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ON THE CONVERSE THEOREM OF
APPROXIMATION IN VARIOUS METRICS
FOR NONPERIODIC FUNCTIONS

Milos Tomié
Communicated by Gradimir Milovanovicé

ABSTRACT. The modulus of smoothness in the norm of space Ly of nonperiodic
functions of several variables is estimated by best approximations by entire
functions of exponential type in the metric of space Ly, 1 <p < g < oo.

1. Introduction and preliminaries

A converse theorem of approximation in various metrics for 27 periodic func-
tions of several variables was proved in [5]. We prove the theorem of representation
for the derivative of a function, and then the analogous converse theorem for non-
periodic functions defined on the space R™. In this way we generalize and improve
the results from [4] 6.4].

As usually we say that f(z1,...,2,) € Lp(R"), 1 <p < oo if

1/p 1/p
= ([ 1o e, ) = ([ irpar) T <oo o= @naam)
R™ R™

The notions of the best approximation and of the modulus of smoothness are given
in [2] and [4].

Let 9o = guy..wn (T1,..,Tn), v = (11,...,Vn), (9 € Lp) be an entire func-
tion of exponential type v; with respect to the variable z; (i = 1,2,...,n). The
best approximation E,, . ., (f)p of a function f € L,(R") by entire functions of
exponential type is the quantity

Em-,---,un(f)p = iglf If— gl’lvan”p
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The modulus of smoothness of order k of a function f with respect to the variable
ZT; is

wr(f30:)p = wi(£;0,...,0,6;,0,...,0), = |hSl\l<p§ IAF fllp

where
k Ik
Ak f = Z(—l)k_] (j,)f(ﬂ?l, s i1, T+ JRi Tig, . Tn).
=0

The derivative of a function f is denoted by

f(l/17~~~,l/n) — 6T1+.”+Tnf
Ozt ... 0z
LEMMA 1.1. If A; L 0 as i — oo, then for A=1,2,... and s > 1 the following
inequalities hold

2>\
(1.1) D N D D .
i=22 141
2)\
(1.2) Dy P A W A ¥
§=22—141

ProoOF. We have

2>\

Z ,L'S—l — (2)\—1 + 1)5—1 + . + (2)\)8—1 > (2)\—1 + 1)5—1 . 2)\—1 2 (2)\—1)8'
=22 141

Therefore
2)\

(1.3) A D D A
i=22 141

Since the sequence A; is monotonic, (L)) follows from (I3]). Multiplying inequality
(CI) by 224, we get inequality (TZ). O

LEMMA 1.2. If A; 1 0 as i — oo, and s > 1, then the following inequality holds

om 277171
(1.4) dooirtA <t Y it A, m=2,3,. .
g=2m—141 i=2m—241

PRrROOF. The following inequalities hold because the sequence A; is monotonic

2m 2m
(1.5) i A < A > T
i:%%:llJrl i:%’]}lilﬁl

(1.6) oA > Agun Y i

i=2m—241 i=2m—241
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We have
om
Z 7;sfl < (2m)sfl . 2171717
i=2m—141
277171
Z is_l > (2m—2)s—1 .2m—2 _ 21—25 . (Qm)s—l . 2m—1'
i=2m—241

From the above two inequalities it follows

om 2mfl
(17) Z 7:571 < 22571 Z 7:571.
i=2m=141 i=2m—241
Multiplying (I7) by Agm-1 and in view of (ILH) and (L8]), we get (L2). O

REMARK 1.1. Lemmas 1.1 and 1.2 are valid for 0 < s < 1 also, with different
constants C' = C(s). So inequality (I.T]) becomes
2>\
27D 4, <297 N itTA (0<s< 1),
i=22A"141

2. Theorem of representation

Let g» = Gvy..0(T1,...,Zn), ¥ = (V1,...,Vn), be an entire L, function of
exponential type v; with respect to the variable z; (i = 1,2,...,n), by which the
best approximation E,, . .. (f), is achieved, i.e., let

(21) EV1,~~~,Vn(f);D = ”f_gm...unnp'

From these entire functions g,,.. ., (z1,...,x,) we create entire functions

(2.2) f)\ = JoO+1)l1  ox+1_ 2(A+Din — g2Xl1 2N 2XAln, A= O, 1, 2, N

for given natural numbers I; (j = 1,2,...,n) where [; = 1 for a chosen number
1€ {1,2,...,n}. The function &) is entire of exponential type 2Dl with respect
to x;.

