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Abstract. We introduce a concept called good oscillation. A function is
called good oscillation, if its 𝑚-tuple integrals are bounded by functions having
mild orders.

We prove that if the error terms coming from summatory functions of
arithmetical functions are good oscillation, then the Dirichlet series associated
with those arithmetical functions can be continued analytically over the whole
plane.

We also study a sort of converse assertion that if the Dirichlet series are
continued analytically over the whole plane and satisfy a certain additional
assumption, then the error terms coming from the summatory functions of
Dirichlet coefficients are good oscillation.

1. Introduction

Let 𝑠 = 𝜎 + 𝑖𝑡 be a complex variable, where 𝜎 and 𝑡 are real. Let 𝜁(𝑠) be
the Riemann zeta-function which is defined for 𝜎 > 1 by the absolutely convergent
Dirichlet series

(1.1) 𝜁(𝑠) =
∞∑︁

𝑛=1

1
𝑛𝑠

.

𝜁(𝑠) can be continued analytically over the whole 𝑠-plane beyond the line 𝜎 = 1,
and its only singularity is a simple pole at 𝑠 = 1.

Many proofs of the analytic continuation of 𝜁(𝑠) are known (see, for example,
Titchmarsh [6]). Among them, we recall the proof based on the Euler–Maclaurin
summation formula. Applying the partial summation formula to (1.1), one has

𝜁(𝑠) = 𝑠

∫︁ ∞

1

∑︀
𝑛6𝑥 1

𝑥𝑠+1 𝑑𝑥 = 𝑠

∫︁ ∞

1

[𝑥]
𝑥𝑠+1 𝑑𝑥, 𝜎 > 1,
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where [𝑥] is the largest integer not exceeding 𝑥. The right-hand side of the above
equation is rewritten as

(1.2) 𝜁(𝑠) = 1
𝑠 − 1 + 1

2 + 𝑠

∫︁ ∞

1

[𝑥] − 𝑥 + 1
2

𝑥𝑠+1 𝑑𝑥,

and (1.2) gives the analytic continuation of 𝜁(𝑠) for 𝜎 > 0 except for 𝑠 = 1 because
of the boundedness of [𝑥] − 𝑥 + 1

2 . Let 𝐵𝑚(𝑥), 𝑚 ∈ N, be the Bernoulli polyno-
mials which are inductively defined from 𝐵1(𝑥) = 𝑥 − 1

2 by keeping the properties
𝑑

𝑑𝑥
𝐵𝑚+1(𝑥)
(𝑚+1)! = 𝐵𝑚(𝑥)

𝑚! and
∫︀ 1

0 𝐵𝑚(𝑥)𝑑𝑥 = 0, e.g., 𝐵1(𝑥) = 𝑥 − 1
2 , 𝐵2(𝑥) = 𝑥2 − 𝑥 + 1

6 ,
and so on (see, for example, Apostol [1, p. 226] ). Then, applying the integration
by parts to (1.2), one has

(1.3) 𝜁(𝑠) = 1
𝑠 − 1 + 1

2 +
𝑀−1∑︁
𝑚=1

(𝑠)𝑚
𝐵𝑚+1

(𝑚 + 1)! − (𝑠)𝑀

𝑀 !

∫︁ ∞

1

𝐵𝑀 (𝑥 − [𝑥])
𝑥𝑠+𝑀

𝑑𝑥,

where 𝐵𝑚 = 𝐵𝑚(0) is the Bernoulli number and (𝑠)𝑚 is the function defined by
(𝑠)𝑚 = 𝑠(𝑠 + 1) · · · (𝑠 + 𝑚 − 1). Since 𝐵𝑀 (𝑥 − [𝑥]), 𝑀 ∈ N, are periodic functions,
𝐵𝑀 (𝑥 − [𝑥]) are all bounded. Hence the integral on the right-hand side of (1.3) is
analytic on the half-plane 𝜎 > −𝑀 + 1, and, by taking 𝑀 to ∞, 𝜁(𝑠) is continued
analytically over the whole 𝑠-plane except for 𝑠 = 1.

Now let us consider the general Dirichlet series 𝐹 (𝑠) =
∑︀∞

𝑛=1
𝑎(𝑛)
𝑛𝑠 , where 𝑎(𝑛),

𝑛 ∈ N, are complex numbers. 𝐹 (𝑠) will be continued analytically over the whole
𝑠-plane except for finite poles by the same argument as above, if the following
assumption is satisfied:

Consider the summatory function of the Dirichlet coefficients,
∑︀

𝑛6𝑥 𝑎(𝑛).
Let 𝒥 (𝑥) be a certain function concerning with location of poles. Define
the function 𝐸0(𝑥) by 𝐸0(𝑥) =

∑︀
𝑛6𝑥 𝑎(𝑛) − 𝒥 (𝑥). Then there exists a

sequence of functions {𝐸𝑚(𝑥)}∞
𝑚=1 such that{︃

𝑑
𝑑𝑥 𝐸1(𝑥) = 𝐸0(𝑥), 𝑥 ∈ (0, ∞) − N,
𝑑

𝑑𝑥 𝐸𝑚+1(𝑥) = 𝐸𝑚(𝑥), 𝑥 ∈ (0, ∞), 𝑚 > 1,

and 𝐸𝑚(𝑥) are all bounded.
To prove the analytic continuation of 𝐹 (𝑠) by the same argument as above,

the assumption for the boundedness of 𝐸𝑚(𝑥) may be relaxed. We introduce the
following definition.

