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ON THE PRINCIPLE OF

STATIONARY ISOENERGETIC ACTION

Božidar Jovanović

Abstract. We present several variants of the Maupertuis principle, both on
the exact and the nonexact symplectic manifolds.

1. Introduction

1.1. The principle of least action, or the principle of stationary action, says
that the trajectories of a mechanical system can be obtained as extremals of a
certain action functional. It is one of the basic tools in physics being applied both
in classical and quantum setting.

Consider a Lagrangian system (Q, L), where Q is a configuration space and
L(q, q̇, t) is a Lagrangian, L : T Q×R → R. Let q = (q1, . . . , qn) be local coordinates
on Q. The motion of the system is described by the Euler–Lagrange equations

(1.1)
d

dt

∂L

∂q̇i
=

∂L

∂qi
, i = 1, . . . , n.

The solutions of the Euler–Lagrange equations are exactly the critical points
of the action integral

SL(γ) =

∫ b

a

L(q, q̇, t) dt

in a class of curves γ : [a, b] → Q with fixed endpoints γ(a) = q0, γ(b) = q1 (the
Hamiltonian principle of least action (1834), e.g., see [28]).

The Legendre transformation FL : T Q → T ∗Q is defined by

(1.2) FL(q, ξ, t) · η =
d

ds

∣

∣

s=0L(q, ξ + sη, t) ⇐⇒ pi =
∂L

∂q̇i
, i = 1, . . . , n,

where ξ, η ∈ TqQ and (q1, . . . , qn, p1, . . . , pn) are canonical coordinates of the cotan-
gent bundle T ∗Q. In order to have a Hamiltonian description of the dynamics (see
the section below), we suppose that the Legendre transformation (1.2) is a diffeo-
morphism. The corresponding Lagrangian L is called hyperregular [21].
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64 JOVANOVIĆ

If the Lagrangian L does not depend on time then the equations (1.1) possess
the energy first integral

(1.3) E(q, q̇) = FL(q, q̇) · q̇ − L(q, q̇) =
∑

i

∂L

∂q̇i
q̇i − L.

In that case we have

Theorem 1.1 (the Maupertuis principle). Suppose that h is a regular value of
E. Among all curves q = γ(τ) connecting two points q0 and q1 and parametrized so
that the energy has a fixed value E = h, the trajectory of the equations of dynamics
(1.1) is an extremal of the reduced action
(1.4)

S(γ) =

∫ b

a

FL

(

q(τ),
dq

dτ

)

· dq

dτ
dτ =

∫ b

a

∂L

∂q̇
(τ) · dq

dτ
dτ, q0 = γ(a), q1 = γ(b)

It is important to note that the interval [a, b], parametrizing the curve q = γ(τ),
is not fixed and it can be different for different curves being compared, while the
energy must be the same.

Contrary to the Hamiltonian principle, the Maupertuis principle, or principle
of stationary isoenergetic action determines the shape of a trajectory but not the
time. In order to determine the time, we have to use the energy constant.

Historically, a variant of Theorem 1.2 was the first variational approach to
mechanics. It is attributed to Maupertuis (1744), Euler (1744) and Jacobi (1842),
who gave an important geometric interpretation of the principle (see [28]).

1.2. The classical proofs of the Maupertuis principle can be found in [28, 36,

2]. In Serbian, see the second volume of Bilimović’s course in Theoretical mechanics
[4], or Dragović and Milinković’s monograph [10].

Weinstein [34] and Novikov [25] formulated multi-valued variational principles
that provided the study of the existence of periodic orbits on non exact symplectic
manifolds. We feel a need to present these results, along with the classical ones, in
a unified way.

In the first part of the paper, we derive the principle of stationary isoenergetic
action, both on the exact (Section 2) and the nonexact symplectic manifolds (Sec-
tion 3). The variants of the Maupertuis principle presented in Section 3 are our
small contribution to the subject. They slightly differ from the existing variational
principles formulated either for closed trajectories, or formulated without imposing
the constraint given by the energy.

In the second part of the paper we point out a contact interpretation of the
Maupertuis principle (Sections 4, 5). There, it is illustrated how some of the well
known properties of the system of harmonic oscillators, the Kepler problem (Moser’s
regularization) and the Neumann system (relationship with a geodesic flow on an
ellipsoid), have natural descriptions within a framework of the contact geometry.
We believe that one should expect other interesting relations between the contact
structures and integrable systems as well.

It is a great pleasure to dedicate this paper to Anton Bilimović, since his work
has fundamentally influenced the development of Serbian theoretical mechanics.
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2. Principle of stationary isoenergetic action in a phase space

2.1. Hamiltonian equations. Let L(q, q̇, t) be a hyperregular Lagrangian.
We can pass from velocities q̇i to the momenta pj by using the standard Legendre
transformation (1.2). In the coordinates (q, p) of the cotangent bundle T ∗Q, the
equations of motion (1.1) read:

(2.1)
dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
, i = 1, . . . , n,

where the Hamiltonian function H(q, p, t) is the Legendre transformation of L

H(q, p, t) = E(q, q̇, t)|q̇=FL−1(q,p,t) = FL(q, q̇, t) · q̇ − L(q, q̇, t)|q̇=FL−1(q,p,t).

Let p dq =
∑

i pidqi be the canonical 1-form and

ω = d(p dq) = dp ∧ dq =

n
∑

i=1

dpi ∧ dqi

the canonical symplectic form of the cotangent bundle T ∗Q. The system of equa-
tions (2.1) is Hamiltonian, that is the vector field

XH(q, p) = (∂H/∂p1, . . . , ∂H/∂pn, −∂H/∂q1, . . . , −∂H/∂qn)

can be defined by

(2.2) iXH
ω( · ) = ω(XH , · ) = −dH( · ).