THEOREM 2.1. Let f € L,(R™) and r; be nonnegative integers, and l; (j =
1,...,n) be natural numbers, where l; =1 for some i € {1,2,...,n}. If the follow-
ing inequality holds for the best approzimation of the function

(2.3) Z AT E 0 i (Fp < 00,
A=1

where

- 1 1
(2.4) a:le(err;—g), I<p<g<oo,
j=1
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then the function f has a derivative f(") belonging to Lg and in the sense of
L the equality

e ) @ () N
(2.5) flrueorn) 2 95..1.1 )+ Z§A1
A=0

holds.

ProoOF. For the sum
(2:6) Gm=g11+Y &, m=0,1,2...
A=0

the equality
(2.7) Gm = Gatm+niy | gm+1 g(m+1)in
holds. In view of (21 and (Z7)) we conclude that

1f = Gonlly = Batwsins_amsr_acssnn (F)p
hence, it follows that
(2.8) If — Gmllp = 0 as m — oo.
This means that the equality

(2.9) ! @ gi.a+ ZQ
A=0
holds in L.
In the next step we prove (2.9) holds in L,. For £, we have
(2.10) 16xllp < 2E9an_on _oain (f)p-

Applying the inequality of various metrics of Nikolsky [2] 3.3.5] we obtain

n 1/p—1/q
|mm<T<H%”%) &l
=1

hence, in view of (ZI0), it follows

n 1/p—1/q
(211) ||§)\||q << 2”(1_[2()\-’_1)%) E2>\ll,,,2>\,,,2>\ln (f)p
j=1
We will estimate the sum
t
(2.12) Gi—Gm= Y &, m<t,
A=m+1

in the norm L,. With the aim of estimating the quantity A = ||G; — G,u[|7 we will
apply a method which has been used in several papers. For example, the method
was applied in [3] and [I] (see the estimate of A in Lemma 1). The method was
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also applied in [6] to estimate quantity A from (2.6) to (2.45). Therefore, taking

into account (ZII)), from ([ZI2), we get

1 1
p g

(2.13) |Gt — Gnllq < { i expy <)\q(

A=m-+1

n 1/q
) le>Eg“1...2A,,,2Mn (f)p} :
j=1

Following the proof in [6] and starting from equality [2I2), we will now prove
inequality (2.I3). Denote

q
, m<t.
q

>

A=m-+1

(2.14) A=|Gi— Gl =

For a given number ¢ denote [g] + 1 = k. This means that k& € {2,3,...} and that
q/k < 1. From (ZI4)) it follows that

(2.15)
t q t Lk t k

A= & do = & dr < ( 15 |%> dz, = .

/ /\:;Jrl " / )\:;4‘1 " / ,\:;ﬂ " / /"
Denote
(2.16) Oy = |Ex|97F,
We get

t k

(2.17) Ag/( > 5A) dz.

A=m-+1
As k = k(q) is an integer, then
t koot t k
218) (Y a) ¥ % I
A=m+1 A1=m+1 Ar=m+17=1

Now from (2I7)), based on ([2I8]), we get

t t k
(2.19) A< > Y /H(SA].d:c.

