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ON THE CONVERSE THEOREM OF

APPROXIMATION IN VARIOUS METRICS

FOR NONPERIODIC FUNCTIONS
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Communicated by Gradimir Milovanović

Abstract. The modulus of smoothness in the norm of space Lq of nonperiodic
functions of several variables is estimated by best approximations by entire
functions of exponential type in the metric of space Lp, 1 6 p 6 q < ∞.

1. Introduction and preliminaries

A converse theorem of approximation in various metrics for 2π periodic func-
tions of several variables was proved in [5]. We prove the theorem of representation
for the derivative of a function, and then the analogous converse theorem for non-
periodic functions defined on the space Rn. In this way we generalize and improve
the results from [4, 6.4].

As usually we say that f(x1, . . . , xn) ∈ Lp(Rn), 1 6 p < ∞ if

‖f‖p =

(
∫

Rn

|f |pdx1 . . . dxn

)1/p

=

(
∫

Rn

|f |pdx

)1/p

< ∞, x = (x1, x2, . . . , xn)

The notions of the best approximation and of the modulus of smoothness are given
in [2] and [4].

Let gν = gν1...νn
(x1, . . . , xn), ν = (ν1, . . . , νn), (gν ∈ Lp) be an entire func-

tion of exponential type νi with respect to the variable xi (i = 1, 2, . . . , n). The
best approximation Eν1,...,νn

(f)p of a function f ∈ Lp(Rn) by entire functions of
exponential type is the quantity

Eν1,...,νn
(f)p = inf

gν

‖f − gν1...νn
‖p
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The modulus of smoothness of order k of a function f with respect to the variable
xi is

ωk(f ; δi)p = ωk(f ; 0, . . . , 0, δi, 0, . . . , 0)p = sup
|hi|6δi

‖∆k
hi

f‖p

where

‖∆k
hi

f =

k
∑

j=0

(−1)k−j

(

k

j

)

f(x1, . . . , xi−1, xi + jhi, xi+1, . . . , xn).

The derivative of a function f is denoted by

f (ν1,...,νn) =
∂r1+···+rnf

∂xr1
1 . . . ∂xrn

n

Lemma 1.1. If Ai ↓ 0 as i → ∞, then for λ = 1, 2, . . . and s > 1 the following
inequalities hold

2(λ−1)sA2λ 6

2λ

∑

i=2λ−1+1

is−1Ai(1.1)

2(λ+1)sA2λ 6 22s
2λ

∑

i=2λ−1+1

is−1Ai(1.2)

Proof. We have

2λ

∑

i=2λ−1+1

is−1 = (2λ−1 + 1)s−1 + · · · + (2λ)s−1 > (2λ−1 + 1)s−1 · 2λ−1 > (2λ−1)s.

Therefore

(1.3) 2(λ−1)s
6

2λ

∑

i=2λ−1+1

is−1.

Since the sequence Ai is monotonic, (1.1) follows from (1.3). Multiplying inequality
(1.1) by 22s, we get inequality (1.2). �

Lemma 1.2. If Ai ↓ 0 as i → ∞, and s > 1, then the following inequality holds

(1.4)

2m

∑

i=2m−1+1

is−1Ai 6 22s−1
2m−1
∑

i=2m−2+1

is−1Ai, m = 2, 3, . . .

Proof. The following inequalities hold because the sequence Ai is monotonic

2m

∑

i=2m−1+1

is−1Ai 6 A2m−1

2m

∑

i=2m−1+1

is−1,(1.5)

2m−1
∑

i=2m−2+1

is−1Ai > A2m−1

2m−1
∑

i=2m−2+1

is−1,(1.6)
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We have

2m

∑

i=2m−1+1

is−1
6 (2m)s−1 · 2m−1,

2m−1
∑

i=2m−2+1

is−1
> (2m−2)s−1 · 2m−2 = 21−2s · (2m)s−1 · 2m−1.

From the above two inequalities it follows

(1.7)
2m

∑

i=2m−1+1

is−1 6 22s−1
2m−1
∑

i=2m−2+1

is−1.

