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MAGNETIC CURVES IN A EUCLIDEAN SPACE:

ONE EXAMPLE, SEVERAL APPROACHES

Marian Ioan Munteanu

Abstract. This is a short review of different approaches in the study of mag-
netic curves for a certain magnetic field and on the fixed energy level. We
emphasize them in the case when the magnetic trajectory corresponds to a
Killing vector field associated to a screw motion in the Euclidean 3-space.

1. Introduction

The geodesic flow on a Riemannian manifold represents the extremals of the
least action principle, namely it is determined by the motion of a certain physical
system on the manifold. It is known that the geodesic equations are second order
non-linear differential equations and they usually appear in the form of Euler-
Lagrange equations of motion. Magnetic curves generalize geodesics. In physics,
such a curve represents a trajectory of a charged particle moving on the manifold
under the action of a magnetic field.

Let (M, g) be an n-dimensional Riemannian manifold. A magnetic field is a
closed 2-form F on M and the Lorentz force of the magnetic field F on (M, g) is a
(1, 1) tensor field Φ given by

(1.1) g(Φ(X), Y ) = F (X,Y ), ∀X,Y ∈ X(M).

The magnetic trajectories of F are curves γ on M that satisfy the Lorentz equation

(sometimes called the Newton equation)

(1.2) ∇γ′γ′ = Φ(γ′).

The Lorentz equation generalizes the equation satisfied by the geodesics of M ,
namely ∇γ′γ′ = 0. Therefore, from the point of view of the dynamical systems, a
geodesic corresponds to a trajectory of a particle without an action of a magnetic
field, while a magnetic trajectory is a flowline of the dynamical system, associated
to the magnetic field. In contrast to geodesics, magnetic curves are not reversible
and they cannot be rescaled, that is the trajectories depend on the energy ‖γ′‖.
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The Lorentz force is skew symmetric and therefore the magnetic curves have a
constant speed (and hence energy) v(t) = ‖γ′‖ = v0. When they are parametrized
by arc length (v0 = 1), we use to call them normal magnetic curves.

An example of magnetic fields on a Riemannian surface can be obtained by mul-
tiplying the area element by a (smooth) function (usually called strength). When
the surface is of constant Gaussian curvature K, trajectories of such magnetic fields
are well known. More precisely, on the spheres, these trajectories are certain small
circles, on the Euclidean plane they are arbitrary circles, while, on a hyperbolic
plane, the trajectories can be either closed, or open curves (depending on the ratio
of the strength and K) (see e.g., [12, 18]).

In the case of a 3-dimensional Riemannian manifold (M, g), 2-forms and vector
fields may be identified via the Hodge star operator ⋆ and the volume form dvg of the
manifold. Thus, magnetic fields mean divergence free vector fields (see e.g. [11]). In
particular, Killing vector fields define an important class of magnetic fields, called
Killing magnetic fields. Recall that a vector field V on M is Killing if and only if
it satisfies the Killing equation:

(1.3) g(∇Y V, Z) + g(∇ZV, Y ) = 0

for every vector fields Y, Z on M , where ∇ is the Levi Civita connection on M .
It is known that geodesics can be defined as extremal curves for the action

or energy functional. A variational approach to describe Killing magnetic flows in
spaces of constant curvature is given in [8].

Note that, one can define on M the cross product of two vector fields X,Y ∈
X(M) as follows

g(X × Y, Z) = dvg(X,Y, Z), ∀Z ∈ X(M).

If V is a Killing vector field on M , let FV = ιV dvg be the corresponding Killing
magnetic field. By ι we denote the inner product. Then, the Lorentz force of FV

is (see [11])

Φ(X) = V ×X.

Consequently, the Lorentz force equation (1.2) can be written as

(1.4) ∇γ′γ′ = V × γ′.

If we consider the 3-dimensional Euclidian space E3 endowed with the usual
scalar product 〈 , 〉 we know the fundamental solutions of (1.3):

{∂x, ∂y, ∂z ,−y∂x + x∂y ,−z∂y + y∂z, z∂x − x∂z}
and they give a basis of Killing vector fields on E

3. Here x, y, z denote the global
coordinates on E3 and R3 = span{∂x, ∂y, ∂z} is regarded as a vector space. The
easiest example is to consider the Killing vector field ξ0 = ∂z. (Similar discussions
can be made for ∂x and ∂y, respectively.) Its magnetic trajectories are helices with
axis ∂z , namely t 7→ (x0 + a cos t, y0 + a sin t, z0 + bt), where (x0, y0, z0) ∈ R3 and
a, b ∈ R. An interesting fact is that Lancret curves (i.e. general helices) in E3

are characterized by the following property (in our framework): they are magnetic
trajectories associated with magnetic fields parallel to their axis. A similar result,
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relating Killing magnetic fields and Lancret curves is provided on the 3-sphere (see
e.g. [8]).