Definition 1.1. Let 𝑔0(𝑥) : (0, ∞) → C be a function which is continuous on
(0, ∞) − N, bounded on every finite open interval (0, 𝑐), and bounded by 𝑂(𝑥𝛼0)
as 𝑥 → ∞, where 𝛼0 is a nonnegative constant. Let 𝐶𝑚, 𝑚 ∈ N, be arbitrary
constants, and 𝑔𝑚(𝑥; 𝐶𝑚), 𝑚 ∈ N, be the functions defined by

(1.4) 𝑔1(𝑥; 𝐶1) =
∫︁ 𝑥

0
𝑔0(𝑣) 𝑑𝑣 + 𝐶1, 𝑥 ∈ (0, ∞),

and

(1.5) 𝑔𝑚(𝑥; 𝐶𝑚) =
∫︁ 𝑥

0
𝑔𝑚−1(𝑣; 𝐶𝑚−1) 𝑑𝑣 + 𝐶𝑚, 𝑥 ∈ (0, ∞), 𝑚 > 2.
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Then the function 𝑔0(𝑥) is called good oscillation, if there exists a nonnegative
sequence {𝛼𝑚}∞

𝑚=1 such that 𝑔𝑚(𝑥; 𝐶𝑚) = 𝑂(𝑥𝛼𝑚) as 𝑥 → ∞ and 𝑚+1−𝛼𝑚 → ∞
as 𝑚 → ∞.

By this definition, 𝑔1(𝑥; 𝐶1) is differentiable on (0, ∞) − N and 𝑔𝑚(𝑥; 𝐶𝑚),
𝑚 > 2, are differentiable on (0, ∞), which satisfy{︃

𝑑
𝑑𝑥 𝑔1(𝑥; 𝐶1) = 𝑔0(𝑥), 𝑥 ∈ (0, ∞) − N,
𝑑

𝑑𝑥 𝑔𝑚+1(𝑥; 𝐶𝑚+1) = 𝑔𝑚(𝑥; 𝐶𝑚), 𝑥 ∈ (0, ∞), 𝑚 > 1.

We notice that the sequence {𝐶𝑚}∞
𝑚=1 in Definition 1.1 is uniquely determined.

We will verify this in Section 2.
The purpose of this paper is to give a condition, for which the analytic contin-

uation of the Dirichlet seires is valid, from a point of view of the concept of good
oscillation.

Theorem 1.1. Let 𝑎(𝑛), 𝑛 ∈ N, be complex numbers. Assume the following
condition (X):

(X) There exist constants 𝑙 ∈ N ∪ {0}, 𝐽ℎ, and 𝐽 such that the function 𝑔0(𝑥)
defined by

𝑔0(𝑥) =
∑︁
𝑛6𝑥

𝑎(𝑛) −
(︂

𝑥

𝑙−1∑︁
ℎ=0

𝐽ℎ(log 𝑥)ℎ + 𝐽

)︂
is good oscillation, where the empty sum

∑︀𝑙−1
ℎ=0 in the case 𝑙 = 0 is defined

to be 0.
Then the following assertion (Y) holds:

(Y) There exists a constant 𝜎1 > 1 such that the Dirichlet series

(1.6) 𝐹 (𝑠) =
∞∑︁

𝑛=1

𝑎(𝑛)
𝑛𝑠

is absolutely convergent for 𝜎 > 𝜎1. Moreover, 𝐹 (𝑠) can be continued
analytically over the whole 𝑠-plane beyond the line 𝜎 = 𝜎1, and its only
singularity is a pole of the order 𝑙 at 𝑠 = 1.

The following result states that a sort of converse assertion holds under addi-
tional assumptions.

Theorem 1.2. Assume the condition (Y) in Theorem 1.1 and the following
conditions (A1), (A2):

(A1) For any nonnegative integer 𝑚, there exists a nonnegative constant 𝑐𝑚

such that 𝐹 (−𝑚 − 1
2 + 𝑖𝑡) = 𝑂((1 + |𝑡|)𝑐𝑚).

(A2) If {𝑐𝑚}∞
𝑚=0 is the sequence above, then lim𝑚→∞ 𝑐𝑚/𝑚2 = 0

Then the assertion (X) in Theorem 1.1 holds.

The functional equation of 𝜁(𝑠) and the Phragmén–Lindelöf convexity principle
give the well-known estimate 𝜁(𝜎+𝑖𝑡) = 𝑂((1+|𝑡|) 1

2 −𝜎), where the implied constant
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is uniform for 𝑠 in the vertical strip −𝑀 6 𝜎 6 𝛿 < 0, and hence 𝑐𝑚 can be chosen
as 𝑚+1 and lim𝑚→∞

𝑐𝑚

𝑚1+𝜀 = 0 holds for every arbitrary small 𝜀 > 0. The property
lim𝑚→∞

𝑐𝑚

𝑚1+𝜀 = 0 holds for other 𝐿-functions, e.g., Dirichlet 𝐿-functions, cusp form
𝐿-functions, and the power moments of those 𝐿-functions, because those functions
have functional equations.

Since the Bernoulli polynomials 𝐵𝑀 (𝑥 − [𝑥]), where 𝑀 ∈ N, are all bounded,
−𝐵1(𝑥 − [𝑥]) = [𝑥] − 𝑥 + 1

2 is good oscillation. Moreover, 𝐵1(𝑥 − [𝑥]) is expressed
as

(1.7) 𝐵1(𝑥 − [𝑥]) = −
∞∑︁

𝑛=1

sin 2𝑛𝜋𝑥

𝑛𝜋
, 𝑥 /∈ Z.

Using (1.2) and (1.7), one can prove the functional equation of 𝜁(𝑠) [6, pp. 13–15].
This example shows that more properties about 𝑔0(𝑥) than good oscillation

are required to study analytic continuations with functional equations. On the
other hand, the multiple 𝐿-series 𝐿𝑗(𝑠), discussed in the last section, can be con-
tinued analytically over the whole 𝑠-plane, but any functional equation has not
been obtained. This example may suggest that the concept of good oscillation is
appropriate to study analytic continuations off functional equations.

