhY + v[hX, vY ] + h[vX, hY ].

It is important to note that the Vrănceanu connection is locally given by the local
coefficients of the classical Finsler connections as follows:

(1.11)
∇ δ

δxj

δ

δxi
= Fi

k
j

δ

δxk
, ∇∂

∂yj

∂

∂yi
= Ci

k
j

∂

∂yk
,

∇∂
∂yj

δ

δxi
= 0, ∇ δ

δxj

∂

∂yi
= Gi

k
j

∂

∂yk
·

Moreover, the curvature tensor field R̃ of the Levi–Civita connection ∇̃ is com-
pletely determined by the curvature tensor field R of the Vrănceanu connection on
(T M0, G) and the adapted tensor fields R, C and B (cf. Bejancu [3]). We recall
here only the following relations:

(1.12)

R̃(hX, hY, hZ) = R(hX, hY, hZ) + B(hZ, R(hX, hY ))

+ C(hZ, R(hX, hY )) + 1
2

R(hZ, R(hX, hY ))

− A(hX,hY )

{
(∇hXC)(hY, hZ) + 1

2
(∇hXR)(hY, hZ)

+ B(hX, C(hY, hZ)) + 1
2

B(hX, R(hY, hZ))

+ C(hX, C(hY, hZ)) +
1
2

C(hX, R(hY, hZ))

+ 1
2

R(hX, C(hY, hZ)) + 1
4

R(hX, R(hY, hZ))
}

,
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(1.13)

R̃(hX, vY, vZ) = R(hX, vY, vZ) − (∇hXB) (vY, vZ)

− (∇vY B) (hX, vZ) − (∇vY C) (hX, vZ) − 1
2

(∇vY R) (hX, vZ)

+ C(hX, B(vY, vZ)) + 1
2

R(hX, B(vY, vZ)) + B(vY, B(hX, vZ))

− C(C(hX, vZ), vY ) − 1
2

C(R(hX, vZ), vY )

−1
2

R(C(hX, vZ), vY ) − 1
4

R(R(hX, vZ), vY )

− B(C(hX, vZ), vY ) − 1
2

B(R(hX, vZ), vY ),

(1.14)
R̃(vX, vY, vZ) = R(vX, vY, vZ) − A(vX,vY )

{
(∇vXB)(vY, vZ)

+ C(B(vY, vZ), vX) + 1
2

R(B(vY, vZ), vX) + B(B(vY, vZ), vX)
}

,

where A(hX,hY ) means that in the expression that follows this symbol we inter-
change hX and hY , and then subtract, as in the following formula

A(hX,hY ){f(hX, hY )} = f(hX, hY ) − f(hY, hX).

In a similar way, we use the symbol A(vX,vY ). Finally, we present some local
components of the curvature tensor field of the Vrănceanu connection on (T M0, G):

(1.15)
(a) R

(
δ

δxk
, δ

δxj

)
δ

δxi
= Ki

h
jk

δ

δxh
,

(b) R

(
∂

∂yk
, ∂

∂yj

)
∂

∂yi
= Si

h
jk

∂

∂yh

where we set

(1.16)
(a) Ki

h
jk = δFi

h
j

δxk
− δFi

h
k

δxj
+ Fi

t
j Ft

h
k − Fi

t
k Ft

h
j ,

(b) Si
h

jk = ∂Ci
h

j

∂yk
− ∂Ci

h
k

∂yj
+ Ci

t
j Ct

h
k − Ci

t
k Ct

h
j .

We note that (1.16a) and (1.16b) give the local components of the hh-curvature
and vv-curvature tensor fields of the Chern–Rund connection and Cartan connec-
tion, respectively.