A1=m+1 Ag=m+1

Using the equality

k k 1/(k—1)
(2.20) [Ip;= ( II DTDS)
j=1

r,s=1,r<s

for D;j = 6, from (ZI9) we obtain

(2.21) A< i i /( ﬁ 6,\T6,\S)1/(k_l)dx,

Ai=m+1 Ar=m+1 rs=1,r<s
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Applying Holder’s integral inequality to a product of %k(k —1) factors, from (2:21))
we get that

¢ ¢ k 2/k(k—1)
(2.22) A< Y Y II {/(%@3)’“/%] :

Ar1=m+1 Ag=m+1r,s=1,r<s

Based on (ZI0) we get

(2.23) [ = /(5AT5AS)k/2d$ = / (&x, qﬂ’ﬁxs‘qﬂ)dﬂf-
For a = prq, o = %, we have é + % = 1. Therefore by applying Holder’s
inequality, we get
/2 /2
(224) FTS g (HgAT‘an/Q)q (||£)‘S qo//2)q )

The function &y is entire of exponential type 2(AtD4 with respect to T, § =
1,2,...,n. Therefore applying the inequality of Nikolsky [2] 3.3.5] we get

(2.25) (In o)™ < (&, 1,)" expy <<im]—) (% - é))
(2.26) (1n o)™ < (6. ]1,) " expy <<§:Aszj) (2% - %))

=1

<.

Using the equality

q 1 q(l 1) 1 1 ,
2.27 ———===(-==-)4+==-=, pe{na},
(2.27) 2p B 2\p ¢/ 2 p tena’}

from ([2:24)), based on ([Z23]), (2:26) and 2I0), we get
(2.28) T, < expy ({A(% Dz é/)] Zn:lj>
j=1

n

1 1 1/2
ex ArAs)g( ——=— E ;| Bl E? .
2Arl1 | 2Ar . 2Xrin sl1..2%s .. 2Xsln
X{ p2([( rTAs Q(p q)} _]) Arl . 9Am. 92l (f)p Asl1 . 9Xs  DAsl (f)p

j=1
Denote
L1\ ¢ .
(2.29) H; = exp, zq(— — —) Z l; E2“1...2i...2“n (f)p.
pa) =
Then
1 1 1 1 - 12 ,,1/2
(2.30) T,y < exp, ([AT(§ - E> + A5(5 - J)} z;lj>HAT HY2,
=

Since % =1- é , it holds that

M) or-2) w2y
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Therefore from ([230) it follows

1 1\«
=1

If we apply Holder’s inequality so that o relates to the first factor, and « to the
second one, then in the same way we conclude that

(2.32) Ty < expy ( — (- )\S)(% - é) Zn; zj>H;f2H;§2.
=

Based on (Z31) and ([232) we conclude that

(2.33) T, < expy ( ~e=2l(3-2) Zn;zj)H;{zHZz.
i=

Denote

(2.34) aM&NJ—eHb<—Mr—&K%—é)§éh)

k
(2.35) Q= [I {aQA)EZH/?VHED,

r,s=1,r<s

From (2.:22), based on ([2:23), (Z33), 234) and (Z33)), it follows
t t
(2.36) A< > Y Q.

A1=m+1 Ap=m+1
We will now estimate the product @. Based on (Z20) it holds that
k k
1/2 p71/21/(k=1) 1/2
H {HAZ HA? i - HHAJ/
r,s=1,r<s Jj=1

and then, using (Z35]), we get

k k
(237) Q — H H;\J/k H {a()\s, /\T)}2/k(k71).

Jj=1 r,s=1,r<s

It holds a(Ag, Ar) = a(Ar, As) and a(Ar, A) = 1. Therefore

k kok
(2.38) I e x) =TT I]e"2(020).
rs=1,r<s r=1s=1
From (2.37) based on ([Z38)) it follows
k k 1/k
(2.39) Q=HHT{HM%NWM”}-
r=1 s=1
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Now from (2.36) based on (2.39)) we get

L t k k 1/k
(2.40) A< Z Z HH)l\:k{H[a(/\Tv)‘S)]l/(kl)} '

A1=m+1 Ar=m+1r=1 s=1
In the inequality (Z40) the product has k factors

1/k k iht 1/k
L, = H[a(/\rv)‘S)] / )

s=1
with the exponent 1/k. The sum of these exponents is 1. Therefore we can apply
Holder’s inequality and get

k t t 1/k
(2.41) A<H{Z >oom ] e me“?