Multiplying (1.7) by A2m−1 and in view of (1.5) and (1.6), we get (1.2). �

Remark 1.1. Lemmas 1.1 and 1.2 are valid for 0 < s < 1 also, with different
constants C = C(s). So inequality (1.1) becomes

2(λ−1)sA2λ 6 2s−1
2λ

∑

i=2λ−1+1

is−1Ai (0 < s < 1).

2. Theorem of representation

Let gν = gν1...νn
(x1, . . . , xn), ν = (ν1, . . . , νn), be an entire Lp function of

exponential type νi with respect to the variable xi (i = 1, 2, . . . , n), by which the
best approximation Eν1,...,νn

(f)p is achieved, i.e., let

(2.1) Eν1,...,νn
(f)p = ‖f − gν1...νn

‖p.

From these entire functions gν1...νn
(x1, . . . , xn) we create entire functions

(2.2) ξλ = g2(λ+1)l1 ...2λ+1...2(λ+1)ln − g2λl1 ...2λ...2λln , λ = 0, 1, 2, . . .

for given natural numbers lj (j = 1, 2, . . . , n) where li = 1 for a chosen number

i ∈ {1, 2, . . . , n}. The function ξλ is entire of exponential type 2(λ+1)lj with respect
to xj .

Theorem 2.1. Let f ∈ Lp(Rn) and rj be nonnegative integers, and lj (j =
1, . . . , n) be natural numbers, where li = 1 for some i ∈ {1, 2, . . . , n}. If the follow-
ing inequality holds for the best approximation of the function

(2.3)
∞

∑

λ=1

λqσ−1Eλl1 ...λ...λln (f)p < ∞,

where

(2.4) σ =

n
∑

j=1

lj

(

rj +
1

p
−

1

q

)

, 1 6 p 6 q < ∞,
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then the function f has a derivative f (r1...rn) belonging to Lq and in the sense of
Lq the equality

(2.5) f (r1,...,rn) (q)
= g

(ν1...νn)
1...1 +

∞
∑

λ=0

ξr1,...,rn

λ

holds.

Proof. For the sum

(2.6) Gm = g1...1 +

m
∑

λ=0

ξλ, m = 0, 1, 2 . . .

the equality

(2.7) Gm = g2(m+1)l1 ...2m+1...2(m+1)ln

holds. In view of (2.1) and (2.7) we conclude that

‖f − Gm‖p = E2(m+1)l1 ...2m+1...2(m+1)ln (f)p

hence, it follows that

(2.8) ‖f − Gm‖p → 0 as m → ∞.

This means that the equality

(2.9) f
(p)
= g1...1 +

∞
∑

λ=0

ξλ

holds in Lp.
In the next step we prove (2.9) holds in Lq. For ξλ we have

(2.10) ‖ξλ‖p 6 2E2λl1 ...2λ...2λln (f)p.

Applying the inequality of various metrics of Nikolsky [2, 3.3.5] we obtain

‖ξλ‖q 6 2n

( n
∏

j=1

2(λ+1)lj

)1/p−1/q

‖ξλ‖p

hence, in view of (2.10), it follows

(2.11) ‖ξλ‖q ≪ 2n

( n
∏

j=1

2(λ+1)lj

)1/p−1/q

E2λl1 ...2λ...2λln (f)p.

We will estimate the sum

(2.12) Gt − Gm =

t
∑

λ=m+1

ξλ, m < t,

in the norm Lq. With the aim of estimating the quantity A = ‖Gt − Gm‖q
q we will

apply a method which has been used in several papers. For example, the method
was applied in [3] and [1] (see the estimate of A in Lemma 1). The method was
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also applied in [6] to estimate quantity A from (2.6) to (2.45). Therefore, taking
into account (2.11), from (2.12), we get

(2.13) ‖Gt − Gm‖q ≪

{ t
∑

λ=m+1

exp2

(

λq
(1

p
−

1

q

)

n
∑

j=1

lj

)

Eq
2λl1 ...2λ...2λln

(f)p

}1/q

.

Following the proof in [6] and starting from equality (2.12), we will now prove
inequality (2.13). Denote

(2.14) A = ‖Gt − Gm‖q
q =

∥

∥

∥

∥

t
∑

λ=m+1

ξλ

∥

∥

∥

∥

q

q

, m < t.

