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Abstract. We analyze systems of abstract time-fractional equations in cer-
tain classes of sequentially complete locally convex spaces. We also consider
arbitrary matrices of operators as generators of fractional regularized resol-
vent families, improving in such a way the results known for semigroups of
operators.

1. Introduction and preliminaries

The fractional calculus is one of the active research fields in mathematical
analysis, primarily from its importance in modeling of various problems in engi-
neering, physics, chemistry and other sciences. Presumably the first systematic
exposition on abstract time-fractional equations with Caputo fractional derivatives
is that of Bazhlekova [2]. In this fundamental work, the abstract time-fractional
equations with Caputo fractional derivatives have been studied by converting them
into equivalent abstract Volterra equations [17].

The reading of paper [7] by Kisyński served as a starting point for the genesis of
this paper. We shall prove a generalization of the assertion [7, Theorem 1, (a) ⇒ (b)]
for abstract time-fractional equations (Theorem 2.1, Remark 2.1). The second aim
of the paper is to generalize [3, Theorem 14.1] to abstract time-fractional equations
(Theorem 2.2), and to clarify some classes of sequentially complete locally convex
spaces in which the above-mentioned result admits a reformulation (Theorem 2.3).

Throughout the paper, we assume that E is a Hausdorff sequentially complete
locally convex space, SCLCS for short, and that the abbreviation ⊛ stands for the
fundamental system of seminorms which defines the topology of E. By L(E) is
denoted the space of all continuous linear mappings from E into E. The domain,
resolvent set, spectrum and range of a closed linear operator A acting on E are
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denoted by D(A), ρ(A), σ(A) and R(A), respectively. Put D∞(A) :=
⋂

n∈N
D(An).

Suppose F is a linear subspace of E. Then the part of A in F , denoted by A|F ,
is a linear operator defined by D(A|F ) := {x ∈ D(A) ∩ F : Ax ∈ F} and A|F x :=
Ax, x ∈ D(A|F ). If B ∈ L(E) and m ∈ N, then we define the operator Bm ∈
L(Em) (sometimes also denoted by B) by Bm(x1, . . . , xm) := (Bx1, . . . , Bxm),
(x1, . . . , xm) ∈ Em. Given s ∈ R in advance, set ⌊s⌋ := sup{l ∈ Z : l 6 s} and
⌈s⌉ := inf{l ∈ Z : s 6 l}. The Gamma function is denoted by Γ(·) and the principal
branch is always used to take the powers. Set 0α := 0 and gα(t) := tα−1/Γ(α)
(α > 0, t > 0). We refer the reader to [15, pp. 99–102] for the basic material
concerning integration in SCLCSs, and to [9] for the definition and elementary
properties of analytic functions with values in SCLCSs. The reader may consult
[16] for the basic properties of distribution spaces used henceforward.

The following definition has been recently introduced in [8, 9].

Definition 1.1. Let α > 0 and let A be a closed linear operator on E. A
strongly continuous family (Rα(t))t>0 in L(E) is said to be a (global) (gα, C)-
regularized resolvent family having A as a subgenerator iff the following holds:

(a) Rα(t)A ⊆ ARα(t), t > 0, Rα(0) = C and CA ⊆ AC,
(b) Rα(t)C = CRα(t), t > 0, and

(c) Rα(t)x = Cx +
∫ t

0 gα(t − s)ARα(s)x ds, t > 0, x ∈ D(A);

(Rα(t))t>0 is said to be exponentially equicontinuous if there exists ω ∈ R such that
the family {e−ωtRα(t) : t > 0} is equicontinuous.

The integral generator Â of (Rα(t))t>0 is defined by

Â :=

{

(x, y) ∈ E × E : Rα(t)x − Cx =

∫ t

0
gα(t − s)Rα(s)y ds, t > 0

}

.

Suppose that (Rα(t))t>0 is exponentially equicontinuous and that the following
equality holds:

Rα(t)x − Cx = A

∫ t

0
gα(t − s)Rα(s)x ds, t > 0, x ∈ E.

Then Â is the maximal subgenerator of (Rα(t))t>0 with respect to the set inclusion

and Â = C−1AC. Notice also that the above equality holds provided that A is
densely defined and that (Rα(t))t>0 is locally equicontinuous [9].

Let α > 0, β ∈ R and the Mittag-Leffler function Eα,β(z) be defined by
Eα,β(z) :=

∑∞
n=0 zn/Γ(αn+β), z ∈ C. In this place, we assume that 1/Γ(αn+β)=0

if αn + β ∈ −N0. Set, for short, Eα(z) := Eα,1(z), z ∈ C. Then it is well known
that, for every α > 0, there exists cα > 0 such that:

(1.1) Eα(t) 6 cα exp
(

t1/α
)

, t > 0.

The asymptotic expansion of the entire function Eα,β(z) is given in the following
lemma (cf. [19, Theorem 1.1]).
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Lemma 1.1. Let 0 < σ < 1
2 π. Then, for every z ∈ C r {0} and m ∈ N r {1}:

Eα,β(z) =
1

α

∑

s

Z1−β
s eZs −

m−1
∑

j=1

z−j

Γ(β − αj)
+ O(|z|−m), |z| → ∞,

where Zs is defined by Zs := z1/αe2πis/α and the first summation is taken over all
those integers s satisfying | arg z + 2πs| < α(π

2 + σ).