2. A note on the concept of good oscillation

As is mentioned in Introduction, the sequence {𝐶𝑚}∞
𝑚=1 in Definition 1.1 is

uniquely determined. Here we prove this.
Let {𝐶𝑚}∞

𝑚=1 and {𝐷𝑚}∞
𝑚=1 be the sequences of constants, and 𝑔𝑚(𝑥; 𝐶𝑚)

and 𝑔𝑚(𝑥; 𝐷𝑚) be the functions defined by (1.4) and (1.5) with the same 𝑔0(𝑥). If
𝑔0(𝑥) is good oscillation, then there exists a nonnegative sequence {𝛼𝑚}∞

𝑚=1 (resp.
{𝛽𝑚}∞

𝑚=1) such that 𝑔𝑚(𝑥; 𝐶𝑚) = 𝑂(𝑥𝛼𝑚) (resp. 𝑔𝑚(𝑥; 𝐷𝑚) = 𝑂(𝑥𝛽𝑚)) as 𝑥 → ∞
and 𝑚 + 1 − 𝛼𝑚 → ∞ (resp. 𝑚 + 1 − 𝛽𝑚 → ∞) as 𝑚 → ∞. Assume 𝐶𝑚 ̸= 𝐷𝑚 for
some 𝑚, and let 𝐾 be the least 𝑚 such that 𝐶𝑚 ̸= 𝐷𝑚. Then, by (1.4) and (1.5),

𝑔𝐾(𝑥; 𝐷𝐾) = 𝑔𝐾(𝑥; 𝐶𝐾) + 𝐷𝐾 − 𝐶𝐾 , 𝐷𝐾 − 𝐶𝐾 ̸= 0,

𝑔𝐾+1(𝑥; 𝐷𝐾+1) = (𝐷𝐾 − 𝐶𝐾)𝑥 + 𝑔𝐾+1(𝑥; 𝐶𝐾+1) + 𝐷𝐾+1 − 𝐶𝐾+1

= (𝐷𝐾 − 𝐶𝐾)𝑥 + 𝑔𝐾+1(𝑥; 𝐶𝐾+1) + 𝑂(1),

and, for 𝑚 > 𝐾 + 1,

𝑔𝑚(𝑥; 𝐷𝑚) = (𝐷𝐾 − 𝐶𝐾) 𝑥𝑚−𝐾

(𝑚 − 𝐾)! + 𝑔𝑚(𝑥; 𝐶𝑚) + 𝑂(𝑥𝑚−𝐾−1)

= (𝐷𝐾 − 𝐶𝐾) 𝑥𝑚−𝐾

(𝑚 − 𝐾)! + 𝑂(𝑥𝛼𝑚) + 𝑂(𝑥𝑚−𝐾−1).

From the assumption 𝑚+1−𝛼𝑚 → ∞ it follows that 𝛼𝑚 6 𝑚−𝐾 −1 for all large
𝑚. Hence we have

𝑔𝑚(𝑥; 𝐷𝑚) = (𝐷𝐾 − 𝐶𝐾) 𝑥𝑚−𝐾

(𝑚 − 𝐾)! + 𝑂(𝑥𝑚−𝐾−1).

This shows 𝛽𝑚 > 𝑚 − 𝐾, which contradicts 𝑚 + 1 − 𝛽𝑚 → ∞ as 𝑚 → ∞.
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3. Proof of Theorem 1.1

Let 𝑁1 and 𝑁2 be positive integers, 𝑓(𝑥) be a 𝐶𝑀 function defined on the closed
interval [𝑁1, 𝑁2], and 𝑎(𝑛), 𝑛 ∈ N, be complex numbers. Let 𝑔0(𝑥) : (0, ∞) → C
be a function defined by

𝑔0(𝑥) =
∑︁
𝑛6𝑥

𝑎(𝑛) −
(︂

𝑥

𝑙−1∑︁
ℎ=0

𝐽ℎ(log 𝑥)ℎ + 𝐽

)︂
,

where 𝑙 ∈ N ∪ {0}, and 𝐽ℎ, 𝐽 are constants. For this 𝑔0(𝑥), let 𝑔𝑚(𝑥; 𝐶𝑚), 𝑚 ∈ N,
be the functions defined by (1.4) and (1.5). Then, by the integration by parts in
the sense of Stieltjes,∑︁

𝑁1<𝑛6𝑁2

𝑓(𝑛)𝑎(𝑛) =
∫︁ 𝑁2

𝑁1

𝑓(𝑥) 𝑑

(︂∑︁
𝑛6𝑥

𝑎(𝑛)
)︂

=
∫︁ 𝑁2

𝑁1

𝑓(𝑥) 𝑑

𝑑𝑥

(︂
𝑥

𝑙−1∑︁
ℎ=0

𝐽ℎ(log 𝑥)ℎ + 𝐽

)︂
𝑑𝑥 +

∫︁ 𝑁2

𝑁1

𝑓(𝑥) 𝑑(𝑔0(𝑥))

=
∫︁ 𝑁2

𝑁1

𝑓(𝑥) 𝑑

𝑑𝑥

(︂
𝑥

𝑙−1∑︁
ℎ=0

𝐽ℎ(log 𝑥)ℎ + 𝐽

)︂
𝑑𝑥

+
[︁
𝑓(𝑥) 𝑔0(𝑥)

]︁𝑁2

𝑁1
−
∫︁ 𝑁2

𝑁1

𝑓 ′(𝑥)𝑔0(𝑥) 𝑑𝑥.

Repeating the integration by parts, we have∑︁
𝑁1<𝑛6𝑁2

𝑓(𝑛) 𝑎(𝑛) =
∫︁ 𝑁2

𝑁1

𝑓(𝑥) 𝑑

𝑑𝑥

(︂
𝑥

𝑙−1∑︁
ℎ=0

𝐽ℎ(log 𝑥)ℎ + 𝐽

)︂
𝑑𝑥(3.1)

+
[︁
𝑓(𝑥) 𝑔0(𝑥)

]︁𝑁2

𝑁1
+

𝑀−1∑︁
𝑚=1

(−1)𝑚
[︁
𝑓 (𝑚)(𝑥) 𝑔𝑚(𝑥; 𝐶𝑚)

]︁𝑁2

𝑁1

+ (−1)𝑀

∫︁ 𝑁2

𝑁1

𝑓 (𝑀)(𝑥) 𝑔𝑀−1(𝑥; 𝐶𝑀−1)𝑑𝑥.