For a given number q denote [q] + 1 = k. This means that k ∈ {2, 3, . . . } and that
q/k < 1. From (2.14) it follows that
(2.15)

A =

∫
∣

∣

∣

∣

t
∑

λ=m+1

ξλ

∣

∣

∣

∣

q

dx =

∫
∣

∣

∣

∣

t
∑

λ=m+1

ξλ

∣

∣

∣

∣

q

k
k

dx 6

∫
( t

∑

λ=m+1

|ξλ|
q

k

)k

dx,

∫

=

∫

Rn

.

Denote

(2.16) δλ = |ξλ|q/k.

We get

(2.17) A 6

∫
( t

∑

λ=m+1

δλ

)k

dx.

As k = k(q) is an integer, then

(2.18)

( t
∑

λ=m+1

δλ

)k t
∑

λ1=m+1

· · ·

t
∑

λk=m+1

k
∏

j=1

δλj
.

Now from (2.17), based on (2.18), we get

(2.19) A 6

t
∑

λ1=m+1

· · ·

t
∑

λk=m+1

∫ k
∏

j=1

δλj
dx.

Using the equality

(2.20)

k
∏

j=1

Dj =

( k
∏

r,s=1, r<s

DrDs

)1/(k−1)

for Dj = δλj
from (2.19) we obtain

(2.21) A 6

t
∑

λ1=m+1

· · ·

t
∑

λk=m+1

∫
( k

∏

r,s=1, r<s

δλr
δλs

)1/(k−1)

dx.
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Applying Hölder’s integral inequality to a product of 1
2 k(k − 1) factors, from (2.21)

we get that

(2.22) A 6

t
∑

λ1=m+1

· · ·

t
∑

λk=m+1

k
∏

r,s=1, r<s

[
∫

(δλr
δλs

)k/2dx

]2/k(k−1)

.

Based on (2.16) we get

(2.23) Γrs =

∫

(δλr
δλs

)k/2dx =

∫

(
∣

∣ξλr

∣

∣

q/2∣

∣ξλs

∣

∣

q/2)

dx.

For α = p+q
p , α′ = p+q

q , we have 1
α + 1

α′
= 1. Therefore by applying Hölder’s

inequality, we get

(2.24) Γrs 6
(
∥

∥ξλr

∥

∥

qα/2

)q/2(
∥

∥ξλs

∥

∥

qα′/2

)q/2
.

The function ξλ is entire of exponential type 2(λ+1)lj with respect to xj , j =
1, 2, . . . , n. Therefore applying the inequality of Nikolsky [2, 3.3.5] we get

(2.25)
(∥

∥ξλr

∥

∥

qα/2

)q/2
≪

(∥

∥ξλr

∥

∥

p

)q/2
exp2

(( n
∑

j=1

λrlj

)

( q

2p
−

1

α

)

)

.

(2.26)
(∥

∥ξλs

∥

∥

qα′/2

)q/2
≪

(∥

∥ξλs

∥

∥

p

)q/2
exp2

(( n
∑

j=1

λslj

)

( q

2p
−

1

α′

)

)

.

Using the equality

(2.27)
q

2p
−

1

β
=

q

2

(1

p
−

1

q

)

+
1

2
−

1

β
, β ∈ {α, α′},

from (2.24), based on (2.25), (2.26) and (2.10), we get

(2.28) Γrs ≪ exp2

(

[

λr

(1

2
−

1

α

)

+ λs

(1

2
−

1

α

′)]

n
∑

j=1

lj

)

×

{

exp2

(

[

(λr+λs)q
(1

p
−

1

q

)]

n
∑

j=1

lj

)

Eq
2λr l1 ...2λr ...2λr ln

(f)pEq
2λsl1 ...2λs ...2λsln

(f)p

}1/2

.

Denote

(2.29) Hi = exp2

(

iq
(1

p
−

1

q

)

n
∑

j=1

lj

)

Eq
2il1 ...2i...2iln

(f)p.

Then

(2.30) Γrs ≪ exp2

(

[

λr

(1

2
−

1

α

)

+ λs

(1

2
−

1

α′

)]

n
∑

j=1

lj

)

H
1/2
λr

H
1/2
λs

.