Magnetic curves determined by the Killing vector field V = −y∂x + x∂y were
classified (in terms of cylindrical coordinates ρ, φ, z) in [13] as follows:

Theorem 1.1. The normal magnetic trajectories of the Killing magnetic field

FV are: planar curves situated in a vertical strip, circular helices and curves

parametrized by

x(t) = ρ(t) cosφ(t), y(t) = ρ(t) sin φ(t), z(t) = −1

2

t∫
ρ2(ζ)dζ,

where ρ and φ satisfy

(
dρ2

dt

)2

+ P
(
ρ2(t)

)
= 0, ρ2(t)φ′(t) = constant

and P is a polynomial of degree 3.

In the last case, explicit solutions were obtained using elliptic integrals. This
aspect is very important since the trajectories may be represented by using numer-
ical approximations of the integrals involved.

The problem of studying magnetic curves was considered also for other ambient
spaces. For example, Killing magnetic curves in S2 × R were classified in [16],
and magnetic curves corresponding to translation Killing vector fields in E

3
1 were

described in [14].

If the ambient is a complex space form (of arbitrary dimension), Kähler mag-
netic fields are studied (see [3]); in particular, explicit trajectories for Kähler mag-
netic fields are found in the complex projective space CP

n (see [2]). On the other
hand, if the ambient is a contact manifold, the fundamental 2-form defines the
so-called contact magnetic field. In particular, when the manifold is Sasakian, it
is proved that the angle between the velocity of a normal magnetic curve and the
Reeb vector field is constant (see [10]). Moreover, explicit description for normal
flowlines of the contact magnetic field on a 3-dimensional Sasakian manifold is
given.

In this note we consider a Killing vector field associated to a screw motion
in the Euclidean space and we present different approaches for studying Killing
magnetic curves corresponding to it. In Section 2 we give a variational approach
by considering a potential 1-form which determines the magnetic field. In Section 3
it is shown how magnetic curves can be found explicitly; we use similar techniques
as in [13] and we point out the main differences. In Section 4 we sketch another
approach related to dynamical systems; more precisely, the cotangent bundle of the
manifold is considered as the phase space, namely the set of all possible values of
position and momentum variables.
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2. A variational approach

Let M = E3 rOx and let x, y, z be the global coordinates on M . Consider on
M the Killing vector field V = a∂x − z∂y + y∂z, a ∈ (0,+∞), whose integral curves
are helices

(2.1) H : x = x0 + at, y = ρ0 cos(t+ t0), z = ρ0 sin(t+ t0)

The notations ∂x, ∂y and ∂z have the usual meaning, and x0, ρ0 > 0 and t0 are
constants.

Let

(2.2) ω = − 1
3

(
y2 + z2)

dx+
(

1
3 xy − 1

2az
)
dy +

(
1
3 xz + 1

2ay
)
dz

be a 1-form on M having the property that ω(V ) is constant on H. Consider also
the 2-form F on M defined by F (X,Y ) = 〈V ×X,Y 〉 for any X,Y tangent to M .
Here × denotes the usual cross product on R3.

Notice that F = dω. The 2-form F is the magnetic field corresponding to V
and hence ω is a potential 1-form. For a curve γ : [t0, t1] −→ M consider the
functional

(2.3) LH(γ) =

t1∫

t0

(
1
2 〈γ′(t), γ′(t)〉 − ω(γ′(t))

)
dt.

It is sometimes called the Landau–Hall functional for the curve γ with the potential
1-form ω.

Consider now a variation of γ, namely let γǫ : [t0, t1] → M , γǫ(t) = γ(t)+ ǫη(t),
where η : [t0, t1] → M is the variation vector on γ, that is η(t0) = η(t1) = 0. In order
to find the critical points of the functional LH, we have to compute d

dǫLH(γǫ)|ǫ=0
.