2. Scalar curvature of (T M0, G)

Let F
m = (M, F ) be a Finsler manifold and (T M0, G) be its slit tangent

bundle endowed with the Sasaki–Finsler metric G given by (1.1). Consider the
local orthonormal fields of frames {Ha} and {Va}, such that Ha ∈ Γ(HT M0) and
Va ∈ Γ(V T M0) for any a ∈ {1, . . . , m}. Next, we set

(2.1) Ha = Hi
a

δ

δxi
and Va = V i

a

∂

∂yi
·
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Then, by using (1.1), we deduce that the inverse matrix of [gij ] has the entries
given by

(2.2) gij =
m∑

a=1
Hi

a Hj
a =

m∑
a=1

V i
a V j

a , i, j ∈ {1, . . . , m}.

Now we denote by ρ̃ the scalar curvature of the Riemannian manifold (T M0, G).
As {Ha, Va}, a ∈ {1, . . . , m}, is a local orthonormal frame field on T M0 with respect
to G, we have
(2.3) ρ̃ = α + 2β + γ,

where we put

(a) α =
m∑

a,b=1

{
G

(
R̃(Ha, Hb)Hb, Ha

)}
,

(b) β =
m∑

a,b=1

{
G

(
R̃(Ha, Vb)Vb, Ha

)}
,(2.4)

(c) γ =
m∑

a,b=1

{
G

(
R̃(Va, Vb)Vb, Va

)}
.

In what follows we will express the above three functions α, β, γ in terms of the
local components of some important Finsler tensor fields.

First, by using (1.5) and (1.6) and taking into account that R and C are
skew-symmetric and symmetric adapted tensor fields respectively, we obtain

(a) G
(
C(Ha, C(Hb, Hb)), Ha

)
= G

(
C(Ha, Ha), C(Hb, Hb)

)
,

(b) G
(
C(Hb, C(Ha, Hb)), Ha

)
= ‖C(Ha, Hb)‖2,

(c) G
(
C(Hb, R(Ha, Hb)), Ha

)
= −G

(
R(Hb, C(Ha, Hb)), Ha

)
= G

(
C(Ha, Hb), R(Ha, Hb)

)
,(2.5)

(d) G
(
R(Ha, C(Hb, Hb)), Ha

)
= G

(
R(Ha, Ha), C(Hb, Hb)

)
= 0,

(e) G
(
R(Hb, R(Ha, Hb)), Ha

)
= −‖R(Ha, Hb)‖2,

(f)
m∑

a,b=1

{
G(C(Ha, Hb), R(Ha, Hb))

}
= 0,

where the norm ‖ · ‖ is taken with respect to G. Then, by direct calculations using
(2.4a), (1.12) and (2.5), we deduce that

α =
m∑

a,b=1

{
G(hR̃(Ha, Hb)Hb, Ha)

}

=
m∑

a,b=1

{
G(R(Ha, Hb)Hb, Ha) − 3

4
‖R(Ha, Hb)‖2 + ‖C(Ha, Hb)‖2(2.6)

− G(C(Ha, Ha), C(Hb, Hb))
}

.
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Next, by using (1.5), (1.6) and (1.7), we obtain

(a) G(B(Vb, B(Ha, Vb)), Ha) = ‖B(Ha, Vb)‖2,

(b) G(C(C(Ha, Vb), Vb), Ha) = ‖C(Ha, Vb)‖2,

(c) G(C(R(Ha, Vb), Vb), Ha) + G(R(C(Ha, Vb), Vb), Ha) = 0,(2.7)
(d) G(R(R(Ha, Vb), Vb), Ha) = −‖R(Ha, Vb)‖2.

Then, taking into account (2.4b), (1.13) and (2.7), we infer that

(2.8)
β =

m∑
a,b=1

{
‖B(Ha, Vb)‖2 − ‖C(Ha, Vb)‖2 + 1

4
‖R(Ha, Vb)‖2

− G
(

(∇Ha B)(Vb, Vb) + (∇Vb
C)(Ha, Vb) + 1

2
(∇Vb

R)(Ha, Vb), Ha

)}
.

Now, as a consequence of (1.7), we obtain

(2.9)
(a) G(B(B(Vb, Vb), Va), Va) = G(B(Va, Va), B(Vb, Vb))
(b) G(B(B(Va, Vb), Vb), Va) = ‖B(Va, Vb)‖2.