Let E be one of the spaces Lp(Rn) (1 6 p 6 ∞), C0(Rn), Cb(Rn), BUC(Rn),
Cσ(Rn) (0 < σ < 1) and let 0 6 l 6 n. Put Nl

0 := {η ∈ Nn
0 : ηl+1 = · · · = ηn = 0}

and recall that the space El is defined by El := {f ∈ E : f (η) ∈ E for all η ∈ Nl
0}.

The totality of seminorms (qη(f) := ||f (η)||E , f ∈ El; η ∈ Nl
0) induces a Fréchet

topology on El (cf. the proof of [20, Lemma 5.6, p. 25]). Put Dη· := (−i)|η|·(η)

(η ∈ Nn
0 ).

In the proofs of our main results, we will make use of the functional calculus
for commuting generators of bounded C0-groups ([3]). Denote by F and F−1 the
n-dimensional Fourier transform and its inverse transform, respectively. That is

(Ff)(ξ) :=

∫

Rn

ei(x,ξ)f(x) dx, ξ ∈ R
n and F−1 := (2π)−nF̂ ,

where ˆ denotes the reflection in 0. Let (E, ‖ · ‖) be a complex Banach space,
n ∈ N and iAj , 1 6 j 6 n be commuting generators of bounded C0-groups on E.
Set A := (A1, . . . , An) and Aη := Aη1

1 · · · Aηn
n for any η = (η1, . . . , ηn) ∈ Nn

0 .
If ξ = (ξ1, . . . , ξn) ∈ Rn and u ∈ A := {f ∈ C0(Rn) : Ff ∈ L1(Rn)}, put
|ξ| := (

∑n
j=1 ξ2

j )1/2, (ξ, A) :=
∑n

j=1 ξjAj and

u(A)x := (2π)−n

∫

Rn

Fu(ξ)e−i(ξ,A)x dξ, x ∈ E.

Then u(A) ∈ L(E), u ∈ A and there exists a constant M < ∞ such that ‖u(A)‖ 6

M‖Fu‖L1(Rn), u ∈ A.
Put Zn := FD(Rn) and assume that Zn is equipped with the topology trans-

ported by F from D(Rn). By Z ′
n we denote the strong dual of Zn. It is clear

that Zn = F−1D(Rn) and that the dual mapping of F|Zn
: Zn → D(Rn) is an

isomorphism of D′(Rn) onto Z ′
n. We have the following equality:

〈FT, Fϕ〉 = (2π)n〈T, ϕ̂〉, T ∈ D′(Rn), ϕ ∈ D(Rn).

The operator ∂/∂xj : Z ′
n → Z ′

n is defined as the dual operator of −∂/∂xj : Zn →
Zn, so that ∂/∂xjFT = F(iξjT ), T ∈ D′(Rn), 1 6 j 6 n the actions of F on
(D′(Rn))m and of F−1 on (Z ′

n)m are coordinatewise.
Let m, n, d ∈ N and let Mm denote the ring of all complex matrices of for-

mat m × m. Define P (x) :=
∑

|η|6d Aηxη, x ∈ R
n (Aη ∈ Mm), P (∂/∂x) :=

∑

|η|6d Aη(∂/∂x)η, and P̃ (ξ) :=
∑

|η|6d i|η|Aηξη. Denote by λ1(ξ), . . . , λm(ξ) the

eigenvalues of P̃ (ξ) (ξ ∈ Rn).
In the sequel, we will always consider the case in which the space E is bar-

reled, so that every (gα, C)-regularized resolvent family (Rα(t))t>0 in E is locally
equicontinuous (cf. [9, Remark 2.2]). The results obtained in this paper can be
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used in the analysis of the following system of abstract time-fractional equations
with α > 0:

(1.2) Dα
t ~u(t) = P (∂/∂x)|E~u(t), t > 0; ~u(k)(0) = ~xk, k = 0, 1, . . . , ⌈α⌉ − 1,

where Dα
t denotes the Caputo fractional derivative of order α ([2, 10]). If ~xk ∈

C(D(P (∂/∂x)|E)), k = 0, 1, . . . , ⌈α⌉ − 1, then the unique solution of (1.2) is given
by:

~u(t) = Rα(t)C−1 ~x0 +

⌈α⌉
∑

j=1

∫ t

0

(t − s)j−1

(j − 1)!
Rα(s)C−1 ~xj−1ds, t > 0.

Let α > 0. Then it is not difficult to prove that the formula Gα(t)~f :=

Eα(tαP̃ (ξ))~f , t > 0, ~f ∈ (D′(Rn))m, determines a global (gα, I)-regularized re-
solvent family on (D′(Rn))m, and that the integral generator of (Gα(t))t>0 is the

multiplication operator P̃ (ξ)|(D′(Rn))m ∈ L((D′(Rn))m). Furthermore, the formula

Rα(t)~f := FEα

(

tαP̃ (ξ)
)

F−1 ~f, t > 0, ~f ∈ (Z ′
n)m,

determines a global (gα, I)-regularized resolvent family (Rα(t))t>0 on (Z ′
n)m. The

operator P (∂/∂x)|(Z′

n)m ∈ L((Z ′
n)m) is the integral generator of (Rα(t))t>0, and

(Gα(t))t>0 as well as (Rα(t))t>0 can be extended to the whole complex plane. The
following holds:

(i) Let α ∈ (0, ∞) rN and ~f ∈ (Z ′
n)m.

(i.1) The mapping z 7→ Rα(z)~f , z ∈ C r (−∞, 0] is analytic.