If we put η = (u, v, w), we have

d

dǫ
LH(γǫ)|ǫ=0 =

t1∫

t0

{
x′u′ + y′v′ + z′w′ +

2

3
(yv + zw)x′ +

1

3
(y2 + z2)u′

−
[

1

3
(xv + yu) − aw

2

]
y′ −

[
1

3
xy − az

2

]
v′

−
[

1

3
(xw + zu) +

av

2

]
z′ −

[
1

3
xz +

ay

2

]
w′

}
dt

=

t1∫

t0

[(
x′ +

1

3
(y2 + z2)

)
u′ +

(
y′ − 1

3
xy +

az

2

)
v′ +

(
z′ − 1

3
xz − ay

2

)
w′

]
dt

+

t1∫

t0

[(
− yy′

3
− zz′

3

)
u+

(2

3
x′y − 1

3
xy′ − az′

2

)
v +

(2

3
x′z − 1

3
xz′ +

ay′

2

)
w

]
dt.
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Computing the first integral by parts, and taking into account that η is the
variation vector, we obtain

d

dǫ
LH(γǫ)|ǫ=0 =

t1∫

t0

{
− d

dt

(
x′ +

1

3
(y2 + z2)

)
− yy′

3
− zz′

3

}
u dt

+

t1∫

t0

{
− d

dt

(
y′ − 1

3
xy +

az

2

)
+

2

3
x′y − 1

3
xy′ − az′

2

}
v dt

+

t1∫

t0

{
− d

dt

(
z′ − 1

3
xz − ay

2

)
+

2

3
x′z − 1

3
xz′ +

ay′

2

}
w dt.

Since the variation vector η is arbitrary, the equation d
dǫLH(γǫ)|ǫ=0

= 0 becomes

x′′ + yy′ + zz′ = 0,

y′′ − x′y + az′ = 0,(2.4)

z′′ − x′z − ay′ = 0.

This system of ordinary differential equations is nothing but the Lorentz equa-
tion (1.4), corresponding to the magnetic field F .

3. Direct approach

In this section we solve the Lorentz equation γ′′ = V × γ′ to obtain the normal
magnetic trajectories corresponding to V . In this approach, we study the differen-
tial equations system (2.4) in order to find explicit solutions. Similar techniques
were used in [13] and [16], therefore here we only sketch the computations.

Let γ be parametrized by arc length and satisfying (2.4). The first equation
yields

2ẋ+ y2 + z2 = c1, c1 ∈ R.

In what follows, we denote by ˙ the derivative with respect to the arc length
parameter s. Combining the second and the third equations we get

yż − ẏz =
a

2
(y2 + z2) + c2, c2 ∈ R.

Let us consider cylindrical coordinates (x, ρ, φ) on M , that is y = ρ cosφ and
z = ρ sinφ with ρ > 0. We have

ẋ2 + ρ̇2 + ρ2φ̇2 = 1,

2ẋ+ ρ2 = c1,(3.1)

ρ2φ̇ =
a

2
ρ2 + c2.

Denote µ = ρ2 which is a strictly positive function. From (3.1) we immediately
obtain

(3.2) µ̇2 + µ3 +
(
a2 − 2c1

)
µ2 +

(
c2

1 + 4ac2 − 4
)
µ+ 4c2

2 = 0.
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This is an ordinary differential equation of the type µ̇2 + P(µ) = 0, where P
is a polynomial of degree 3. This equation has an obvious solution, that is µ = α,
where α is a root of the polynomial P . It follows (from (3.1)) that φ and x are
affine functions and hence γ is a cylindrical helix with the axis Ox.

Let us show how to find a non-constant solution for (3.2). If we denote by ∆
the discriminant of P , the following situations appear:

• the equation P = 0 has three distinct solutions iff ∆ > 0;
• the polynomial P has multiple roots iff ∆ = 0;
• the polynomial P has one real root and two complex conjugate roots iff

∆ < 0.

A detailed analysis of the above situations, leads us to conclude, after taking into
account Viète’s classical formulas, that equation (3.2) has solutions if and only if
∆ > 0.

To be more precise, if ∆ < 0, let α ∈ R be the real root and β, β̄ ∈ C r R be
the complex roots of P . Then, ODE (3.2) can be rewritten as

µ̇2 +
(
µ2 − 2 Re(β) µ+ |β|2

)
(µ− α) = 0.

where Re(β) denotes the real part of the complex number β. From Viète’s third
formula, for c2 6= 0, we conclude that α should be negative, and consequently, ODE
(3.2) has no solution. The case c2 = 0 will be discussed separately.