From now on, we put 𝑓(𝑥) = 𝑥−𝑠 and 𝑁1 = 𝑁 in (3.1), and we abbreviate
𝑔𝑚(𝑥; 𝐶𝑚) to 𝑔𝑚(𝑥). Then

∑︁
𝑁<𝑛6𝑁2

𝑎(𝑛)
𝑛𝑠

=
∫︁ 𝑁2

𝑁

1
𝑥𝑠

𝑑

𝑑𝑥

(︂
𝑥

𝑙−1∑︁
ℎ=0

𝐽ℎ(log 𝑥)ℎ + 𝐽

)︂
𝑑𝑥

+
𝑀−1∑︁
𝑚=0

[︁
(𝑠)𝑚

𝑔𝑚(𝑥)
𝑥𝑠+𝑚

]︁𝑁2

𝑁
+ (𝑠)𝑀

∫︁ 𝑁2

𝑁

𝑔𝑀−1(𝑥)
𝑥𝑠+𝑀

𝑑𝑥.

Now let us assume the condition (X) of Theorem 1.1. Then there exists a nonnega-
tive sequence {𝛼𝑚}∞

𝑚=0 such that 𝑔𝑚(𝑥) = 𝑂(𝑥𝛼𝑚) as 𝑥 → ∞ and 𝑚+1−𝛼𝑚 → ∞
as 𝑚 → ∞. Hence, for 𝑠 with 𝜎 > max06𝑚6𝑀−1{1, 𝛼𝑚}, we can take 𝑁2 to be ∞,
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and have

𝐹 (𝑠) −
𝑁∑︁

𝑛=1

𝑎(𝑛)
𝑛𝑠

=
∫︁ ∞

𝑁

1
𝑥𝑠

𝑑

𝑑𝑥

(︂
𝑥

𝑙−1∑︁
ℎ=0

𝐽ℎ(log 𝑥)ℎ + 𝐽

)︂
𝑑𝑥(3.2)

−
𝑀−1∑︁
𝑚=0

(𝑠)𝑚
𝑔𝑚(𝑁)
𝑁𝑠+𝑚

+ (𝑠)𝑀

∫︁ ∞

𝑁

𝑔𝑀−1(𝑥)
𝑥𝑠+𝑀

𝑑𝑥.

Let 𝑊𝑟 be a number defined by

𝑊ℎ =
{︃

𝐽ℎ + (ℎ + 1)𝐽ℎ+1, if 0 6 ℎ 6 𝑙 − 2,

𝐽ℎ, if ℎ = 𝑙 − 1.

Applying

𝑑

𝑑𝑥

(︂
𝑥

𝑙−1∑︁
ℎ=0

𝐽ℎ(log 𝑥)ℎ + 𝐽

)︂
=

𝑙−1∑︁
ℎ=0

𝑊ℎ(log 𝑥)ℎ

and ∫︁ ∞

𝑁

(log 𝑥)ℎ

𝑥𝑠
𝑑𝑥 =

ℎ∑︁
𝑗=0

(︂
ℎ

𝑗

)︂
𝑗!(−1)𝑗+1 𝑁1−𝑠(log 𝑁)ℎ−𝑗

(1 − 𝑠)𝑗+1

to (3.2), we have, for 𝜎 > max06𝑚6𝑀−1{1, 𝛼𝑚}, that

𝐹 (𝑠) =
𝑁∑︁

𝑛=1

𝑎(𝑛)
𝑛𝑠

+
𝑙−1∑︁
ℎ=0

𝑊ℎℎ!
ℎ∑︁

𝑗=0

(−1)𝑗+1

(ℎ − 𝑗)!
𝑁1−𝑠(log 𝑁)ℎ−𝑗

(1 − 𝑠)𝑗+1(3.3)

−
𝑀−1∑︁
𝑚=0

(𝑠)𝑚
𝑔𝑚(𝑁)
𝑁𝑠+𝑚

+ (𝑠)𝑀

∫︁ ∞

𝑁

𝑔𝑀−1(𝑥)
𝑥𝑠+𝑀

𝑑𝑥.

The integral on the right-hand side of (3.3) is analytic on the half-plane 𝜎 >
1−(𝑀 −𝛼𝑀−1), and hence (3.3) is valid for 𝜎 > 1−(𝑀 −𝛼𝑀−1). Since 𝑀 −𝛼𝑀−1
tends to ∞ as 𝑀 → ∞, 𝐹 (𝑠) can be continued analytically over the whole 𝑠-plane
except for 𝑠 = 1. This completes the proof.

Remark 3.1. In the condition (X) of Theorem 1.1, we assume existence of
constants 𝑙 ∈ N ∪ {0}, 𝐽ℎ, and 𝐽 such that the function 𝑔0(𝑥) defined by

𝑔0(𝑥) =
∑︁
𝑛6𝑥

𝑎(𝑛) −
(︂

𝑥

𝑙−1∑︁
ℎ=0

𝐽ℎ(log 𝑥)ℎ + 𝐽

)︂
is good oscillation. These constants 𝑙 ∈ N∪{0}, 𝐽ℎ, and 𝐽 are uniquely determined,
i.e., if there exist ̃︀𝑙 ∈ N ∪ {0}, ̃︁𝐽ℎ, and ̃︀𝐽 such that the function ̃︀𝑔0(𝑥) defined by

̃︀𝑔0(𝑥) =
∑︁
𝑛6𝑥

𝑎(𝑛) −
(︂

𝑥

̃︀𝑙−1∑︁
ℎ=0

̃︁𝐽ℎ(log 𝑥)ℎ + ̃︀𝐽)︂
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is good oscillation, then 𝑙 = ̃︀𝑙, 𝐽ℎ = ̃︁𝐽ℎ, and 𝐽 = ̃︀𝐽 . This assertion is equivalent to
that if

𝐺0(𝑥) = 𝑥

𝐿∑︁
ℎ=0

𝐷ℎ(log 𝑥)ℎ + 𝐷

is good oscillation, then 𝐷ℎ = 0 for all 0 6 ℎ 6 𝐿 and 𝐷 = 0. Here we prove this.
Assume that there exists an ℎ such that 𝐷ℎ ̸= 0, and let 𝐻 = max{ℎ | 𝐷ℎ ̸= 0}.