2.2. Characteristic line bundles. More generally, consider a 2n-dimensional
symplectic manifold P with a closed, nondegenerate 2-form ω. Let H : P ×R → R

be a smooth, in general time dependent, function. Consider the corresponding
Hamiltonian equation

(2.3) ẋ = XH ,

where the Hamiltonain vector field XH(x, t) is defined by (2.2).
If the Hamiltonian H does not depend on time, it is the first integral of the

system. Let M be a regular connected component of the invariant variety H = h,
which means dH |M 6= 0.

Since dH(ξ) = 0, ξ ∈ TxM , from (2.2) we see that XH generates the symplectic
orthogonal of TxM for all x ∈ M — the characteristic line bundle LM of M . It is
the kernel of the form ω restricted to M :

LM = {ξ ∈ TxM | ω(ξ, TxM) = 0, x ∈ M}.

Note that LM is determined only by M and not by H . If F is another Hamilton-
ian defining M , M ⊂ F −1(c), dF |M 6= 0, then the restrictions of the Hamiltonian
vector fields XH and XF to M are proportional.

A variation of a curve γ : [a, b] → M is a mapping: Γ : [a, b] × [0, ǫ] → M ,
such that γ(t) = Γ(t, 0), t ∈ [a, b]. Denote γs(t) = Γ(t, s) and δγ(t) = d

ds |s=0γs(t) ∈
Tγ(t)M .

From Cartan’s formula we get (e.g., see Griffits [12]):



66 JOVANOVIĆ

Lemma 2.1. Let (M, α) be a manifold endowed with a 1-form α, γ : [a, b] → M
be an immersed curve and Γ be a variation of γ. The Lie derivative of the form
Γ∗α in the direction of ∂/∂s at the points [a, b] × {0} is equal to

L∂/∂sΓ∗α|(t,0) = γ∗(iδγ(t)dα) + dγ∗(α(δγ(t))).

Theorem 2.1. Assume that the symplectic form ω is exact: ω = dα. Let M
be a regular component of the invariant hypersurface H−1(h). The integral curves
γ : [a, b] → M of the characteristic line bundle LM are extremals of the (reduced)

action functional A(γ) =
∫

γ
α =

∫ b

a
α(γ̇) dt in the class of variations γs(t) such that

α(δγ(a)) = α(δγ(b)) = 0.

The proof is a direct consequence of Lemma 2.1. We have

(2.4)
d

ds

(
∫

γs

α

)

∣

∣

∣

s=0
=

∫ b

a

ω
(

δγ(t), γ̇(t)
)

dt + α(δγ(b)) − α(δγ(a)).

The expression above is equal to zero for all variations γs(t) if and only if γ̇ is
in the kernel of the form ω = dα restricted to M . That is, γ(t) is an integral curve
of the line bundle LM .

2.3. Applying Theorem 2.1 to the symplectic space (T ∗Q, dp ∧ dq) we obtain
Poincaré’s formulation of the Maupertuis principle in a phase space [27].

Theorem 2.2. If the Hamiltonian function H = H(q, p) does not depend on
time, then the phase trajectories of the canonical equations (2.1) lying on the regular
connected component M of the surface {H(q, p) = h} are extremals of the reduced
action

(2.5) A(γ) =

∫

γ

p dq

in the class of curves γ lying on M and connecting the subspaces T ∗
q0

Q and T ∗
q1

Q.

Note that Theorem 1.1 follows from Theorem 2.2 (e.g., see Arnold [2]). Suppose
that the Hamiltonian system (2.1) is a Legendre transformation of the Lagrangian
system (1.1). The main observation is that if γ(τ) is a configuration space curve
parametrized such that E(γ, dγ/dτ) = h, then the lifted curve γ = FL(γ, dγ/dτ)

lyes on M and the reduced actions (1.4) and (2.5) for γ and γ are equal: S(γ) =
A(γ) (see Fig. 1).

2.4. Jacobi’s metric. Consider a natural mechanical system on Q defined
by the Lagrangian function:

(2.6) L(q, q̇) = T + B − V =
1

2

∑

ij

Kij q̇iq̇j +
∑

i

Biq̇i − V (q).

Here ds2 =
∑

ij Kijdqidqj is a Riemannian metric on Q, V (q) is a potential function

and θ =
∑

i Bidqi is a 1-form defining a gyroscopic (or magnetic) field σ = dθ (see
Section 3).
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Figure 1.

The energy of the system (1.3) is the sum of the kinetic and the potential
energy

E(q, q̇) = T + V =
1

2

∑

ij

Kij q̇iq̇j + V (q).

In the region of the configuration space Qh where V (q) < h, we can define the
Jacobi metric

(2.7) ds2
J = 2(h − V (q)) ds2 = 2(h − V (q))

∑

ij

Kijdqidqj .

The following version of the Maupertuis principle for Lagrangians of the form
(2.6) is well known (e.g., see Kozlov [19]).

Theorem 2.3. Among all curves q = γ(τ) connecting the points q0, q1 ∈ Qh

and parametrized so that the energy has a fixed value E = h, the trajectory of the
equations of dynamics (1.1) with Lagrangian (2.6) is an extremal of the integral

(2.8) S(γ) =

∫

γ

dsJ + θ.

In particular, if there are no gyroscopic forces, the trajectories of the system within
Qh, up to reparametrization, are geodesic lines of the Jacobi metric ds2

J .

Indeed, in order to guarantee a fixed value of the energy

E = T + V =
1

2

∑

ij

Kij
dqi

dτ

dqj

dτ
+ V (q) =

1

2

(

ds

dτ

)2

+ V (q) = h,
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the parameter τ of the curve q = γ(τ) must be proportional to the length dτ =

ds/
√

2(h − V ). Therefore
∫ b

a

∂L

∂q̇
(τ) · dq

dτ
dτ =

∫ b

a

(

∑

ij

Kij
dqi

dτ

dqj

dτ
+

∑

i

Bi
dqi

dτ

)

dτ

=

∫ b

a

(

2(h − V (q)) +
∑

i

Bi
dqi

dτ

)

dτ =

∫

γ

dsJ + θ.