Then, by using (2.4c), (1.14) and (2.9), we deduce that

(2.10) γ =
m∑

a,b=1

{
G(R(Va, Vb)Vb, Va) + ‖B(Va, Vb)‖2 − G(B(Va, Va), B(Vb, Vb))

}
.

Also, by using (2.1), (2.2), (1.8), (1.9) and (1.10), we obtain

(2.11)

(a)
m∑

a,b=1

‖R(Ha, Vb)‖2 =
m∑

a,b=1

‖R(Ha, Hb)‖2 = gik gjh gst Rs
ij Rt

kh,

(b)
m∑

a,b=1

‖C(Ha, Vb)‖2 =
m∑

a,b=1

‖C(Ha, Hb)‖2 = gik gjh gst Ci
s

j Ck
t
h,

(c)
m∑

a,b=1

‖B(Ha, Vb)‖2 =
m∑

a,b=1

‖B(Va, Vb)‖2 = gik gjh gst Bi
s

j Bk
t
h.

Finally, by using (2.3), (2.6), (2.8), (2.10) and (2.11), we deduce that

(2.12)

ρ̃ =
m∑

a,b=1

{
G(R(Ha, Hb)Hb, Ha) + G(R(Va, Vb)Vb, Va)

− 1
4

‖R(Ha, Hb)‖2 − ‖C(Ha, Hb)‖2 + 3‖B(Va, Vb)‖2

− G
(
C(Ha, Ha), C(Hb, Hb)

) − G
(
B(Va, Va), B(Vb, Vb)

)
−2G

(
(∇Ha B)(Vb, Vb) + (∇Vb

C)(Ha, Vb) + 1
2

(∇Vb
R)(Ha, Vb), Ha

)}
.

Next, we want to express the scalar curvature of (T M0, G) in terms of some geo-
metric objects of Finsler type of Fm. First, by using (2.1), (2.2), (1.15), (1.8b) and
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(1.8c), we deduce that

(2.13)

(a)
m∑

a,b=1

{
G

(
R(Ha, Hb)Hb, Ha

)}
= gik gjh Kijkh,

(b)
m∑

a,b=1

{
G

(
R(Va, Vb)Vb, Va

)}
= gik gjh Sijkh,

(c)
m∑

a,b=1

{
G

(
C(Ha, Ha), C(Hb, Hb)

)}
= gik gjh gst Ci

s
k Cj

t
h,

(d)
m∑

a,b=1

{
G

(
B(Va, Va), B(Vb, Vb)

)}
= gik gjh gst Bi

s
k Bj

t
h.

Then, by using (2.1), (2.2) and (1.11), we obtain

(2.14)

(a)
m∑

a,b=1

{
G

(
(∇Ha B)(Vb, Vb), Ha

)}
= gjh Bj

i
h|i,

(b)
m∑

a,b=1

{
G

(
(∇Vb

C)(Ha, Vb), Ha

)}
= gjh Ch

i
i‖j ,

(c)
m∑

a,b=1

{
G

(
(∇Vb

R)(Ha, Vb), Ha

)}
= gjh Ri

hi‖j ,

where the covariant derivatives on the right side are defined by the Vrănceanu
connection as follows

(2.15)

(a) Bj
i
h|i = δBj

i
h

δxi
+ Bj

k
h Fk

i
i − Bk

i
h Gj

k
i − Bj

i
k Gh

k
i,

(b) Ch
i
i‖j = ∂Ch

i
i

∂yj
− Ck

i
i Ch

k
j ,

(c) Rh
i
i‖j = ∂Ri

hi

∂yj
− Ri

ki Ch
k

j .