Then
𝐺0(𝑥) = 𝐷𝐻𝑥(log 𝑥)𝐻 + 𝑂(𝑥(log 𝑥)𝐻−1).

For 𝐺0(𝑥), let 𝐺𝑚(𝑥), 𝑚 ∈ N, be the functions defined by (1.4) and (1.5). Then

𝐺𝑚(𝑥) = 𝐷𝐻
𝑥𝑚+1

(𝑚 + 1)! (log 𝑥)𝐻 + 𝑂(𝑥𝑚+1(log 𝑥)𝐻−1).

This shows 𝛼𝑚 > 𝑚 + 1, which contradicts that 𝐺0(𝑥) is good oscillation. Thus
𝐷ℎ = 0 for all 0 6 ℎ 6 𝐿 and 𝐺0(𝑥) = 𝐷. 𝐷 = 0 is similarly proved as above.

Remark 3.2. In Definition 1.1 we required 𝑚+1−𝛼𝑚 → ∞ as 𝑚 → ∞. Even
if we replace this with lim sup𝑚→∞(𝑚 + 1 − 𝛼𝑚) = ∞, Theorem 1.1 still holds, and
Theorem 1.2 holds with the relaxed condition (A2)’ lim inf𝑚→∞ 𝑐𝑚/𝑚2 = 0. By
this replacement, however, the properties described in Section 2 and Remark 3.1
are lost.

4. Proof of Theorem 1.2

Firstly, we only assume the condition (Y).
Let 𝐴𝑚(𝑥) : (0, ∞) → C, 𝑚 ∈ N ∪ {0}, be the function defined by the Riesz

sum of the Dirichlet coefficients 𝑎(𝑛) in (1.6):

𝐴𝑚(𝑥) =

⎧⎪⎨⎪⎩
1

𝑚!
∑︀

𝑛6𝑥 𝑎(𝑛)(𝑥 − 𝑛)𝑚, if 𝑥 > 1 and 𝑚 > 1,∑︀
𝑛6𝑥 𝑎(𝑛) − ̃︀𝑎(𝑥), if 𝑥 > 1 and 𝑚 = 0,

0, if 0 < 𝑥 < 1,

where ̃︀𝑎(𝑥) is the function defined by ̃︀𝑎(𝑥) = 𝑎(𝑥)
2 if 𝑥 is an integer, and ̃︀𝑎(𝑥) = 0

otherwise. Let 𝑆𝑅𝑚(𝑥) : (0, ∞) → C, 𝑚 ∈ N ∪ {0}, be the function defined by

(4.1) 𝑆𝑅𝑚(𝑥) =
𝑚∑︁

𝑗=−1
Res𝑤=−𝑗 𝐹 (𝑤) 𝑥𝑤+𝑚

𝑤(𝑤 + 1) . . . (𝑤 + 𝑚) .

Let 𝐸𝑚(𝑥) : (0, ∞) → C, 𝑚 ∈ N ∪ {0}, be the function defined by
𝐸𝑚(𝑥) = 𝐴𝑚(𝑥) − 𝑆𝑅𝑚(𝑥).(4.2)

Then it is easily verified that{︃
𝑑

𝑑𝑥 𝐸1(𝑥) = 𝐸0(𝑥), 𝑥 ∈ (0, ∞) − N,
𝑑

𝑑𝑥 𝐸𝑚+1(𝑥) = 𝐸𝑚(𝑥), 𝑥 ∈ (0, ∞), 𝑚 > 1.

The function 𝐸𝑚(𝑥) was used in [5] for another purpose.
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The following lemma can be proved similarly to Davenport [2, p.105, Lemma],
and we omit the proof.

Lemma 4.1. Let 𝑐 > 0 and 𝑦 > 0. It follows that, for 𝑚 ∈ N,

𝐼𝑚(𝑦) = 1
2𝜋𝑖

∫︁ 𝑐+𝑖∞

𝑐−𝑖∞

𝑦𝑤

𝑤(𝑤 + 1) · · · (𝑤 + 𝑚) 𝑑𝑤 =
{︃

0, 0 < 𝑦 6 1
1

𝑚! (1 − 𝑦−1)𝑚, 𝑦 > 1,

and

𝐼0(𝑦) = lim
𝑇 →∞

1
2𝜋𝑖

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇

𝑦𝑤

𝑤
𝑑𝑤 =

⎧⎪⎨⎪⎩
0, 0 < 𝑦 < 1
1
2 , 𝑦 = 1
1, 𝑦 > 1.

For 𝑚 ∈ N ∪ {0}, let

𝑅𝑚(𝑦, 𝑇 ) = 𝐼𝑚(𝑦) − 1
2𝜋𝑖

∫︁ 𝑐+𝑖𝑇

𝑐−𝑖𝑇

𝑦𝑤

𝑤(𝑤 + 1) · · · (𝑤 + 𝑚) 𝑑𝑤.

Then, for 𝑇 > 2𝑚,

(4.3) |𝑅𝑚(𝑦, 𝑇 )| <

{︃
𝑦𝑐 min

{︀ 2𝑚

𝑇 𝑚 , 1
𝑇 𝑚+1| log 𝑦|

}︀
, 𝑦 ̸= 1

1
𝑇 𝑚 , 𝑦 = 1.

Now we assume (Y), (A1), and the new condition (B): there exists a nonnegative
𝜆 such that 𝑎(𝑛) = 𝑂(𝑛𝜆+𝜀), where 𝜀 > 0 is chosen arbitrarily small. Then we have
the following.

Lemma 4.2. Assume the conditions (Y) in Theorem 1.1, (A1) in Theorem
1.2, and (B) introduced above. Let 𝑥 > 2 and 𝑇 > 2. Choose 𝑐 in 𝑅𝑚(𝑦, 𝑇 )
introduced above as 𝑐 = 𝜎1 + 𝜀, where 𝜎1 and 𝜀 are the same ones as in (Y) and
(B), respectively. Then⃒⃒⃒⃒ ∞∑︁

𝑛=1
𝑎(𝑛)𝑅𝑚(𝑥/𝑛, 𝑇 )

⃒⃒⃒⃒
≪ 𝑥𝜎1+𝜀

𝑇 𝑚+1 + 𝑥1+𝜆+𝜀 log 𝑥

𝑇 𝑚+1 + 𝑥𝜆+𝜀

𝑇 𝑚
.