Ai=m+1 Ap=m+1 s=1

Denote

[aO, 2] =1,k

(2.42) Z Z o ] L

k
A1=m+1 Ap=m+1 s=1
Since A\, =m+1,...,t forevery r =1,...,k, then

(2.43) My =My =---= M= M.

We will estimate, for example, My = M. Since a(A1, A1) = 1, then from ([2:42)
after some calculation we get

(2.44)
t t t
M= M = Z Hy, Z [a(Ag, M)/ D) Z [a(hy, X))/ D).
Ar=m+1 Ao=m+1 Ap=m-+1

Based on (2.34) we conclude that
t
(2.45) ST e MY < Clpog), r=2,3,.. 0k
Ar=m+1

Now from (244 based on (245 it follows

¢
(2.46) M< Y Hy.

A1=m+1

From (241]), using (Z42), 243) and ([2.46]), we get

k t
(2.47) A<[MVF =M< Y H

r=1 i=m+1
Based on (Z47) and (2:29) we conclude that
¢

(2.48) Ak Z €XPy (W(_ - _) Zl ) 2il1 .21, 2iln (f)l"

1=m-+1
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Finally, from (2.48), based on ([2.I4), the inequality (2.I3) follows. If r; = 0, then

o= (% — %) Z?:l l;, therefore in view of (Z3) and ([ZI3) we deduce that the

sequence {G,,} is a Cauchy sequence in the space L, and therefore it tends to a
function f in L, [2] 1.3.9]. Thus, we have

(2.49) f @ g1..1+ Zf,\-
=0

In the next step we prove equality (Z3). To do it we estimate the quantity

Z 5(7‘17 ,rn)

A=m-+1

(2.50) B =Gy — Gl || =

q

Applying the inequality of the Bernstein type [2] 3.2.2], we get

5\ WM<(H?”PWW*HWMMM

j=1
hence, in view of (Z.I1), it follows
(2:51) 377 < 22 Eys v (£

Now, using for B the same procedure by which we estimated A, we get (see the
estimation of B in [6l, (2.50)—(2.65)]

1/q
(252) HGETI """ T")—ngl""’r" { Z 2)\qo' 2/\11 gxmz/\ln(f)P} :

A=m-+1
In view of condition (23) and inequality (Z52) we conclude that the sequence

(71t )

{Gm ")} is a Cauchy sequence in L,. If we denote G,(ﬁl """ — h, m — o0,
then we conclude (see [2] 4.4.7] or [4] 6.3.31]) that h = f("1-->7=) This means that
equality (Z3]) holds. O

3. The converse theorem of approximation

Now we are going to prove a converse theorem of approximation, analogously
to the result in [5] and give some consequences.

THEOREM 3.1. Let the conditions of Theorem 2.1 be satisfied (the condition
@3) where o is given by [Z4) ), and let k and m; be given natural numbers. Then
the inequality

(3.1) wk(f(”’“'“) 0,...,0, i,o,...,o)q

1 1/q
{_k {”f”q Z \a(o+k)— 1E?\l1...,\,,,,vn (f)p:|

1/q
+[ Z AT 1E§\11,”Am)\ln(f)20:| }

A=m;+1
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holds, where the constant C' does not depend either on f orm; =1,2,....

PROOF. For the modulus of smoothness wy, of the derivative f("1:+™) of the
function f we have

(32)  wr(fU ) ma)g S wg(FUm) = G 1 my),
Fwi (G 1 fmy)g = I + L.
For I; we obtain

i fg\h ..... )

A=m-+1

(33) I < ||f(7‘17~.~,7‘n) _ G%lwn;ﬂl)”q =

q

In the same way by which inequality ([2I7) was established, in view of ([B.3]), we
conclude that

oo l/q
(3.4) I <<{ > 2M0Egm___2kvnw(f)p} .