Remark 2.1. The variational principle stated in Theorem 2.3 is used in the
study of periodic trajectories of natural mechanical systems with exact magnetic
fields (see [31] and references therein). Note also that the Maupertuis principle for
a configuration space Q being a Banach space can be found in [21, 30].

2.5. The Hamiltonian principle of least action. Consider a Poincaré–
Cartan 1-form p dq − Hdt on the extended phase space T ∗Q × R(q, p, t), where
H : T ∗Q×R → R is a Hamiltonian function. The phase trajectories of the canonical
equations (2.1) are extremals of the action

(2.9) AH(γ) =

∫

γ

pdq − Hdt

in the class of curves γ(t) = (q(t), p(t), t) connecting the subspaces T ∗
q0

Q×{t0} and
T ∗

q1
Q × {t1} (Poincaré’s modification of the Hamiltonian principle of least action

[27]). Namely, a vector (ξ, 1), ξ ∈ T(q,p)(T
∗Q) belongs to ker d(pdq − Hdt) at

(q, p, t) if and only if ξ = XH(q, p, t) (see [2, 21]).
Obviously, we can replace (T ∗Q, dp ∧ dq) by an arbitrary exact symplectic

manifold (P, ω = dα). In particular, if we consider the action AH(γ) =
∫

γ
α − Hdt

on the free loop space Ω(P ) = C∞(S1, P ), S1 = R/Z of P and H is 1-periodic in
t-variable, then the critical points of AH are 1-periodic orbits of the equation (2.3).

For a given time-independent Hamiltonian H : P → R with a regular level
set H−1(h), the periodic orbits having all positive periods and energy h can be
obtained by the use of modified action:

(2.10) AH,h(γ, λ) =

∫ 1

0
α(γ̇)dt − λ

∫ 1

0
(H(γ(t)) − h)dt,

defined on the space Ω(P ) × R+ (see [29, 34]). The critical points (γ, λ) of AH,h

correspond to λ-periodic orbits x(t) = γ(t/λ) that lie on the energy hypersurface
H−1(h). Moreover, Weinstein defined actions AH and AH,h when the symplectic
form is not exact as well [35].

The Lagrangian analogue of the functional (2.10) is

SL,h(γ, λ) =

∫ 1

0
λL(γ, γ̇/λ)dt + λh, γ ∈ Ω(Q), λ > 0

(see [9]). The pair (γ, λ) is a critical point of SL,h if and only if q(t) = γ(t/λ) is a
λ-periodic solution of the Euler–Lagrange equation (1.1) with energy h.

Variational principles related to the action (2.9), which arise by a reduction
process are given in [8].
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3. The Maupertuis principle on nonexact symplectic manifolds

3.1. Magnetic flows. Consider a natural mechanical system given by La-
grangian function (2.6). After the Legendre transformation, it takes form (2.1)
with the Hamiltonian function

(3.1) H(q, p) =
1

2
〈p − θ, p − θ〉 + V (q) =

1

2

∑

ij

Kij(pi − Bi)(pj − Bj) + V (q),

where Kij is the inverse of the metric tensor Kij .
The transformation Tθ : (q, p) 7→ (q, p − θ) is a symplectomorphism between

(T ∗Q, dp ∧ dq) and a “twisted" cotangent bundle (T ∗Q, dp ∧ dq + π∗σ), where π :
T ∗Q → Q is the natural projection and σ = dθ.

In the new coordinates, also denoted by (q, p), Hamiltonian (3.1) takes the
usual form, the sum of the kinetic and the potential energy:

H(q, p) =
1

2
〈p, p〉 + V (q) =

1

2

∑

ij

Kijpipj + V (q),

while the equations of motion take the “noncanonical" form:

(3.2)
dqi

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂qi
+

n
∑

j=1

Fij
∂H

∂pj
,

where σ =
∑

16i<j6n Fij(q)dqi ∧ dqj . The equations are Hamiltonian with respect
to the symplectic form ω = dp ∧ dq + π∗σ.

One can consider system (3.2) associated to a nonexact 2-form σ as well (for
example, the motion of a particle in a magnetic monopole field [21]). In this case,
Lagrangian (2.6) is defined only locally. Nevertheless, it is very interesting that the
Hamiltonian (Weinstein [34] and Tuynman [33]) and the Maupertuis principles
(Novikov [26]) of least action can be still defined.

3.2. Multivalued reduced action. Let (P, ω) be a non exact symplectic
manifold and let M = H−1(h) be a regular isoenergetic hypersurface. The main
observation concerning the Maupertuis principle can be stated as follows (see [26,

19] for the reduced action (2.8)).
Let U ⊂ P be a region where ω is exact and let ω = dα1 = dα2. Consider a

variation γs(t) = Γ(t, s), t ∈ [0, 1], s ∈ [0, ǫ] with fixed endpoints of a curve γ lying
in M ∩ U . Then

∫

γǫ

α1 −
∫

γ0

α1 = −
∫

[0,1]×[0,ǫ]
Γ∗dα1 = −

∫

[0,1]×[0,ǫ]
Γ∗dα2 =

∫

γǫ

α2 −
∫

γ0

α2.

Therefore
∫

γǫ

α1 −
∫

γ0

α1 =

∫

γǫ

α2 −
∫

γ0

α2

and, although
∫

γ
αi depends on the form αi, the derivative

d

ds
|s=0

∫ 1

0
α(γ̇s)dt =

∫ 1

0
ω(δγ(t), γ̇(t))dt
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does not depend on αi, i = 1, 2. One can define an appropriate multi-valued
functional on a space of paths with fixed endpoints, such that an extremal (if exist)
is exactly the integral curve of the characteristic foliation on M . However, as in the
case of the symplectic homology (see [13]), the situation simplifies in the aspherical
case which is considered below.