If ∆ = 0, one can have

• either a triple root α, when

(a2 − 2c1)2 = 3(c2
1 + 4ac2 − 4) and (a2 − 2c1)3 = 108c2

2;

• or one simple root α ∈ R and one double root β ∈ R.

Notice that, in contrast to [13], the first case should be discussed here since the
polynomial could have a triple root; for example when a = 19/4, c1 = −157/16 and
c2 = 3375/128. Equation (3.2) reads µ̇2 + (µ−α)3 = 0. In order to have a solution
we should have µ 6 α. Hence α is positive. On the other hand, α3 = −4c2

2 < 0 and
this contradicts to α > 0. In the second situation, equation (3.2) can be written as
µ̇2 + (µ− α)(µ − β)2 = 0. As before, no solution can be obtained.

Finally, if ∆ > 0, let α, β, λ ∈ R be the three distinct roots of P . Viète’s third
formula yields αβλ < 0, and hence

• either α, β, λ are all negative,
• or two of them, say α and β, are positive and the third one, λ, is negative.

With a similar argument as before, the first situation cannot occur. In the second
case, equation (3.2) reads µ̇2 + (µ− α)(µ− β)(µ− λ) = 0, and it has a solution in
the interval defined by the two positive roots, namely µ(s) = J (s), where J is the

inverse function of I(µ) =
∫ µ (

(ξ − α)(β − ξ)(ξ − λ)
)−1/2

dξ. Thus ρ(s) =
√

J (s).
Moreover, it can be expressed also in terms of elliptic functions. See e.g., [13].
Then, from the third equation of (3.1), by integration, we get φ. Hence we have
obtained the coordinates y and z. The third coordinate x can be obtained, also by
integration, from the second equation of (3.1). Therefore, the curve γ is completely
determined.
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Let us study the remained case c2 = 0. We immediately get φ = as
2 + φ0 and

hence, contrary to [13], our curve is no longer a planar curve. Then, we write the
ODE in the form

µ̇2 + µ
[
µ2 +

(
a2 − 2c1

)
µ+

(
c2

1 − 4
)]

= 0.

If c1 > a2

4 + 4
a2 , then it has no solution. The case c1 <

a2

4 + 4
a2 is rather richer:

• if |c1| < 2, there exist α < 0 < β such that P = µ(µ − α)(µ − β) and we
get a solution inside the cylinder y2 + z2 = β, namely µ(s) = J (s), where

J is the inverse function of I(µ) =
∫ µ (

ξ(ξ − α)(β − ξ)
)−1/2

dξ;

• if c1 = −2, the equation becomes µ̇2 + µ2(µ + a2 + 4) = 0 and it has no
solution;

• if c1 = 2, the equation has a solution only when |a| < 2, and this is
µ(s) = 2A

1+cosh(
√

A(s−s0))
, where A = 4 − a2 and s0 depends on the initial

conditions; for example, when a = 1, s0 = 0 and φ0 = 0 we obtain

ρ =

√
3

cosh
√

3s
2

, φ =
s

2
, x = s−

√
3 tanh

√
3s

2
;

• if c1 < −2 the polynomial P has two negative roots, and hence the ODE
has no solution;

• if c1 > 2 the ODE has a solution only if |a| < 2, the case in which it is
situated between two cylinders µ = α and µ = β, where α < β are the two
positive roots of P ; the solution can be computed as in the case |c1| < 2.

4. Hamiltonian approach

Let M be as in the previous sections and let T ∗M = M × R3 be its cotangent
bundle. Denote by (ζ, p, q) the coordinates in the fiber T ∗

(x,y,z)M . Hence, the

canonical projection may be written as

π : M × R
3 −→ M, (x, y, z; ζ, p, q) 7→ (x, y, z).

The 2-form

Ω = dζ ∧ dx+ dp ∧ dy + dq ∧ dz
is known as the canonical symplectic form on T ∗M .

Consider the 2-form (on T ∗M)

ΩF = Ω − π∗F,

which defines also a symplectic structure on T ∗M . This represents a deformation
of the canonical form corresponding to the presence of the magnetic field F .

It is known that the geodesic flow can be described as the Hamiltonian flow of
H , namely

(4.1)
d

dt
(x, y, z) =

(
∂

∂ζ
,
∂

∂p
,
∂

∂q

)
H,

d

dt
(ζ, p, q) = −

(
∂

∂x
,
∂

∂y
,
∂

∂z

)
H,

whereH : T ∗M → R, H(x, y, z; ζ, p, q) = 1
2

(
ζ2+p2+q2

)
. These equations represent

the motion of a particle under the action of gravity and they were written for an



148 MUNTEANU

arbitrary Hamiltonian on M . For further reading on the Hamiltonian formulation
see e.g., [1, 17].