Proof. From (4.3) it follows that

(4.4)
⃒⃒⃒⃒ ∞∑︁
𝑛=1

𝑎(𝑛)𝑅𝑚(𝑥/𝑛, 𝑇 )
⃒⃒⃒⃒

<

∞∑︁
𝑛=1
𝑛 ̸=𝑥

|𝑎(𝑛)|
(︁𝑥

𝑛

)︁𝜎1+𝜀

min
{︁ 2𝑚

𝑇 𝑚
,

1
𝑇 𝑚+1| log(𝑥/𝑛)|

}︁
+ |𝑎(𝑥)|

𝑇 𝑚
,

where the second term on the right-hand side only appears in the case that 𝑥 is an
integer, and this is 𝑂(𝑥𝜆+𝜀/𝑇 𝑚) by (B).

Divide the sum on the right-hand side of (4.4) into three sums
∑︀

1,
∑︀

2, and∑︀
3 accordingly as the range of 𝑛, 𝑛 6 3

4 𝑥 or 𝑛 > 5
4 𝑥, 3

4 𝑥 < 𝑛 < 𝑥, and 𝑥 < 𝑛 < 5
4 𝑥,

respectively. By (Y) and (B),
∑︀

1 is 𝑂(𝑥𝜎1+𝜀/𝑇 𝑚+1).
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To estimate
∑︀

2, let 𝑥1 be the largest integer not greater than 𝑥. The con-
tribution of the term 𝑛 = 𝑥1 is 𝑂(𝑥𝜆+𝜀/𝑇 𝑚) by (B). For the other terms we put
𝑛 = 𝑥1 − 𝜈, 0 < 𝜈 < 1

4 𝑥, to get log(𝑥/𝑛) > 𝜈/𝑥1 ≫ 𝜈/𝑥. Then, by (B),∑︁
2

≪ 𝑥

𝑇 𝑚+1

∑︁
0<𝜈< 1

4 𝑥

|𝑎(𝑥1 − 𝜈)|
𝜈

+ 𝑥𝜆+𝜀

𝑇 𝑚
≪ 𝑥1+𝜆+𝜀 log 𝑥

𝑇 𝑚+1 + 𝑥𝜆+𝜀

𝑇 𝑚
.

To estimate
∑︀

3, let 𝑥2 be the least integer greater than 𝑥. The contribution
of the term 𝑛 = 𝑥2 is 𝑂(𝑥𝜆+𝜀/𝑇 𝑚) by (B). For the other terms we put 𝑛 = 𝑥2 + 𝜈,
0 < 𝜈 < 1

4 𝑥, to get − log(𝑥/𝑛) > 𝜈/(2𝑥2 + 𝜈) ≫ 𝜈/𝑥. Then, by (B),∑︁
3

≪ 𝑥

𝑇 𝑚+1

∑︁
0<𝜈< 1

4 𝑥

|𝑎(𝑥2 + 𝜈)|
𝜈

+ 𝑥𝜆+𝜀

𝑇 𝑚
≪ 𝑥1+𝜆+𝜀 log 𝑥

𝑇 𝑚+1 + 𝑥𝜆+𝜀

𝑇 𝑚
.

Thus we obtain the desired estimate. �

Lemma 4.3. Assume the conditions (Y) in Theorem 1.1, (A1) in Theorem 1.2,
and (B) introduced above. Let 𝑥 > 2, 𝑇 > 2, and 𝑐𝑚 be the same one as in (A1).
Then

𝐸𝑚(𝑥) ≪ 𝑥𝑚+𝜎1+𝜀

𝑇 𝑚+1 + 𝑥𝑚+1+𝜆+𝜀 log 𝑥

𝑇 𝑚+1 + 𝑥𝑚+𝜆+𝜀

𝑇 𝑚
+ 𝑥− 1

2 max{𝑇 𝑐𝑚−𝑚, log 𝑇}

+ 𝑥𝑚

𝑇 𝑚+1 exp𝑇

(︁ 𝑐𝑚(𝜎1 + 𝜀)
𝑚 + 1

2 + 𝜎1 + 𝜀

)︁∫︁ 𝜎1+𝜀

−𝑚− 1
2

(︁
𝑥 exp𝑇

(︁
− 𝑐𝑚

𝑚 + 1
2 + 𝜎1 + 𝜀

)︁)︁𝜎

𝑑𝜎.

Proof. By the residue theorem the function 𝑆𝑅𝑚(𝑥) defined by (4.1) can be
expressed as

(4.5) 𝑆𝑅𝑚(𝑥) = 1
2𝜋𝑖

∫︁
𝒞

𝐹 (𝑤) 𝑥𝑤+𝑚

𝑤(𝑤 + 1) · · · (𝑤 + 𝑚) 𝑑𝑤,

where 𝒞 is the boundary of the rectangle with vertices 𝜎1 + 𝜀 − 𝑖𝑇 , 𝜎1 + 𝜀 + 𝑖𝑇 ,
−𝑚 − 1

2 + 𝑖𝑇 , and −𝑚 − 1
2 − 𝑖𝑇 in positive orientation. 𝒞 consists of four sides 𝒞1,

𝒞2, 𝒞3, 𝒞4 taken in this order starting with the right side. For
∫︀

𝒞1
. . . 𝑑𝑤, we have

by (1.6) and Lemma 4.1 that

1
2𝜋𝑖

∫︁
𝒞1

𝐹 (𝑤) 𝑥𝑤+𝑚

𝑤(𝑤 + 1) · · · (𝑤 + 𝑚) 𝑑𝑤 = 𝐴𝑚(𝑥) − 𝑥𝑚
∞∑︁

𝑛=1
𝑎(𝑛) 𝑅𝑚(𝑥/𝑛, 𝑇 ).(4.6)