3.3. Aspherical symplectic manifolds. The symplecic manifold (P, ω) is
aspherical if ω vanishes on π2(P ). Of course, if ω is exact or π2(P ) = 0, then (P, ω)
is aspherical.

Consider the equation (2.3), where H does not depend on time. Let M be
a regular component of H−1(h) and c : [0, 1] → P be an immersed curve with
endpoints x0 = c(0) ∈ M and x1 = c(1) ∈ M . Define Ωh

c (x0, x1) as the space of
regular paths that are homotopic to c in P :

Ωh
c (x0, x1) = {γ : [0, 1] → M | γ(0) = x0, γ(1) = x1, γ̇(t) 6= 0, t ∈ [0, 1], γ ∼P c}.

The space of all regular paths connecting x0 and x1 and laying in M is the union
Ωh(x0, x1) =

⋃

c Ωh
c (x0, x1), where we take representatives c for all nonhomotopic

paths (in P ) connecting x0 and x1.
If we suppose that (P, ω) is simplectically aspherical then we can define a

single-valued reduced action:

(3.3) A : Ωh(x0, x1) → R, A(γ)|Ωh
c

(x0,x1) =

∫

D

f∗
γ ω,

where D = {z | z ∈ C, |z| 6 1} is the unit disk, fγ : D → P is an arbitrary
mapping that is smooth for |z| < 1, continuous on D and γ(t) = fγ(exp(

√−1πt)),

c(t) = fγ

(

exp
(√

−1π(2 − t)
))

, t ∈ [0, 1]. That is, f(D) is a surface with the

boundary ∂D = γ · c−1.

Figure 2.

Since γ ∼P c we can always find a mapping f with required properties. From
ω|π2(P ) = 0, the value A(γ) does not depend on the choice of f .
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Theorem 3.1. The integral curves γ : [0, 1] → M of the characteristic line
bundle LM that connect x0 and x1 are extremals of the reduced action (3.3).

Proof. Consider a variation γs(t) = Γ(t, s), t ∈ [0, 1], s ∈ [0, ǫ] of γ lying in
M . By using ω|π2(P ) = 0, we get

A(γǫ) − A(γ) =

∫

D

(f∗
γǫ

ω − f∗
γ ω) = −

∫

[0,1]×[0,s]
Γ∗ω =

∫ 1

0

∫ ǫ

0
ω

(∂Γ

∂s
,

∂Γ

∂t

)

dt ds.

Thus, as above,
d

ds

∣

∣

∣

s=0
A(γs) =

∫ 1

0
ω

(

δγ(t), γ̇(t)
)

dt,

is zero for all variations γs(t) if and only if the velocity vector field γ̇(t) is a section
of ker ω|M . �

3.4. A torus valued reduced action. Tuynaman proposed a torus-valued
action, such that multi-valued Poincaré action (2.9) can be seen as a composition
of a multi-valued function on a torus and a torus-valued action [33]. In this sub-
section we follow Tuynman’s construction [33] in order to formulate the principle
of stationary isoenergetic action.

Consider a manifold P with a symplectic 2-form ω =
∑n

a=1 µaβa, where βa

are 2-forms, representing integrals cohomology classes. We take the decomposition
with minimal n. Then the parameters µa are independent over Q, in particular
µ = µ1 + · · · + µn 6= 0. To ω we associate the 1-form λ =

∑n
a=1 µadya on a

torus Tn = {(exp(
√

−1y1), . . . , exp(
√

−1yn)}. It can be consider as a differential
of a multi-valued function Λ on Tn: λ = dΛ. Also, for a = 1, . . . , n, let us define
principal S1-bundles

S1 −→ Ya




y

ρa

P

having the connections θa with the curvature forms βa (see Kobayashi [18]).
Let γ(t), t ∈ [t0, t1] be a piece-wise smooth, closed curve on P . Recall, a

piece-wise smooth curve γ̃a(t) ⊂ Ya is a horizontal lift of γ if ρa ◦ γ̃a(t) = γ(t) and
θa( d

dt γ̃a(t)) = 0, whenever the velocity vector is defined. The holonomy Hola(γ) is

an element g ∈ S1, such that g · γ̃a(t0) = γ̃a(t1).

Lemma 3.1. [33] Let γs(t) = Γ(t, s) be a variation of γ : [0, 1] → P with fixed
endpoints and let c : [0, 1] → P be an arbitrary curve connecting x0 = γ(0) and
x1 = γ(1). We have a family of closed orbits γ̄s = γs · c−1. The derivative of
Hola(γ̄s) is given by:

d Hola(γ̄s)

ds

∣

∣

∣

s=0
=

∫ 1

0
βa

(

γ̇(t), δγ(t)
)

dt · ∂

∂ya
.

Consider the equation (2.3), where ∂H/∂t = 0. Let M be a regular component
of H−1(h) and Ωh(x0, x1) be a space of regular paths γ : [0, 1] → M that connect
points x1 and x2.
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For every γ ∈ Ωh(x0, x1) define a picewise smooth, closed path γ̄ = γ · c−1 :
[0, 2] → M , where c ∈ Ωh(x0, x1) is fixed. We call

ATn : Ωh(x0, x1) −→ Tn, γ 7−→ (Hol1(γ̄), . . . , Holn(γ̄))

a torus valued reduced action. From Lemma 3.1 we have:

λ
( d

ds
ATn(γs)

∣

∣

s=0

)

=

n
∑

a=1

µa

∫ 1

0
βa(γ̇(t), δγ(t)) dt =

∫ 1

0
ω(γ̇(t), δγ(t)) dt.

whence, we obtain the following principle of stationary isoenergetic action on the
nonexact symplectic manifolds.