A=m-+1

In virtue of the properties of the modulus of smoothness [2] 4.4.4(2)] we have

1 e
(35) Iy = (G mi)y € —[[Glre b,

m
K2

In the same way by which the inequality (2I7) was established, putting r; + &
instead of r;, and since [; = 1, we get the estimate

e’} 1/q
(3.6) G| < {Ilfllg + Y 2MEIEL o (f)p} -
A=0

Now, in view of (32), B4), (1) and (B6), we obtain

1/q
(B.7) wr(FTT 1 my), <<{ 3 2Aq0E§m___2A___W(f>p}

A=m;+1

— 1/q
1 o
N m{llfll% P e (f)p} |
v A=0

Let

(38) q(O' + k) =S, Egkll 2N 92X (f)p = A2’\'
Then, using inequality (II)), (Lemma 1.1), we get

m m m 2*
DM Ap = Ay 42745 +2°) 20T AL A + 2 A+ 20 > itTA
A=0 A=2 A=2 =2 141
2771—1 2771
= Ay + 2545 + 25{ dSirtA+ Y i51A1}.

1=3 i=2m—141
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Using Lemma 1.2, from the previous inequality, it follows

m 277171

(3.9) dooMAn < Y it AL
A=0 1=1

Choosing m so that 2~! < m; < 2™, from B9) it follows Y\ 2 Ao <
S isTLA; e,

(3.10) DAY PR N AR 13
A=0 i=1

To estimate the first sum in [B.7) we use (L2Z), (Lemma 1.1.), and get

o'} 00 e} 22
Z 2)\(10142,\ — 990 Z 2(>\+1)qcrj42A < 9—499290 Z Z Z-qcrflAl_

A=m+1 A=m+1 A=m—+1i=2 141
=217{(2™ + 1)qo—1A2m+1 et (2m+1)q0—1A2m+1 +--- 1

hence, using that m; < 2™, it follows

(3.11) >0 MU <27 Y i A,
A=m-+1 A=m;+1
Putting A; = E} (equality (3.3)), from (37) and 1T, it follows (BI]). O

COROLLARY 3.1. Forn =11t holds thatl; =1, r; =7, c =r+ 1—17 - % and we

get the corresponding theorems and inequalities for a function of one variable.

COROLLARY 3.2. Ifl; =1, j=1,2,...,nandr; =0, j #14, r; =7, then

o= n(% — %) + r. Therefore, the condition

Z )\q[r+n(1/p—1/q)]—1E;1\
A=1

implies that the function [ has a derivative 0" f /Ox" with respect to any variable x;
belonging to Lq. For the modulus of smoothness the corresponding inequality holds.

COROLLARY 3.3. Applying the inequality (3 ar)® < > (ax)®, ar 20, 0 < s <
1, for s =1/q, from B1) it follows

CUk;(f(Tl""’T"); 1/m7,)q < Z 2>\UE2>\11 onoaln (f)p

1 < e
- W{”f g+ 22 Byars_ax o (f)p}-

A=0
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wherefrom

(3.12)  wi(fUim)y < Y AT By ()

# o {1+ A B ()
i A=1

For n =1 inequality B12) implies inequality 6.4.1(3) in [4]. For r; =0, j # 1,
ri=r (j=1,...,n) it holds that o = r + (% - %)E?lej, and from BI2) it
follows inequality 6.4.3(8) in [4].

COROLLARY 3.4. For p = q it holds that o = E?Zl liry, and from (BI12) we
get the corresponding result in L.

REMARK 3.1. Some results of this paper were presented at the First Mathe-
matical Conference of the Republic of Srpska (Pale, May 21-22, 2011).
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