(i.2) The mapping t 7→ Rα(t)~f , t > 0 belongs to the space C⌊α⌋([0, ∞) :
(Z ′

n)m).
(i.3) For every compact set K ⊆ C r (−∞, 0], the family {Rα(z) : z ∈

K} ⊆ L((Z ′
n)m) is equicontinuous.

(ii) Let α ∈ N and ~f ∈ (Z ′
n)m.

(ii.1) The mapping z 7→ Rα(z)~f , z ∈ C is entire.
(ii.2) For every compact set K ⊆ C, the family {Rα(z) : z ∈ K} ⊆

L((Z ′
n)m) is equicontinuous.

Observe also that the above assertions continue to hold for (Gα(t))t>0 and ~f ∈
(D′(Rn))m, and that, for every z ∈ C, Rα(z)Zm

n ⊆ Zm
n and Rα(z)(FE ′(Rn))m ⊆

(FE ′(Rn))m. This implies that (Rα(t)|Zm
n

)t>0, resp. (Rα(t)|(FE′(Rn))m)t>0, is a lo-
cally equicontinuous (gα, I)-regularized resolvent family generated by P (∂/∂x)|Zm

n
,

resp. P (∂/∂x)|(FE′(Rn))m .

2. Formulation and proof of main results

In the following theorem, we will transfer the assertion of [7, Theorem 1,
(a) ⇒ (b)] to abstract time-fractional equations.

Theorem 2.1. Suppose ω > 0, 0 < α 6 2 and

(2.1) sup
z∈σ(P̃ (ξ))

ℜ
(

z1/α
)

6 ω.

Let E be one of the spaces listed below:
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(i) E = (S(Rn))m or E = (S′(Rn))m.
(ii) E = Xn, where X is Lp(Rn) (1 6 p 6 ∞), C0(Rn), Cb(Rn), BUC(Rn)

or Cσ(Rn) (0 < σ < 1).

(iii) E = {~f ∈ (L2(Rn))m : (P (∂/∂x))l ~f ∈ (L2(Rn))m for all l ∈ N}, with the
topology induced by the following family of seminorms:

∥

∥~f
∥

∥

l
:=

∥

∥

(

P (∂/∂x)
)l ~f

∥

∥

(L2(Rn))m (~f ∈ E, l ∈ N0).

Then the operator P (∂/∂x)|E is the integral generator of a global (gα, I)-regularized
resolvent family (Sα(t))t>0 on E satisfying that, for every p ∈ ⊛ and ǫ > 0, there
exist M > 1 and q ∈ ⊛ such that:

(2.2) p
(

e−(ω+ǫ)tSα(t)
)

6 Mq(x), t > 0, x ∈ E.

Proof. We will prove the theorem provided that α ∈ (0, 2) r {1}. Let ǫ > 0
be fixed and let Γǫ denote the boundary of the region {z ∈ C : ℜ(z1/α) 6 ω + ǫ}.

I. The case 1 < α < 2. Suppose a positively oriented curve Cξ encircles

the spectrum of P̃ (ξ) and is a subset of {z ∈ C : ℜ(z1/α) 6 ω + ǫ/2} (ξ ∈ Rn).
Notice that, for every ξ0 ∈ Rn, there exists an open neighborhood Uξ0

of ξ0 such

that Cξ0
encircles the spectrum of P̃ (ξ) for all ξ ∈ Uξ0

. Let z0 > (ω + 2ǫ)α. Using
[7, Theorem II, (iii)] and the Cauchy integral formula, we obtain that there exists
v ∈ N such that:

Eα

(

tαP̃ (ξ)
)

=
(

P̃ (ξ) − z0I
)2 1

2πi

∮

Cξ

Eα

(

tαz
)

(

z − z0
)2

(

zI − P̃ (ξ)
)−1

dz

=
(

P̃ (ξ) − z0I
)2[

a0(t, ξ)I + · · · + am−1(t, ξ)P̃ (ξ)m−1]

, t > 0, ξ ∈ R
n,(2.3)

where aj(t, ξ) can be written as a finite sum, with coefficients independent of t and
ξ, of terms like

Si1,...,im;l(t, ξ) = λi1

1 (ξ) · · · λim
m (ξ)

1

2πi

∮

Cξ

Eα

(

tαz
)

(

z − z0
)2

dz

(z − λ1(ξ)) · · · (z − λl(ξ))
,

where t > 0, ξ ∈ Rn, ij ∈ N0 for 1 6 j 6 m and i1 + · · · + im 6 v. By Lemma 1.1
and (2.1) (cf. also the proof of [11, Theorem 2.1]), we get that there exists Mǫ > 0
such that |Eα(tαz)| 6 Mǫe

(ω+ǫ)t for all t > 0 and z ∈ C with ℜ(z1/α) 6 ω + ǫ/2.
Since dist(Γǫ/2, Γǫ) := κ(ω, α, ǫ) > 0, the residue theorem implies that, for every
t > 0 and ξ ∈ Rn:

Si1,...,im;l(t, ξ) = λi1

1 (ξ) · · · λim
m (ξ)

1

2πi

∫

Γǫ

Eα

(

tαz
)

(

z − z0
)2

dz

(z − λ1(ξ)) · · · (z − λl(ξ))
,

which yields the existence of a number σ > 0 such that:

∣

∣Si1,...,im;l(t, ξ)
∣

∣ 6
Mǫ

2π

(

1 + |ξ|
)σ

e(ω+ǫ)t

∫

Γǫ

d|z|
∣

∣z − z0
∣

∣

2 ,

provided ij ∈ N0 for 1 6 j 6 m and i1 + · · · + im 6 v. In combination with (2.3),
the above implies that there exist Nǫ > 0 and σ1 > 0 such that:

(2.4)
∥

∥Eα

(

tαP̃ (ξ)
)
∥

∥ 6 Nǫ

(

1 + |ξ|
)σ1

e(ω+ǫ)t, t > 0, ξ ∈ R
n.
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Now we will prove that, for every multi-index η ∈ Nn
0 with |η| > 0, there exist

Nǫ,η > 0 and ση > 0 such that:

(2.5)
∥

∥Dη
(

Eα

(

tαP̃ (ξ)
))

∥

∥ 6 Nǫ,η

(

1 + |ξ|
)ση

e(ω+ǫ)t, ; t > 0, ξ ∈ R
n.

Noticing that D−1 = adj(D)/ det(D) for every regular matrix D ∈ Mm, we obtain
that there exist lη ∈ N and polynomials qη

ij(ξ, z) in (n + 1) variables such that, for

every ξ ∈ Rn and z ∈ ρ(P̃ (ξ)):

Dη
(

zI − P̃ (ξ)
)−1

=
[qη

ij(ξ, z)]16i,j6m
(

z − λ1(ξ)
)lη

· · ·
(

z − λm(ξ)
)lη

.

Set Nη := max{dg(qη
ij(ξ, z)) : 1 6 i, j 6 m} + 2. By the Cauchy integral formula,

one has:

Eα

(

tαP̃ (ξ)
)

=
(

P̃ (ξ)−z0I
)Nη 1

2πi

∮

Cξ

Eα

(

tαz
)

(

z − z0
)Nη

(

zI −P̃ (ξ)
)−1

dz, t > 0, ξ ∈ R
n.

Further on,

Dη 1

2πi

∮

Cξ

Eα

(

tαz
)

(

z − z0
)Nη

(

zI − P̃ (ξ)
)−1

dz

=
1

2πi

∮

Cξ

Eα

(

tαz
)

(

z − z0
)Nη

Dη
(

zI − P̃ (ξ)
)−1

dz

=
1

2πi

∮

Cξ

Eα

(

tαz
)

(

z − z0
)Nη

[

qη
ij(ξ, z)

]

16i,j6m
dz

(

z − λ1(ξ)
)lη

· · ·
(

z − λm(ξ)
)lη

=
1

2πi

∫

Γǫ

Eα

(

tαz
)

(

z − z0
)Nη

[

qη
ij(ξ, z)

]

16i,j6m
dz

(

z − λ1(ξ)
)lη

· · ·
(

z − λm(ξ)
)lη

(2.6)

6 Mκ(ω, α, ǫ)−mlη
Mǫ

2π
e(ω+ǫ)t

(

1 + |ξ|
)Nη−2

∫

Γǫ

(

1 + |z|
)Nη−2

∣

∣z − z0
∣

∣

Nη
d|z|,(2.7)

where (2.6) follows from the residue theorem. Using the matrix differentiation rules
and (2.7), we immediately obtain (2.5).

(i): Let E = (S(Rn))m. By the invariance of E under the Fourier transform, it
follows that Sα(t) := Rα(t)|E ∈ L(E) for all t > 0. Having in mind [7, Theorem B]
and (2.4)–(2.5), we get that, for every p ∈ ⊛, there exist M > 1 and q ∈ ⊛ such
that (2.2) holds. Let ~x ∈ E, let t > 0 and let ~xn be a sequence in Zm

n such that
limn→∞ ~xn = ~x in E. Suppose that p is a continuous seminorm on E. Let M > 1
and q ∈ ⊛ be such that (2.2) holds. Then p|Zm

n
is a continuous seminorm on Zm

n ,
and the strong continuity of (Sα(t))t>0 simply follows from the following estimate:

p
(

Sα(t)~x − Sα(s)~x
)

6 M
(

e(ω+ǫ)t + e(ω+ǫ)s
)

+ p|Zm
n

(

Rα(t) ~xn − Rα(s) ~xn

)

.

Therefore, (Sα(t))t>0 is an exponentially equicontinuous (gα, I)-regularized resol-
vent family generated by P (∂/∂x)|E. The proof is quite similar in the case E =
(S′(Rn))m.
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(ii): Suppose first X 6= Cσ(Rn). Then estimates (2.4)–(2.5), taken together
with the product rule and the Bernstein’s lemma [1, Lemma 8.2.1], imply that
there exists a sufficiently large v ∈ N such that, for given t > 0 in advance, every
entry of the matrix ft(ξ) ≡ [Eα(tαP̃ (ξ))(1 + |ξ|2)−v] belongs to A. Then it is
not difficult to prove that the expression (Wα(t) ≡ ft(−i∂/∂x1, . . . , −i∂/∂xn))t>0

(cf. the previous section for the definition of functional calculus) determines an
exponentially bounded (gα, (1 − ∆)−v)-regularized resolvent family generated by
P (∂/∂x)|X . Furthermore, ‖Wα(t)‖X = O(e(ω+ǫ)t), t > 0. By the definition of

topology of E, it follows that (Rα(t) ≡ Wα(t)Wα(0)−1)t>0 is an exponentially
equicontinuous (gα, I)-regularized resolvent family generated by P (∂/∂x)|E, and
that, for every p ∈ ⊛, there exist M > 1 and q ∈ ⊛ such that (2.2) holds. Keeping
in mind the assertion [6, b), p. 374], a similar proof works in the case X = Cσ(Rn)
(0 < σ < 1).