Theorem 3.2. A curve γ ∈ Ωh(x0, x1) is an integral curve of the characteristic
line bundle LM if and only if

d

ds

(

Λ ◦ ATn(γs)
)

∣

∣

s=0 = λ
( d

ds
ATn(γs)

∣

∣

s=0

)

= 0

for all variations γs ∈ Ωh(x0, x1).

For the completeness of the exposition we include:

Proof of Lemma 3.1. In local trivializations

ρ−1(Ui) ∼= Ui × S1(xi, yi mod 2π),

we have local connection 1-forms αi on Ui such that θ = αi + dyi (the index a
is omitted). The transition functions between fiber coordinates and connection
1-forms are given by

(3.4) yj = yi + gij(x), αi = αj + dgij , ga
ij : Ui ∩ Uj → S1.

On the other hand, the curvature 2-form is invariant: β = dαi = dαj .
Suppose γs([t0, t1]) ⊂ Ui, s ∈ [0, ǫ]. The local expression for γ̃s reads

γ̃s(t) = (γs(t), yi(t, s)), θi

( d

dt
γ̃(t)

)

= 0 ⇐⇒ αi(γ̇(t)) + ẏi(t, s) = 0.

Therefore

(3.5) yi(t1, s) = yi(t0, s) −
∫ t1

t0

αi(γ̇s(t)) dt.

By taking the differential of (3.5) at s = 0 and applying (2.4) we get

(3.6) δyi(t1) + αi(δγ(t1)) = δyi(t0) + αi(δγ(t0)) +

∫ t1

t0

β(γ̇(t), δγ(t)) dt,

where δiy(t) = d
dsyi(t, s)|s=0, δγ(t) = d

dsγs(t)|s=0.
Now, assume t0 < t′

0 < t1 < t′
1, γs([t0, t1]) ⊂ Ui and γs([t′

0, t′
1]) ⊂ Uj . The

transformations (3.4) imply

(3.7) δyi(t) + αi(δγ(t)) = δyj(t) + αj(δγ(t)), t ∈ [t′
0, t1].

By combining (3.6) and (3.7), it follows

(3.8) δyj(t′
1) + αj(δγ(t′

1)) = δyi(t0) + αi(δγ(t0)) +

∫ t′

1

t0

β(γ̇(t), δγ(t)) dt.
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Let γ̄s = γs · c−1 : [0, 2] → M and let U1, . . . , Ul be local charts, such that

γ̄s([ti−1, ti]) ⊂ Ui, 0 = t0 < t1 < · · · < tk = 1 < tk+1 < · · · < tl = 2, s ∈ [0, ǫ].

From the relation (3.8) and δγ(0) = δγ(1) = 0 = δγ̄(t) = 0, t ∈ [1, 2], we get

δȳk(1) − δy1(0) =

∫ 1

0
β(γ̇(t), δγ(t)) dt, δȳl(2) − δȳk(1) = 0.

We can suppose that the horizontal lifts of all curves start from the same point in
Y . Then δy1(0) = 0. This proves the statement. �

3.5. Reduced action for magnetic flows. Let us return to the magnetic
equations (3.2), where H(q, p) is an arbitrary smooth function and σ is not exact.
Let M be a regular component of H(q, p)−1(h) and let π : T ∗Q → Q be the natural
projection.

As in Theorem 2.2, we need not to fix endpoints in the fiber directions. Consider
a class of regular curves γ lying on M and connecting the subspaces T ∗

q0
Q and T ∗

q1
Q,

such that the projection π(γ) is homotopic to c:

Ωh
c (q0, q1) =

{

γ : [0, 1] → M | π(γ(0)) = q0, π(γ(1)) = q1, π(γ) ∼ c
}

,

and a class of all regular paths connecting T ∗
q0

Q and T ∗
q1

Q and lying in M :

Ωh(q0, q1) =
⋃

c

Ωh
c (q0, q1),

where we take representatives c : [0, 1] → Q for all nonhomotopic paths connecting
q0 and q1.

Theorem 3.3. Assume σ|π2(Q) = 0. The phase trajectories of the magnetic

equations (3.2) in the class of curves Ωh
c (q0, q1) are extremals of the reduced action

A : Ωh(q0, q1) → R, A(γ)|Ωh
c

(q0,q1) =

∫

γ

p dq +

∫

D

f∗
γ σ,

where fγ : D → Q is smooth for |z| < 1, continuous on D and

π(γ(t)) = fγ

(

exp
(√

−1πt
))

, c(t) = fγ

(

exp
(√

−1π(2 − t)
))

, t ∈ [0, 1].

If σ|π2(Q) 6= 0, we can use a combination of the usual reduced action and a torus

valued action with respect to the form σ. Suppose σ =
∑n

a=1 µaβa, where βa are 2-
forms, representing integrals cohomology classes in Q. We take the decomposition
with minimal n. As above, to σ we associate principal S1-bundles La over Q having
the connections θa with curvature forms βa, a = 1, . . . , n.

Let us fix c : [0, 1] → Q, c(0) = q0, c(1) = q1. For every γ ∈ Ωh(q0, q1), we
associate a picewise smooth, closed path γ = π(γ) · c−1 : [0, 2] → Q. Define

BTn : Ωh(q0, q1) −→ Tn, γ 7−→ (Hol1(γ), . . . , Holn(γ)),

where Hola is the holonomy of the bundle La → Q. Let υ =
∑n

a=1 µadya be a
1-form on Tn, considered as a differential of a multi-valued function Υ: dΥ = υ.
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Theorem 3.4. A curve γ ∈ Ωh(q0, q1) is an integral curve of the characteristic
line bundle LM if and only if

d

ds

(
∫

γs

p dq − Υ ◦ BTn(γs)

)

∣

∣

s=0 = 0

for all variations γs ∈ Ωh(q0, q1).