System (4.1) can be expressed also in terms of the canonical Poisson bracket
on (M × R

3,Ω)

{f, g} =

(
∂f

∂x

∂g

∂ζ
+
∂f

∂y

∂g

∂p
+
∂f

∂z

∂g

∂q

)
−

(
∂g

∂x

∂f

∂ζ
+
∂g

∂y

∂f

∂p
+
∂g

∂z

∂f

∂q

)

as follows
df

dt
= {f,H},

which shows the evolution of an arbitrary function along the flow.
When the symplectic form ΩF is considered, the corresponding Poisson bracket

becomes (see e.g., [15])

{f, g}F = {f, g}−y
(
∂f

∂ζ

∂g

∂p
− ∂g

∂ζ

∂f

∂p

)
−a

(
∂f

∂p

∂g

∂q
− ∂g

∂p

∂f

∂q

)
+z

(
∂f

∂q

∂g

∂ζ
− ∂g

∂q

∂f

∂ζ

)
.

We compute

{x,H}F = ζ, {y,H}F = p, {z,H}F = q,

{ζ,H}F = −yp− zq, {p,H}F = yζ − aq, {q,H}F = zζ + ap.

Then, the resulting Hamiltonian system df
dt = {f,H}F becomes

(4.2)
x′ = ζ, y′ = p, z′ = q,

ζ′ = −yp− zq, p′ = yζ − aq, q′ = zζ + ap,

and (sometimes) it is called magnetic geodesic flow defined by F . This is a first
order nonlinear differential equation system which represents the integral curve of

the vector Ṽ = (ζ, p, q,−yp− zq, yζ− aq, zζ+ ap) on M ×R3, sometimes called the

Hamiltonian vector field associated to H and ΩF .
As we have already said in the Introduction, the trajectories of a magnetic field

have a constant energy (constant speed). Moreover, unlike geodesics, a rescaling
of a magnetic curve is no longer a magnetic curve. Therefore, we usually restrict
the study to normal magnetic curves, namely parametrized by arc-length, which
corresponds, from the mechanical point of view, to a restriction to a single level of
energy. If we do this, the Hamiltonian is constant 1

2 . Therefore, we can parametrize
the fibers of energy level as

p = cosu cos v, q = cosu sin v, ζ = sin u.

If ρ and φ are as in Section 3, system (4.2) reads

x′ = sinu, ρ′ = cosu cos(φ− v), φ′ = −1

ρ
cosu sin(φ− v),

u′ + ρ cos(φ− v) = 0, v′ = a+ ρ tanu sin(φ − v).
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Denote ψ = φ− v. We get

ψ′ = −1

ρ
cosu sinψ − a− ρ tanu sinψ

u′ + ρ cosψ = 0

ρ′ − cosu cosψ = 0.

The second and the third equations yield

ρ2 + 2 sinu = constant

and this is precisely the constant c1 from Section 3.
On the other hand, we have (yq − pz)′ = aρ cosu cosψ = aρρ′. Hence,

ρ cosu sinψ +
a

2
ρ2 = constant

and it is exactly −c2 (from Section 3). We obtained the two first integrals as when
we used the direct approach. Therefore, if one needs to find explicit expressions for
the magnetic curve, the computations follow as in Section 3.

Notice that several conditions on the constants c1 and c2 may be obtained
immediately in this approach, for example c1 > −2.

5. Final remarks

Let {T = γ′, N,B} be the Frenet frame of a unit speed curve γ in M . The
Frenet equations may be used to characterize when γ belongs to the magnetic
flow associated to V . First of all, consider the quasi-slope of γ with respect to V ,
measured as α(s) = 〈V (s), γ′(s)〉, where V (s) is the restriction of V to γ, namely
V (s) is the value of V at the point γ(s).

One can prove (see [8]) that the unit speed curve γ is a magnetic trajectory of
V if and only if

V (s) = α(s)T (s) + κ(s)B(s),

where κ is the curvature function of γ. Moreover, when V is Killing, then its
magnetic curves have constant quasi-slope. Furthermore, the curvature and the
torsion of γ satisfy some equations (see also [8]) which represent the field equations
associated with the Kirchhoff elastic rod.
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