(iii): Let Q be the totality of indexes q = (j1, . . . , js) where 1 6 s 6 m and
1 6 j1 < · · · < js 6 m. By [4, Lemma 3] (cf. also [18, Lemma 10.1]), we obtain
that there exist absolute constants αk

p,q (0 6 p 6 m − 1, q ∈ Q, 0 6 k 6 m − 1)
such that, for every t > 0 and ξ ∈ Rn,

Eα

(

tαP̃ (ξ)
)

=
(

P̃ (ξ) − z0I
)m+1

×

m−1
∑

k=0

(

∑

06p6m−1,q∈Q

αk
p,q

1

2πi

∮

Cξ

zpEα

(

tαz
)

(

z − z0
)m+1 ∏

j∈q

(

z − λj(ξ)
)

dz

)

P̃ (ξ)k

=

m−1
∑

k=0

(

∑

06p6m−1,q∈Q

αk
p,q

1

2πi

∮

Cξ

zpEα

(

tαz
)

(

z − z0
)m+1 ∏

j∈q

(

z − λj(ξ)
)

dz

)

×
(

P̃ (ξ) − z0I
)m+1

P̃ (ξ)k.

Then one gets the existence of a number Kǫ > 0 such that, for every t > 0, ξ ∈ Rn,
0 6 p 6 m − 1 and q ∈ Q,

∥

∥

∥

1

2πi

∮

Cξ

zpEα

(

tαz
)

(

z − z0
)m+1 ∏

j∈q

(

z − λj(ξ)
)

dz
∥

∥

∥

=
∥

∥

∥

1

2πi

∫

Γǫ

zpEα

(

tαz
)

(

z − z0
)m+1 ∏

j∈q

(

z − λj(ξ)
)

dz
∥

∥

∥

6 Kǫe
(ω+ǫ)t

∫

Γǫ

(

1 + |z|
)m−1

∣

∣z − z0
∣

∣

m+1 d|z|,

and the proof of [7, Theorem 1(v)] can be repeated verbatim.

II. The case 0 < α < 1. Although technically complicated, the proof of the
theorem in this case is almost the same as the proof of the theorem in the case I.
The essential change is only the passing from the integration along the curve Cξ,
by using the residue theorem, to the integration along Γǫ. Put k0 := ⌈1/2α⌉ and
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suppose first that ω = 0. Then ℜ(reiθ) 6 0 (r > 0, θ ∈ (−π, π]) iff

θ ∈

(k0−1
⋃

k′=0

±
[

α
(4k′ + 1)π

2
, α

(4k′ + 3)π

2

]

)

∩ (−π, π] =: Sα.

Furthermore, the set Φα := {z ∈ C r {0} : arg(z) ∈ (−π, π] r Sα} has a finite
number of connected components, which implies that Γǫ = {(ǫ/ cos(θ/α))αeiθ :
θ ∈ (−π, π] r Sα} can be represented as a finite union of smooth curves. Set
Γǫ,R := Γǫ ∩ {z ∈ C : |z| = R} (R > 0). Then there exists Mǫ > 0 such that
|Eα(tαz)| 6 Mǫe

ǫt, t > 0, z ∈
⋃

R>0(Γǫ,R)◦. This implies that, for every ξ ∈ Rn,
there exists a sufficiently large Rξ > 0 such that, for every R > Rξ, the path of
integration Cξ, in any of the integrals considered in the case I, can be deformed into
the curve Γǫ,R. Now the claimed assertion follows by observing that the distance
between ∂Φα and Γǫ is positive, and that

lim
R→∞

∮

z∈Γǫ,R,|z|=R

Eα

(

tαz
)

(

z − z0
)2 dz = 0.

If ω > 0, then ℜ(reiθ) 6 ω (r > 0, θ ∈ (−π, π]) is equivalent to

θ ∈ Sα or
(

θ ∈ (−π, π] r Sα and r 6 (ω/(cos(θ/α)))α
)

,

so that the proof follows similarly as in the case ω = 0. �

Remark 2.1. (i) Let (E, ‖·‖) be a complex Banach space and let iAj , 1 6 j 6 n
be commuting generators of bounded C0-groups on E. For a polynomial matrix
P (x) =

∑

|η|6d Pηxη (Pη ∈ Mm), we define P (A) ≡
∑

|η|6d PηAη with a maximal

domain. Then it is well known that P (A) is closable. Suppose ω > 0 and

sup
x∈Rn

{

ℜ
(

λ(x)1/α
)

: λ(x) ∈ σ(P (x))
}

6 ω.

Then the proof of Theorem 2.1(I) implies that there exists a sufficiently large σ > 0

such that P (A) is the integral generator of a global (gα, (1 + |A|2)−σ)-regularized
resolvent family (Sα(t))t>0 on Em satisfying that, for every ǫ > 0, there exists

Mǫ > 1 such that ||Sα(t)|| 6 Mǫe
(ω+ǫ)t, t > 0. Disappointingly, our method

produces a completely imprecise estimate for the lower bound of σ; the additional
difficulty is that the equality

Dη
(

Eα

(

tαP (x)
))

=

|η|
∑

j=1

tαjE(j)
α

(

tαP (x)
)

Qj(x), t > 0, x ∈ R
n, m = 1,

where Qj(x) are complex polynomials of degree 6 Nj −|η| (1 6 j 6 |η|), cannot be
so easily interpreted in the matricial case m > 1. Using distributional techniques,
the above generation result remains true, with suitable modifications, in the case
that E is L∞(Rn), Cb(Rn) or Cσ(Rn) (0 < σ < 1).