Remark 3.1. For various approaches to the existence problem of closed mag-
netic orbits, see [9, 31] and references therein. Integrable magnetic geodesic flows
on homogeneous spaces can be found in [6].

4. Isoenergetic hypersurfaces of contact type

4.1. A contact form α on a (2n + 1)-dimensional manifold M is a Pfaffian
form satisfying α ∧ (dα)n 6= 0. By a contact manifold (M, H) we mean a connected
(2n + 1)-dimensional manifold M equipped with a nonintegrable contact (or hori-
zontal) distribution H, locally defined by a contact form: H|U = ker α|U , U is an
open set in M [20]. A contact manifold (M, H) is co-oriented (or strictly) contact
if H is defined by a global contact form α. For a given contact form α, the Reeb
vector field Z is a vector field uniquely defined by iZα = 1, iZdα = 0.

4.2. In studying the existence problem of closed Hamiltonian trajectories on
a fixed isoenergetic surface, Weinstein introduced the following concept [35]. An
orientable hypersurface M of a symplectic manifold (P, ω) is of contact type if
there exist a 1-form α on M satisfying dα = j∗ω, α(ξ) 6= 0, ξ ∈ LM , ξ 6= 0, where
j : M → P is the inclusion. If (M, α) is of contact type, since L = ker ωM , the kernel
of α H = {ξ ∈ TxM | α(ξ) = 0, x ∈ M} is a (2n − 2)-dimensional nonintegrable
distribution on which dα = ω is nondegenerate. Consequently, α ∧ dαn−1 is a
volume form on M and (M, H) is a co-oriented contact manifold.

Now, let (P, ω = dα) be an exact symplectic manifold. Consider a regular
component M of an isoenergetic surface H−1(h) (H does not depend on time). If
α(XH)|M 6= 0 then M is of contact type. We say that M is of contact type with
respect to α.

If M is of contact type with respect to α, then α has no zeros in some open
neighborhood of M . Contrary, suppose that an 1-form α has no zeros in some open
neighborhood of M . Then, from the nondegeneracy of ω, there exists a unique
vector field E such that

(4.1) iEω = α.

The vector field E has no zeros. From Cartan’s formula, the condition iEω = α is
equivalent to LEω = ω, i.e., E is the Liouville vector field of ω. We have (e.g., see
Libermann and Marle [20]):

Lemma 4.1. A regular connected component M of an isoenergetic surface H−1(h)
is of contact type with respect to α if and only if the Liouville vector field defined
by (4.1) is transverse to M .
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Proof. Since iEωn = nα∧dαn−1, the kernel of α∧dαn−1 is the vector bundle
generated by E. Therefore α ∧ dαn−1|M is a volume form on M at x if and only if
E(x) /∈ TxM . �

Let M be of contact type with respect to α and let Z be the corresponding
Reeb vector field on M : iZdα|M = 0, α(Z) = 1.

Since Z is a section of ker dα|M , it is proportional to XH |M : Z = N XH |M ,
N 6= 0. Consequently, the flow of Z can be seen as a flow of XH |M after a time
reparametrization dt = N dτ :

(4.2)
dx

dτ
=

dx

dt

dt

dτ
= XH(x) · N (x) = Z(x), x ∈ M.

Alternatively, we can change the Hamiltonian H . Extend N to a neighborhood of
M . Then

(4.3) XN (H−h)(x) = N (x)XH (x), x ∈ M.

Based on observations (4.2), (4.3), we have the following statement.

Lemma 4.2. The function H0 = H−h
E(H) has M as an invariant surface and the

Hamiltonian vector field XH0
|M is equal to the Reeb field Z. If ρ is any smooth

function of a real variable, such that ρ′(λ) = 1, then ρ(H0 + λ) has the same
property. In particular, for ρ(x) = −1/(4x), λ = −1/2, we get

(4.4) HJ =
E(H)

4h − 4H + 2E(H)
, HJ |M =

1

2
, Z = XHJ

|M .

Proof. According to (2.2), (4.1), we have

α(XF ) = ω(E, XF ) = dF (E) = E(F ), F ∈ C∞(P ).

Thus, Z = XH/E(H)|M , i.e., N = 1/E(H). It is clear that H0|M = 0, while
(4.3) implies Z = XH0

|M .
Let ρ is a smooth function, such that ρ′(λ) = 1. Then ρ(H0 + λ)|M = ρ(λ) and

E(ρ(H0 + λ))|M = ρ′(λ)E(H0) = 1. �

4.3. Exact magnetic flows. Consider a natural mechanical system given
by Hamiltonian function (3.1). The canonical 1-form pdq is different from zero
outside the zero section {p = 0}, where we have the standard Liouville vector field
E =

∑

i pi∂/∂pi on T ∗Q.
Since E(H) = 〈p, p − θ〉, a regular hypersurface Mh = H−1(h) is of contact

type with respect to pdq within a region

M0,h =
{

〈p − θ, p − θ〉 + 2V (q) = 2h, 〈p, p − θ〉 6= 0
}

=
{

〈p − θ, p − θ〉 + 2V (q) = 2h, 〈p, p〉 6= 2V + 〈θ, θ〉 − 2h
}

⊂ T ∗Qh.

Note that the equation 〈p, p − θ〉 = 0|q, θq 6= 0, defines an ellipsoid in T ∗
q Q.

Assume h∗ = maxq∈Q

(

V (q) + 1
2 〈θ, θ〉

)

< ∞ (for example, h∗ exists if Q is com-

pact). Then regular hypersurfaces M = H−1(h), for h > h∗, are of contact type
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with respect to pdq. The function (4.4) has the form

HJ(q, p) =
〈p − θ, p〉

4(h − V (q)) + 2〈θ, p〉 .

In particular, if θ ≡ 0, HJ is the Hamiltonian function of the geodesic flow of
Jacobi’s metric (2.7) and Mh is the corresponding co-sphere bundle over Q.