By (4.5), (4.6), and Lemma 4.2, we have

𝐸𝑚(𝑥) = − 1
2𝜋𝑖

∫︁
𝒞2+𝒞3+𝒞4

𝐹 (𝑤) 𝑥𝑤+𝑚

𝑤(𝑤 + 1) · · · (𝑤 + 𝑚)𝑑𝑤(4.7)

+ 𝑂

(︃
𝑥𝑚+𝜎1+𝜀

𝑇 𝑚+1 + 𝑥𝑚+1+𝜆+𝜀 log 𝑥

𝑇 𝑚+1 + 𝑥𝑚+𝜆+𝜀

𝑇 𝑚

)︃
.
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For
∫︀

𝒞3
. . . 𝑑𝑤, we have by (A1) that∫︁
𝒞3

𝐹 (𝑤) 𝑥𝑤+𝑚

𝑤(𝑤 + 1) · · · (𝑤 + 𝑚) 𝑑𝑤 ≪ 𝑥− 1
2

∫︁ 𝑇

−𝑇

(1 + |𝑦|)𝑐𝑚

(1 + |𝑦|)𝑚+1 𝑑𝑦(4.8)

≪ 𝑥− 1
2 ×

{︃
𝑇 𝑐𝑚−𝑚/(𝑐𝑚 − 𝑚), if 𝑐𝑚 > 𝑚,

log 𝑇, if 𝑐𝑚 6 𝑚

≪ 𝑥− 1
2 max{𝑇 𝑐𝑚−𝑚, log 𝑇}.

The treatments of
∫︀

𝒞2
. . . 𝑑𝑤 and

∫︀
𝒞4

. . . 𝑑𝑤 are similar, and we show the former
case only. By the conditions (Y) and (A1), and by the Phragmén–Lindelöf convexity
principle,

(4.9) 𝐹 (𝜎 + 𝑖𝑡) = 𝑂
(︁

exp|𝑡|

(︁−𝑐𝑚(𝜎 − 𝜎1 − 𝜀)
𝑚 + 1

2 + 𝜎1 + 𝜀

)︁)︁
holds uniformly for 𝑠 with −𝑚 − 1

2 6 𝜎 6 𝜎1 + 𝜀 and |𝑡| > 2. Using (4.9), we have

(4.10)
∫︁

𝒞2

𝐹 (𝑤) 𝑥𝑤+𝑚

𝑤(𝑤 + 1) · · · (𝑤 + 𝑚) 𝑑𝑤

≪ 𝑥𝑚

𝑇 𝑚+1 exp𝑇

(︁ 𝑐𝑚(𝜎1 + 𝜀)
𝑚 + 1

2 + 𝜎1 + 𝜀

)︁∫︁ 𝜎1+𝜀

−𝑚− 1
2

(︁
𝑥 exp𝑇

(︁
− 𝑐𝑚

𝑚 + 1
2 + 𝜎1 + 𝜀

)︁)︁𝜎

𝑑𝜎.

Substituting (4.8) and (4.10) into (4.7), we obtain the desired estimate. �

In Lemma 4.3 we have assumed the condition (B): 𝑎(𝑛) = 𝑂(𝑛𝜆+𝜀). This 𝜆 can
be chosen as 𝜆 = 𝜎1 under the condition (Y). In fact, since

∑︀∞
𝑛=1

|𝑎(𝑛)|
𝑛𝜎1+𝜀 converges,

the terms corresponding to all large 𝑛 are uniformly bounded by some constant.
Thus we can put 𝜆 = 𝜎1 in Lemma 4.3, and have the following estimate under the
conditions (Y) and (A1):

(4.11) 𝐸𝑚(𝑥) ≪ 𝑥𝑚+1+𝜎1+𝜀 log 𝑥

𝑇 𝑚+1 + 𝑥𝑚+𝜎1+𝜀

𝑇 𝑚
+ 𝑥− 1

2 max{𝑇 𝑐𝑚−𝑚, log 𝑇}

+ 𝑥𝑚

𝑇 𝑚+1 exp𝑇

(︁ 𝑐𝑚(𝜎1 + 𝜀)
𝑚 + 1

2 + 𝜎1 + 𝜀

)︁∫︁ 𝜎1+𝜀

−𝑚− 1
2

(︁
𝑥 exp𝑇

(︁
− 𝑐𝑚

𝑚 + 1
2 + 𝜎1 + 𝜀

)︁)︁𝜎

𝑑𝜎.

Put 𝑇 = 𝑥
𝑚+𝜎1+ 1

2
𝑐𝑚+1 in (4.11). Then

𝑥 exp𝑇

(︁
− 𝑐𝑚

𝑚 + 1
2 + 𝜎1 + 𝜀

)︁
> 𝑥

1
𝑐𝑚+1 > 1,

and hence the fourth term on the right-hand side of (4.11) is estimated as

≪ 𝑥𝑚+𝜎1+𝜀

𝑇 𝑚+1 .

The third term on the right-hand side of (4.11) is estimated as

≪ 𝑥− 1
2 (log 𝑇 + 𝑇 𝑐𝑚−𝑚) ≪ 1 + 𝑥− 1

2 𝑇 𝑐𝑚+1

𝑇 𝑚+1 ≪ 1 + 𝑥𝑚+𝜎1

𝑇 𝑚+1 .
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Hence, with 𝑇 = 𝑥
𝑚+𝜎1+ 1

2
𝑐𝑚+1 ,

𝐸𝑚(𝑥) ≪ 𝑥𝑚+1+𝜎1+𝜀 log 𝑥

𝑇 𝑚+1 + 𝑥𝑚+𝜎1+𝜀

𝑇 𝑚
+ 1(4.12)

≪ 𝑥𝑚+1+𝜎1+2𝜀−
𝑚+𝜎1+ 1

2
𝑐𝑚+1 (𝑚+1) + 𝑥𝑚+𝜎1+𝜀−

𝑚+𝜎1+ 1
2

𝑐𝑚+1 𝑚 + 1

≪ 𝑥𝑚+1+𝜎1−
𝑚+𝜎1+ 1

2
𝑐𝑚+1 𝑚 + 1.