(ii) In contrast to [7, Theorem 1], Theorem 2.1(ii) covers the case E = Xn,
where X is Lp(Rn) (p ∈ [1, ∞)r {2}), C0(Rn) or Cσ(Rn) (0 < σ < 1). Notice also
that it is not clear how one can transfer the implication [7, Theorem 1, (b) ⇒ (a)]
to abstract time-fractional equations.
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Now we will prove the following extension of [3, Theorem 14.1].

Theorem 2.2. Let (E, ‖ · ‖) be a complex Banach space and let iAj, 1 6 j 6 n
be commuting generators of bounded C0-groups on E. Suppose α > 0 and P (x) =
∑

|η|6d Pηxη (Pη ∈ Mm, x ∈ Rn) is a polynomial matrix. Then there exists an

injective operator L(E) ∋ C with a dense range such that the operator P (A) is the
integral generator of a global (gα, Cm)-regularized resolvent family (Wα(t))t>0 on
Em. Furthermore, the mapping t 7→ Wα(t), t > 0 can be extended to the entire
complex plane and the following holds:

(i) R(Wα(z)) ⊆ D∞(P (A)), z ∈ C and

(2.8) P (A)

∫ z

0
gα(z − s)Wα(s)~xds = Wα(z)~x − Cm~x, z ∈ C, ~x ∈ Em.

(ii) The mapping z 7→ Wα(z), z ∈ C r (−∞, 0] is analytic.
(iii) The mapping z 7→ Wα(z), z ∈ C is entire, provided that α ∈ N.

Proof. Let 2|k, k > 1/α, a > 0 and C := (e−a|x|kd

)(A). Then C ∈ L(E), C
is injective and D∞(A2

1 + · · · + A2
n) ⊇ R(C) is dense in E (cf. [12, p. 152]). Assume

that P (x)l = [pij;l(x)]16i,j6m for l ∈ N0 and x ∈ R
n. Define

Wα(z)~x :=
∞

∑

l=0

zαl

Γ(αl + 1)
P (A)lCm~x, z ∈ C, ~x ∈ Em.

Then it is checked at once that

Wα(z) :=

[ ∞
∑

l=0

zαl

Γ(αl + 1)

(

pij;l(x)e−a|x|kd
)

(A)

]

16i,j6m

, z ∈ C.

Let ǫ ∈ (0, 1) be fixed. Then there exists a constant M1 < ∞ such that, for every
multi-index η ∈ N

n
0 with |η| 6 k1 ≡ 1 + ⌊n/2⌋,

∣

∣p
(η)
ij;l(x)

∣

∣ 6 M l
1(1 + |x|)ld, x ∈ R

n, 1 6 i, j 6 m, l ∈ N0 and
∣

∣

(

e−a|x|kd)(η)
(x)

∣

∣ 6 M1e−ǫa|x|kd

, x ∈ R
n.(2.9)

The asymptotic formula for the Gamma function combined with the choice of k
implies that liml→∞ Γ(2ld+n

kd )1/2lΓ(αl + 1)(−1)/l = 0 and that the mapping z 7→
∑∞

l=0
zl

Γ(αl+1) Γ(2ld+n
kd )1/2, z ∈ C is entire. Furthermore, a direct computation shows

that there exists a constant M3 < ∞ such that

(2.10)

(
∫

Rn

(1 + |x|)2lde−2ǫa|x|kd

dx

)1/2

6 M l
3

[

1 + Γ
(2ld + n

kd

)1/2]

, l ∈ N0.

Taking into account (1.1) and (2.9)–(2.10), an elementary calculus involving Bern-
stein’s lemma, the dominated convergence theorem and the product rule, implies
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that there exist constants M2, M4 < ∞ such that, for 1 6 i, j 6 m and z ∈ C,
∥

∥

∥

∥

∞
∑

l=0

zαl

Γ(αl + 1)

(

pij;l(x)e−a|x|kd
)

(A)

∥

∥

∥

∥

6 M2

∞
∑

l=0

|z|αl

Γ(αl + 1)

∥

∥

∥
F

(

pij;l(x)e−a|x|kd
)∥

∥

∥

L1(Rn)

6 M2

∑

|η|6k1

∞
∑

l=0

|z|αl

Γ(αl + 1)

∥

∥

∥
Dη

(

pij;l(x)e−a|x|kd)

∥

∥

∥

L2(Rn)

6 M1M2M4

∞
∑

l=0

|z|αl

Γ(αl + 1)
M l

1

(
∫

Rn

(1 + |x|)2lde−2ǫa|x|kd

dx

)1/2

6 M1M2M4

∞
∑

l=0

|z|αl

Γ(αl + 1)
M l

1M l
3

[

1 + Γ
(2ld + n

kd

)1/2]

6 M1M2M4cαe|z|M
1/α
1

M
1/α
3

+ M1M2M4

∞
∑

l=0

(

|z|αM1M3
)l

Γ(αl + 1)
Γ

(2ld + n

kd

)1/2
< ∞.