Remark 4.1. The function N in the time reparametrization (4.2) equals N =
1/E(H), E(H) = 〈p, p − θ〉 = 2(h − V (q))|M . That is, dt = dτ/2(h − V ), which
agrees with Corollary 2.2 (where the time parameter dt of the original system

is denoted by dτ , dτ = ds/
√

2(h − V ) = dsJ/2(h − V ), and dsJ is the natural
parameter of Jacobi’metric).

5. Examples: contact flows and integrable systems

5.1. Harmonic oscillators. Consider the simplest integrable system - the
system of n independent harmonic oscillators defined by the Hamiltonian function

H =
∑

i

Fi, Fi =
1

2
(aiq

2
i + bip

2
i ), i = 1, . . . , n,

in the standard symplectic linear space R2n(q, p). Here we suppose that the prod-
ucts aibi, i = 1, . . . , n are positive.

By the use of the first integrals Fi = ci, a generic solution of the equations

(5.1) q̇i = bipi, ṗi = −aiqi, i = 1, . . . , n

can be written in the form

qi(t) =

√

2ci

ai
cos

(

ωit + ϕ0
i

)

, pi(t) = −
√

2ci

bi
sin

(

ωit + ϕ0
i

)

, ωi =
√

aibi,

where ϕ0
i ∈ [0, 2π) are determined from the initial conditions. Assume

Ak = ar1+···+rk−1+1 = · · · = ar1+···+rk
,

Bk = br1+···+rk−1+1 = · · · = br1+···+rk
,

1 6 k 6 s, r1 + · · · + rs = n, r0 = 0

and that the frequencies
√

A1B1,
√

A2B2, . . . ,
√

AsBs are independent over Q.
Due to the U(r1) × · · · × U(rs)-symmetry, the system (5.1) has additional

Noether integrals

F k
ij = Akqiqj + Bkpipj , Gk

ij = qjpi − pjqi,

r1 + · · · + rk−1 + 1 6 i < j 6 r1 + · · · + rk, k = 1, . . . , s,

implying the noncommutative integrability of the system [25, 22]. Generic trajec-
tories fill up densely invariant s-dimensional invariant isotropic tori generated by
the Hamiltonian vector fields of integrals

H1 = F1 + · · · + Fr1
, . . . , Hs = Fr1+···+rs−1+1 + · · · + Fr1+···+rs

.

The quadric Mh = H−1(h), h 6= 0 is of contact type with respect to the
canonical 1-form p dq outside p = 0, where we have a well defined Jacobi’s metric.
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However, if instead of p dq, we take

(5.2) α =
n

∑

i=1

pi dqi − 1

2
d

( n
∑

i=1

piqi

)

=
1

2

∑

i

pi dqi − qi dpi,

then dα = d(p dq) = dp ∧ dq and the only zero of α is at the origin 0. The
corresponding Liouville vector field is

E =
1

2

∑

i

qi
∂

∂qi
+ pi

∂

∂pi
.

Since E(H) = h|Mh
, the quadric Mh is of contact type with respect to α and

the Reeb flow on Mh is Z = h−1XH |Mh
.

The above construction provides natural examples of contact structures on
quadrics within R2n having the integrable Reeb flows with s-dimensional invariant
tori, for any s = 1, . . . , n. The case s = n corresponds to contact commutative
integrability introduced by Banyaga and Molino [3] (see also [16, 7]), while for
s < n we have contact noncommutative integrability recently proposed in [14].

By taking all parameters to be positive (ai, bi > 0, i = 1, . . . , n), after rescaling
of Mh to a sphere S2n−1, we get K-contact structures on a sphere S2n−1 given by
Yamazaki (see Example 2.3 in [37]). In particular, for a1 = a2 = · · · = an = bn = 1
we have the standard contact structure on a sphere Sn−1 = H−1(1/2) with the
Reeb flow which defines the Hopf fibration (e.g., see [20]).

Remark 5.1. A modification of the canonical form p dq given by (5.2) can be
applied for starshaped hypersurfaces in R2n. More generally, consider a regular
isoenergetic hypersurface Mh = H−1 in (T ∗Q(q, p), dp ∧ dq). It is of contact type
if there exist a closed 1-form ϕ on Mh such that p dq(XH |Mh

) + ϕ(XH |Mh
) 6= 0.

If Mh is compact, then the required 1-form ϕ exists if and only if
∫

Mh

p dq(XH)dµ 6= 0

for every invariant probability measure µ with zero homology (see Appendix B
in [9]). In particular, for a compact regular energy surface Mh = H−1(h) in the
standard symplectic linear space (R2n(q, p), dq ∧dq) we have the following sufficient
conditions. Suppose:

(i) p dq(XH) > 0, for p 6= 0, (q, p) ∈ M ;

(ii) if M ∩ {p = 0} 6= ∅, then ∂
∂q H(q, 0) 6= 0 at the points (q, 0) ∈ M .

Then Mh is of contact type with respect to

α =

n
∑

i=1

pidqi − ǫd

( n
∑

i=1

pi
∂

∂qi
H(q, 0)

)

,

for a certain parameter ǫ (see [13]).

5.2. The regularization of Kepler’s problem. The motion of a particle
in the central potential filed is described by the Hamiltonian function

H : R2n
∗ = R2n r {q = 0} → R, H(q, p) =

|p|2
2

− γ

|q| ,

where 〈·, ·〉 is the Euclidean scalar product in Rn. Moser’s regularization of Kepler’s
problem (see [23]) can be interpreted in contact terms as follows.
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Let Mh = {H = h} ⊂ R2n
∗ be an isoenergetic hypersurface. Let us interchange

the roll of q and p and consider the form α = − ∑n
i=1 qidpi and the associated

Liouville vector field E =
∑n

i=1 qi
∂

∂qi
.