By (4.12), we have 𝐸𝑚(𝑥) = 𝑂(𝑥𝛼𝑚) with

𝑚 + 1 − 𝛼𝑚 = −𝜎1 +
𝑚 + 𝜎1 + 1

2
𝑐𝑚 + 1 𝑚 or 𝑚 + 1,

and, under the condition (A2), the right-hand side tends to ∞ as 𝑚 → ∞.
Now we define the function 𝑔0(𝑥) by 𝑔0(𝑥) = 𝐸0(𝑥) +̃︀𝑎(𝑥). Then 𝑔0(𝑥) is good

oscillation under the conditions (Y), (A1), and (A2), and has the expression

𝑔0(𝑥) =
∑︁
𝑛6𝑥

𝑎(𝑛) −
0∑︁

𝑗=−1
Res𝑤=−𝑗 𝐹 (𝑤)𝑥𝑤

𝑤

=
∑︁
𝑛6𝑥

𝑎(𝑛) −
(︂

𝑥

𝑙−1∑︁
ℎ=0

(− log 𝑥)ℎ

ℎ!

𝑙−1∑︁
𝑟=ℎ

𝐶−(𝑟+1)(−1)𝑟 + 𝐹 (0)
)︂

,

where the constants 𝐶−(𝑟+1) come from the Laurant expansion of 𝐹 (𝑠) at 𝑠 = 1:

𝐹 (𝑠) = 𝐶−𝑙

(𝑠 − 1)𝑙
+ · · · + 𝐶−1

𝑠 − 1 + 𝑂(1).

This completes the proof of Theorem 1.2.

5. An application of Theorem 1.2

Let 𝑗 be a positive integer. Let 𝑠𝑖, 𝑖 = 1, 2, . . . , 𝑗, be complex variables, and 𝜒𝑖,
𝑖 = 1, 2, . . . , 𝑗, be Dirichlet characters of the same conductor 𝑞 > 2. The multiple
𝐿-series is defined by

𝐿𝑗(𝑠1, . . . , 𝑠𝑗 | 𝜒1, . . . , 𝜒𝑗) =
∑︁

0<𝑛1<···<𝑛𝑗

𝑛1,...,𝑛𝑗∈N

𝜒1(𝑛1)
𝑛𝑠1

1

𝜒2(𝑛2)
𝑛𝑠2

2
. . .

𝜒𝑗(𝑛𝑗)
𝑛

𝑠𝑗

𝑗

.

If Re(𝑠𝑖) > 1, 𝑖 = 1, 2, . . . , 𝑗 − 1, and Re(𝑠𝑗) > 1, then the series are absolutely
convergent.

When all 𝑠𝑖 are equal to 𝑠, we abbreviate the multiple 𝐿-series to 𝐿𝑗(𝑠). Then

𝐿𝑗(𝑠) =
∞∑︁

𝑛=1

ℎ𝑗(𝑛)
𝑛𝑠

with
(5.1) ℎ𝑗(𝑛) =

∑︁
𝑚1𝑚2...𝑚𝑗−1|𝑛

𝑚1<···<𝑚𝑗−1< 𝑛
𝑚1...𝑚𝑗−1

𝜒1(𝑚1) . . . 𝜒𝑗−1(𝑚𝑗−1)𝜒𝑗

(︁ 𝑛

𝑚1𝑚2 . . . 𝑚𝑗−1

)︁
.
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The first named author studied the analytic continuation of 𝐿𝑗(𝑠) in [3]. As an
application of the analytic continuation, properties of

∑︀
𝑛6𝑥 ℎ𝑗(𝑛) were studied in

[4].
The function 𝐿𝑗(𝑠) can be continued meromorphically over the whole 𝑠-plane.

Moreover, if 𝑗 = 2, 𝜒1𝜒2(−1) = 1, and 𝜒1, 𝜒2 are primitive characters, then
𝐿2(𝑠) is continued to an entire function. Hence 𝐿2(𝑠) satisfies the condition (Y) in
Theorem 1.2 with 𝑙 = 0. The proof of the analytic continuation of 𝐿2(𝑠) is based on
the Euler–Maclaurin summation formula and much technique. In fact, the following
expression of 𝐿2(𝑠) can be obtained (see [3] for details): for 𝜎 > 1 − 𝑀

2 ,

𝐿2(𝑠) = 1
𝑞2𝑠

𝑞∑︁
𝑎1=1

𝑞∑︁
𝑎2=1

𝜒1(𝑎1)𝜒2(𝑎2)

×
(︂

1
𝑠 − 1𝜁(2𝑠 − 1, 𝑎1/𝑞) +

𝑀−1∑︁
𝑚=0

̃︀𝐵𝑚+1( 𝑎1−𝑎2
𝑞 )

(𝑚 + 1)! (𝑠)𝑚𝜁(2𝑠 + 𝑚, 𝑎1/𝑞)

−
∞∑︁

𝑚1=0

1
(𝑚1 + 𝑎1/𝑞)𝑠

(𝑠)𝑀

𝑀 !

∫︁ ∞

𝑚1+ 𝑎1−𝑎2
𝑞

̃︀𝐵𝑀 (𝑥)
(𝑥 + 𝑎2/𝑞)𝑠+𝑀

𝑑𝑥

)︂
,

where 𝜁(𝑠, 𝑎) is the Hurwitz zeta-function and ̃︀𝐵𝑀 (𝑥) = 𝐵𝑀 (𝑥 − [𝑥]). Using this
expression, we have for any nonnegative integer 𝑚 that

𝐿2(−𝑚 − 1
2 + 𝑖𝑡) ≪ (1 + |𝑡|)4+2𝑚.

Hence 𝐿2(𝑠), where 𝜒1𝜒2(−1) = 1 and 𝜒1, 𝜒2 are primitive characters, satisfies
the conditions (Y), (A1), and (A2) in Theorem 1.2, and consequently, there exists
a constant 𝐽 such that the function

∑︀
𝑛6𝑥 ℎ2(𝑛) − 𝐽 is good oscillation. It seems

difficult to give a proof of this directly from (5.1).
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