Hence, Wα(z) ∈ L(E), z ∈ C. It is clear that Wα(0) = Cm and that the map-
ping t 7→ Wα(t), t > 0 is strongly continuous. It is straightforward to prove

that CmP (A) ⊆ P (A)Cm, Wα(z)P (A) ⊆ P (A)Wα(z), z ∈ C and Wα(z)Cm =
CmWα(z), z ∈ C. Using the dominated convergence theorem and the closedness of

P (A), we get that:

P (A)

∫ z

0
gα(z − s)Wα(s)~x ds

= P (A)

∞
∑

l=0

∫ z

0
gα(z − s)gαl+1(s)P (A)

l
Cm~x ds

= P (A)
∞

∑

l=0

gα(1+l)+1(z)P (A)
l
Cm~x

=

∞
∑

l=0

gα(1+l)+1(z)P (A)
l+1

Cm~x

= Wα(z)~x − Cm~x, z ∈ C, ~x ∈ Em.

Therefore, (Wα(t))t>0 is a global (gα, Cm)-regularized resolvent family which does

have P (A) as a subgenerator. Furthermore, (2.8) holds and C−1
m P (A)Cm = P (A)

[21], which implies that P (A) is, in fact, the integral generator of (Wα(t))t>0. This
completes the proof of (i). The proofs of (ii) and (iii) are left to the reader. �

Remark 2.2. (i) If m = 1, p11(x) =
∑

|α|6d aαxα, x ∈ Rn (aα ∈ C) and

E is a function space on which translations are uniformly bounded and strongly
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continuous (for example, Lp(Rn) with p ∈ [1, ∞), C0(Rn) or BUC(Rn); notice also
that E can be composed of functions defined on some bounded domain [3, 12, 21]),

then the natural choice for Aj is i∂/∂xj (1 6 j 6 n). In this case, P (A) is just

the operator
∑

|α|6d aαi|α|(∂/∂x)α with its maximal distributional domain. By

Theorem 2.2, we infer that for each α > 0 there exists a dense subset E0,α of
Lp(Rn) such that the abstract Cauchy problem:

Dα
t u(t, x) =

∑

|α|6d

aαi|α|(∂/∂x)αu(t, x), t > 0, x ∈ R
n;

∂l

∂tl
u(t, x)|t=0 = fl(x), x ∈ R

n, l = 0, 1, . . . , ⌈α⌉ − 1,

has a unique solution provided fl(·) ∈ E0,α, l = 0, 1, . . . , ⌈α⌉−1. A similar assertion
can be proved in the case that E is L∞(Rn), Cb(Rn) or Cσ(Rn) (0 < σ < 1).

(ii) The results stated in Remark 2.1(i), Theorem 2.2, and the first part of this
remark, can be reformulated for (systems of) abstract time-fractional equations
considered in El-type spaces.

We close the paper with the following theorem.

Theorem 2.3. (i) Suppose α > 0 and X is S(Rn) or S′(Rn). Then there exists
an injective operator C ∈ L(X) with dense range such that the operator P (∂/∂x)|E

is the integral generator of a global (gα, Cm)-regularized resolvent family (Wα(t))t>0

on E ≡ Xm. Furthermore, the mapping t 7→ Wα(t), t > 0 can be extended to the
entire complex plane and the properties (i)–(ii) stated in the first section remain
true with Rα(·) and (Z ′

n)m replaced by Wα(·) and E, respectively.

(ii) Suppose α > 0, X is L2(Rn) and E = {~f ∈ (L2(Rn))m : (P (∂/∂x))l ~f ∈
(L2(Rn))m for all l ∈ N}. Then there exists an injective operator C ∈ L(X)
such that the operator P (∂/∂x)|E is the integral generator of a global (gα, Cm|E)-
regularized resolvent family (Wα(t))t>0 on E. Furthermore, R(Cm|E) is dense in
E, the mapping t 7→ Wα(t), t > 0 can be extended to the entire complex plane and
the properties (i)–(ii) stated in the first section remain true with Rα(·) and (Z ′

n)m

replaced by Wα(·) and E, respectively.

Proof. Suppose first that E = (S(Rn))m. Let a > 0, 2|k and k > 1/α. Define

Wα(z) := FEα

(

zαP̃ (ξ)
)

e−a|ξ|kd

F−1, z ∈ C

and Cf := Fe−a|ξ|kd

F−1f , f ∈ S(Rn). Let P̃ (ξ)l = [pij;l(ξ)]16i,j6m (l ∈ N0,
ξ ∈ Rn). Then it is obvious that:

Wα(z)~f =

[ ∞
∑

l=0

zαl

Γ(αl + 1)
F

(

pij;l(ξ)e−a|ξ|kd
)

F−1
]

16i,j6m

~f, z ∈ C, ~f ∈ E.

Since F and F−1 are topological isomorphisms of S(Rn), we immediately obtain
that L(X) ∋ C is injective. Clearly, R(C) is dense in X and L(E) ∋ Wα(0) = Cm

is injective. In order to prove that Wα(z) ∈ L(E) for every z ∈ C, it suffices to
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show (cf. [16, Theorem 8.19-8.21]) that, for every multi-index η ∈ Nn
0 , there exist

Mη > 1 and Nη ∈ N such that:

(2.11)
∥

∥

∥
Dη

[

Eα

(

zαP̃ (ξ)
)

e−a|ξ|kd
]∥

∥

∥
6 Mη(1 + |ξ|)Nη , ξ ∈ R

n.