Since E(H) = γ/|q|, Mh is of contact type with respect to α. According to
Lemma 4.2, the Reeb flow on Mh can be seen as a Hamiltonian flow of

H0 = (|p|2 − 2h)|q|/2γ − 1.

In order to get a smooth Hamiltonian we can take F = (H0 + 1)2/2 (Lemma 4.2):

F (q, p) =
(|p|2 − 2h)2

8γ2 |q|2.

Then F |Mh
= 1

2 , Z = XF |Mh
and, moreover, XF is defined on the whole R2n.

Assume h < 0. The Hamiltonian F (q, p) can be interpreted as a geodesic flow
of the metric proportional to

ds2
h =

dp2
1 + · · · + dp2

n

(2h − |p|2)2 .

It represents the round sphere metric obtained by a stereographic projection (see
Moser [23]). Thus, for h < 0, there exists a compact contact manifold M̄h =
Mh ∪ Sn (a co-sphere bundle over Sn) with a Reeb vector field Z̄, which is a

smooth extension of Z. In particular, for n = 2, M̄h
∼= RP

3. On RP
3 we have a

standard contact structure, obtained from the standard contact structure on S3 via
antipodal mapping.

Note that for h > 0, the metric ds2
h is defined within the ball of radius

√
2h

and represents Poincaré’s model of the Lobachevsky space.
The contact regularization of the restricted 3-body problem is given in [1].

5.3. The Maupertuis principle and geodesic flows on a sphere. It is
well known that the standard metric on a rotational surface and on an ellipsoid
have the geodesic flows integrable by means of an integral polynomial in momenta
of the first (Clairaut) and the second degree (Jacobi) [2]. A natural question is
the existence of a metric on a sphere S2 with polynomial integral which can not
be reduced to linear or quadratic one. The first examples are given in [5]. Namely,
the motion of a rigid body about a fixed point in the presence of the gravitation
field admits SO(2)-reduction (rotations about the direction of gravitational field)
to a natural mechanical system on S2. Starting from the integrable Kovalevskaya
and Goryachev–Chaplygin cases and taking the corresponding Jacobi’s metrics, we
get the metrics with additional integrals of 4-th and 3-th degrees, respectively.

We proceed with a celebrated Neumann system. The Neumann system de-
scribes the motion of a particle on a sphere 〈q, q〉 = 1 with respect to the quadratic
potential V (q) = 1

2 〈Aq, q〉, A = diag(a1, . . . , an) (we assume that A is positive
definite). The Hamiltonian of the system is:

(5.3) HN (q, p) = 1
2 〈p, p〉 + 1

2 〈Ax, x〉 .
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Here, the cotangent bundle of a sphere T ∗Sn−1 is realized as a submanifold P
of R2n given by the constraints

(5.4) F1 ≡ 〈q, q〉 = 1, F2 ≡ 〈q, p〉 = 0.

The canonical symplectic form on P ∼= T ∗Sn−1 is a restriction of the standard
symplectic form dp ∧ dq to P . Let H : R2n → R. The Hamiltonian vector field
XH |P reads

XH(q, p)|P = XH(q, p) − λ1XF1
(q, p) − λ2XF2

(q, p), (q, p) ∈ P,

where the Lagrange multipliers are determined from the condition that XH |P is
tangent to P (e.g., see [24]).

There is a well known Knörrer’s correspondence between the trajectories q(t)
of the Neumann system (5.3) restricted to the zero level set of the integral

(5.5) H(q, p) = 1
2

(

〈A−1q, q〉〈A−1p, p〉 − 〈A−1q, p〉2 − 〈A−1q, q〉
)

.

and the geodesic lines on an ellipsoid En−1
1 = {x ∈ Rn | 〈x, Ax〉 = 1} by the use of

a time reparametrization and the Gauss mapping q = Ax/ |Ax| [17].
Recently, by using optimal control techniques, Jurdjevic obtain a similar state-

ment for the flow of the system defined by the Hamiltonian (5.5) [15].
We give the interpretation of Jurdjevic’s time change by the use of Maupertuis

principle. Since the potential V (q) = − 1
2 〈A−1q, q〉 is negative, the isoenergetic

surface

(5.6) M0 = {H |P = 0} ⊂ P ∼= T ∗Sn−1

is of contact type with respect to p dq|P . The Reeb vector field Z equals to the
Hamilonian vector field of

(5.7) HJ =
1

4〈A−1q, q〉
(

〈A−1q, q〉〈A−1p, p〉 − 〈A−1q, p〉2)∣

∣

P

(the Hamiltonian of the corresponding Jacobi’s metric).
The Legendre transformation of a function of the form (5.7) in the presence of

constraints (5.4) is given in [11] (see Theorem 2 [11] and interchange the role of the
tangent and cotangent bundles of a sphere). As a result, we obtain the Lagrangian
function L(q, q̇) = 1

2 〈Aq̇, q̇〉|Sn−1 .

Remarkably, after the linear coordinate transformation x =
√

Aq, L(q, q̇) be-
comes the Lagrangian L(x, ẋ) = 1

2 〈ẋ, ẋ〉 of the standard metric on the ellipsoid

En−1
2 = {x ∈ Rn | 〈A−1x, x〉 = 1}.

Recall that the Reeb flow on M0 can be seen as a time reparametrization of the
original Hamiltonian flow (see Remark 4.1). We can summarize the consideration
above in the following statement.

Proposition 5.1. [15] Under the time substitution dt = dτ/2〈A−1q, q〉 and

the linear transformation x =
√

Aq, the q-components of the trajectories of the
system defined by the Hamiltonian function (5.5) that lie on the zero energy level
(5.6), become geodesic lines of the standard metric on the ellipsoid En−1

2 .
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Further interesting examples of transformations related to the Maupertuis Prin-
ciple, which map a given integrable system into another one are given in [32].
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