Thus, by using (2.11), (2.13) and (2.14) into (2.12), we deduce that the scalar
curvature of (T M0, G) is given by

(2.16)

ρ̃ = gik gjh
{

Kijkh + Sijkh − 1
4

gst Rs
ij Rt

kh − gst Ci
s

j Ck
t
h

+ 3gst Bi
s

j Bk
t
h − gst Ci

s
k Cj

t
h − gst Bi

s
k Bj

t
h

}
− 2gjh

{
Bj

i
h|i + Ch

i
i‖j + 1

2
Ri

hi‖j

}
.

An interesting formula for Sijkh was given by Matsumoto [8, p. 114]:

(2.17) Sijkh = gst{Ci
s

h Cj
t
k − Ci

s
k Cj

t
h}.
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Then, by direct calculations, using (2.17) and (2.15b), we obtain

(2.18) gik gjh{Sijkh − gst Ci
s

j Ck
t
h − gst Ci

s
k Cj

t
h} − 2gjh Ch

i
i‖j = −2gjh ∂Ch

∂yj
,

where we put
(2.19) Ch = Ch

i
i = gki Chki.

Taking into account of (2.18) into (2.16), we can state the following.

Theorem 2.1. Let F
m = (M, F ) be a Finsler manifold. Then, the scalar

curvature ρ̃ of the Riemannian manifold (T M0, G) is given by

(2.20)
ρ̃ = gik gjh

{
Kijkh + 3gst Bi

s
j Bk

t
h − gst Bi

s
k Bj

t
h − 1

4
gstRs

ij Rt
kh

}
− 2gjh

{
Bj

i
h|i + ∂Ch

∂yj
+ 1

2
Ri

hi‖j

}
.

Next, following Matsumoto [8, p. 176], we call
(2.21) Ci = gih Ch,

the torsion vector field of Fm. Then, we can prove the following.

Theorem 2.2. Let F
m = (M, F ) be a Finsler manifold. Then, the scalar

curvature of (T M0, G) is a positively homogeneous function of degree zero with
respect to (yi) if and only if the following conditions are satisfied:

(i) F
m is a flat Finsler manifold.

(ii) The torsion vector field of Fm satisfies

(2.22)
∂Ci

∂yi
+ 2gjk Cj Ck = 0.

Proof. First, we express (2.20) as follows
(2.23) ρ̃ = A + B + C,

where

(2.24)

(a) A = gik gjh{Kijkh + 3gst Bi
s

j Bk
t
h − gst Bi

s
k Bj

t
h}

−2gjh
{

Bj
i
h|i + 1

2
Ri

hi‖j

}
,

(b) B = −1
4

gik gjh gst Rs
ij Rt

kh,

(c) C = −2gjh ∂Ch

∂yj
·

By the homogeneity properties of the functions on the right side of (2.24), we
conclude that A, B and C are positively homogeneous functions of degrees 0, 1
and −2, respectively. Then, from (2.23) and (2.24), we deduce that ρ̃ is positively
homogeneous of degree 0 if and only if we have

(2.25) (a) gik gjh gst Rs
ij Rt

kh = 0, (b) gjh ∂Ch

∂yj
= 0.
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Clearly, (2.25a) holds if and only if Rk
ij = 0, for each i, j, k ∈ {1, . . . , m}, that is,

F
m is a flat Finsler manifold. On the other hand, by using (2.21) and (2.19), we

deduce that

gjh ∂Ch

∂yj
= gjh

{
∂ghk

∂yj
Ck + ghk

∂Ck

∂yj

}

= ∂Cj

∂yj
+ 2gjh Chkj Ck = ∂Cj

∂yj
+ 2gkh Ck Ch.

Thus, (2.25b) is equivalent to (2.22). This completes the proof of the theorem. �

Next, we recall the following results on the geometry of Fm.

Theorem 2.3 (Akbar–Zadeh [1]). Let F
m = (M, F ) be a compact connected

boundaryless flat Finsler manifold. Then, Fm is locally Minkowskian.

Theorem 2.4 (Deicke [5]). Let F
m = (M, F ) be a Finsler manifold such that

F is positive and C4-differentiable for any nonzero (yi). If the torsion vector field
vanishes on M , then F

m must be Riemannian.