It can be easily seen that there exists M1 > 1 such that, for every η ∈ Nn
0 , one has

|p
(η)
ij;l(ξ)| 6 M l

1(1 + |ξ|)ld, ξ ∈ Rn, 1 6 i, j 6 m, l ∈ N0, which implies by (1.1) that,
for every z ∈ C, ξ ∈ Rn and l ∈ N0:

∥

∥Eα

(

zαP̃ (ξ)
)
∥

∥ 6 Eα

(

M1|z|α
(

1 + |ξ|
)d)

6 cαeM
1/α
1

|z|(1+|ξ|)d/α

.

Further on,
∥

∥

∥

∂

∂ξj
Eα

(

zαP̃ (ξ)
)

∥

∥

∥

=

∥

∥

∥

∥

∞
∑

l=1

zαl

Γ(αl + 1)

[

P̃ (ξ)l−1
( ∂

∂ξj
P̃ (ξ)

)

+ · · · +
( ∂

∂ξj
P̃ (ξ)

)

P̃ (ξ)l−1
]

∥

∥

∥

∥

6

∞
∑

l=1

|z|αl

Γ(αl + 1)
lM l−1

1

(

1 + |ξ|
)d(l−1)

6

∞
∑

l=1

|z|αl

Γ(αl + 1)

(

2M1
)l(

1 + |ξ|
)dl

6 cαe|z|(2M1)1/α(1+|ξ|)d/α

, z ∈ C, ξ ∈ R
n, 1 6 j 6 n.

Continuing in this way, we obtain that, for every η ∈ Nn
0 , there exists bη > 1 such

that:

∥

∥DηEα

(

zαP̃ (ξ)
)∥

∥ 6

∞
∑

l=1

|z|αl

Γ(αl + 1)

(

bηM1
)l(

1 + |ξ|
)dl

6 cαe|z|b1/α
η M

1/α
1

(1+|ξ|)d/α

, z ∈ C, ξ ∈ R
n.

Taken together with the product rule and (2.9), the last estimate immediately
implies (2.11). The strong continuity of (Wα(t))t>0 follows form the estimate |tαl −
sαl| 6 l|tα−sα| max(t, s)l−1, t, s > 0 and the previously given arguments. Applying
twice the Darboux inequality, one yields that, for every z ∈ Cr(−∞, 0], there exists
a constant κ(z) > 1 such that:

(2.12)
∣

∣

∣

(z + h)αl − zαl

h
− αlzαl−1

∣

∣

∣
6 |h|κ(z)αl,

for any h ∈ C with |h| < dist(z, (−∞, 0]). Using (2.12), it readily follows that the

mapping z 7→ Wα(z)~f , z ∈ Cr (−∞, 0] is analytic for every fixed ~f ∈ E and that,

for every z ∈ Cr (−∞, 0] and ~f ∈ E:

d

dz
Wα(z)~f =

[ ∞
∑

l=1

αlzαl−1

Γ(αl + 1)
F

(

pij;l(ξ)e−a|ξ|kd
)

F−1
]

16i,j6m

~f.
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One obtains similarly that, for every ~f ∈ E, the mapping z 7→ Wα(z)~f , z ∈ C

is entire, provided α ∈ N, and that the mapping t 7→ Wα(t)~f , t > 0 is in
C⌊α⌋([0, ∞) : E). The rest of the proof in the case E = (S(Rn))m is simple. The
proof of the theorem in the case E = (S′(Rn))m is similar and therefore omitted.

To prove (ii), set Wα(z)~f := FEα(zαP̃ (ξ))e−a|ξ|kd

F−1 ~f , z ∈ C, ~f ∈ (L2(Rn))m

and Cf := Fe−a|ξ|kd

F−1f , f ∈ L2(Rn), where a > 0, 2|k and k > 1/α. Certainly,
R(Cm|E) is dense in E and there exists c > 0 such that:

max
16j6m

∣

∣λj(ξ)
∣

∣ 6 c
(

1 + |ξ|
)d

, ξ ∈ R
n.

Keeping in mind the proofs of [7, Theorem 1(v)] and Theorem 2.1(iii), it suffices to
show that there exists a non-negative function t 7→ f(t), t > 0 such that, for every
p ∈ {0, . . . , m − 1}, q ∈ Q, t > 0 and ξ ∈ Rn:

(2.13)
∥

∥

∥

1

2πi

∮

Cξ

zpEα

(

tαz
)

(

z − 3c(1 + |ξ|)d
)m+1 ∏

j∈q

(

z − λj(ξ)
)

e−a|ξ|kd

dz
∥

∥

∥
6 f(t).

Using the Cauchy theorem and (1.1), we easily infer that there exists µ > 0 such
that:

∥

∥

∥

1

2πi

∮

Cξ

zpEα

(

tαz
)

(

z − 3c(1 + |ξ|)d
)m+1 ∏

j∈q

(

z − λj(ξ)
)

e−a|ξ|kd

dz
∥

∥

∥

=
∥

∥

∥

1

2πi

∮

|z|=2c(1+|ξ|)d

zpEα

(

tαz
)

(

z − 3c(1 + |ξ|)d
)m+1 ∏

j∈q

(

z − λj(ξ)
)

e−a|ξ|kd

dz
∥

∥

∥

6 µeµt + eµt|ξ|d/α−a|ξ|kd

, t > 0, ξ ∈ R
n.

Now the existence of function t 7→ f(t), t > 0 satisfying (2.13) follows from the
choice of k. The proof of the theorem is completed. �
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