Now, by combining Theorems 2.2 and 2.3, we obtain the following:

Corollary 2.1. Let F
m = (M, F ) be a be a compact connected boundaryless

Finsler manifold. If the scalar curvature of (T M0, G) is a positively homogeneous
function of degree zero with respect to (yi), then F

m is locally Minkowskian.

Also, we can prove the following.

Corollary 2.2. Let Fm = (M, F ) be a Finsler manifold such that F is positive
and C4-differentiable for any nonzero (yi). Suppose the torsion vector field of Fm

satisfies

(2.26) trace
[

∂Ci

∂yj

]
� 0.

Then the scalar curvature of (T M0, G) is positively homogeneous of degree 0 with
respect to (yi) if and only if Fm is locally Euclidean.

Proof. If Fm is locally Euclidean, then both the flag curvature and the torsion
vector field of Fm vanish on M , and by Theorem 2.2 we conclude that ρ̃ is positively
homogeneous of degree 0. Conversely, suppose that ρ̃ is positively homogeneous of
degree 0. Then, from (2.26) and (2.22), we deduce that the torsion vector field of Fm

vanishes on M . Thus, by Theorem 2.4, we conclude that F
m must be Riemannian.

Finally, from Theorem 2.2 we see that F
m is a flat Finsler manifold. Hence, F m is

locally Euclidean. �

Corollary 2.3. Let F
m = (M, F ) be a Landsberg manifold. If the scalar

curvature of (T M0, G) is a positively homogeneous function of degree 0 with respect
to (yi), then it vanishes on T M .



THE SCALAR CURVATURE OF THE TANGENT BUNDLE OF A FINSLER MANIFOLD 67

Proof. Since Bj
i
k = 0 for all i, j, k ∈ {1, . . . , m}, by (2.23) and (2.24) we

deduce that ρ̃ = gik gjh Kijkh. Also, by assertion (i) of Theorem 2.2, we conclude
that F

m is of flag curvature λ = 0. On the other hand, the hh-curvature tensor of
the Chern–Rund connection for a Landsberg manifold of constant curvature λ is
given by (cf. Bao–Chern–Shen [2, p. 314])

Kijkh = λ(gjk gih − gik gjh).
Thus, ρ̃ vanishes on T M . �

Corollary 2.4. Let F
m = (M, F ) be a Berwald manifold. Suppose that the

scalar curvature ρ̃ of (T M0, G) is a positively homogeneous function of degree 0
with respect to (yi). Then ρ̃ = 0, and F

m is locally Minkowskian.

Proof. As F
m is a Landsberg manifold, we apply Corollary 2.3 and obtain

ρ̃ = 0. Then, by assertion (iv) of Theorem 8.5 of Bejancu–Farran [4, p. 65],
we deduce that the hv-curvature tensor field Fijkh of the Chern–Rund connection
vanishes on M . Finally, from the proof of Corollary 2.3, we deduce that Kijkh = 0.
Hence, by assertion (iv) of Theorem 8.6 of Bejancu–Farran [4, p. 66], we conclude
that F

m is locally Minkowskian. �

Corollary 2.5. Let F
m = (M, F ) be a Riemannian manifold and T M be

equipped with the Sasaki metric G. Suppose that the scalar curvature ρ̃ of (T M0, G)
is a positively homogeneous function of degree 0 with respect to (yi). Then ρ̃ = 0,
and F

m is locally Euclidean.

Proof. By Corollary 2.4 we have ρ̃ = 0 and Kijkh = 0. As in this case Kijkh

are the local components of the curvature tensor field of the Levi–Civita connection
on (M, g), we conclude that (M, g) is locally Euclidean. �

Finally, we note that Corollary 2.5 improves some well-known results of Musso–
Tricerri [9] and Yano–Okubo [11] which state the following:

If the scalar curvature of (T M, G) is constant, then (M, g) is locally Euclidean.
and

If the scalar curvature of (T M, G) vanishes, then (M, g) is locally Euclidean.
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