Since 1
α′

= 1 − 1
α , it holds that

λr

(1

2
−

1

α

)

+ λs

(1

2
−

1

α′

)

= −(λs − λr)
(1

2
−

1

α

)

.
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Therefore from (2.30) it follows

(2.31) Γrs ≪ exp2

(

− (λs − λr)
(1

2
−

1

α

)

n
∑

j=1

lj

)

H
1/2
λr

H
1/2
λs

.

If we apply Hölder’s inequality so that α′ relates to the first factor, and α to the
second one, then in the same way we conclude that

(2.32) Γrs ≪ exp2

(

− (λr − λs)
(1

2
−

1

α

)

n
∑

j=1

lj

)

H
1/2
λr

H
1/2
λs

.

Based on (2.31) and (2.32) we conclude that

(2.33) Γrs ≪ exp2

(

− |λr − λs|
(1

2
−

1

α

)

n
∑

j=1

lj

)

H
1/2
λr

H
1/2
λs

.

Denote

(2.34) a(λs, λr) = exp2

(

− |λr − λs|
(1

2
−

1

α

)

n
∑

j=1

lj

)

,

(2.35) Q =

k
∏

r,s=1, r<s

{

a(λs, λr)H
1/2
λr

H
1/2
λs

}2/k(k−1)
.

From (2.22), based on (2.23), (2.33), (2.34) and (2.35), it follows

(2.36) A 6

t
∑

λ1=m+1

· · ·

t
∑

λk=m+1

Q.

We will now estimate the product Q. Based on (2.20) it holds that

k
∏

r,s=1, r<s

{

H
1/2
λr

H
1/2
λs

}1/(k−1)
=

k
∏

j=1

H
1/2
λj

and then, using (2.35), we get

(2.37) Q =

k
∏

j=1

H
1/k
λj

k
∏

r,s=1, r<s

{a(λs, λr)}2/k(k−1).

It holds a(λs, λr) = a(λr , λs) and a(λr, λr) = 1. Therefore

(2.38)

k
∏

r,s=1, r<s

a(λr , λs) =

k
∏

r=1

k
∏

s=1

a1/2(λr , λs).

From (2.37) based on (2.38) it follows

(2.39) Q =

k
∏

r=1

H
1/k
λr

{ k
∏

s=1

[a(λs, λr)]1/(k−1)
}1/k

.
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Now from (2.36) based on (2.39) we get

(2.40) A ≪

t
∑

λ1=m+1

· · ·

t
∑

λk=m+1

k
∏

r=1

H
1/k
λr

{ k
∏

s=1

[a(λr , λs)]1/(k−1)
}1/k

.

In the inequality (2.40) the product has k factors

Lr = H
1/k
λr

{ k
∏

s=1

[a(λr , λs)]1/(k−1)
}1/k

with the exponent 1/k. The sum of these exponents is 1. Therefore we can apply
Hölder’s inequality and get

(2.41) A ≪
k

∏

r=1

{ t
∑

λ1=m+1

· · ·
t

∑

λk=m+1

Hλr

k
∏

s=1

[

a(λr, λs)
]1/(k−1)

}1/k

.

Denote

(2.42) Mr =

t
∑

λ1=m+1

· · ·

t
∑

λk=m+1

Hλr

k
∏

s=1

[

a(λr, λs)
]1/(k−1)

, r = 1, . . . , k.

Since λr = m + 1, . . . , t for every r = 1, . . . , k, then

(2.43) M1 = M2 = · · · = Mk = M.

We will estimate, for example, M1 = M . Since a(λ1, λ1) = 1, then from (2.42)
after some calculation we get
(2.44)

M = M1 =

t
∑

λ1=m+1

Hλ1

t
∑

λ2=m+1

[a(λ1, λ2)]1/(k−1) · · ·

t
∑

λk=m+1

[a(λ1, λk)]1/(k−1).

Based on (2.34) we conclude that

(2.45)

t
∑

λr=m+1

[a(λ1, λr)]1/(k−1) 6 C(p, q), r = 2, 3, . . . , k.

Now from (2.44) based on (2.45) it follows

(2.46) M ≪

t
∑

λ1=m+1

Hλ1 .

From (2.41), using (2.42), (2.43) and (2.46), we get

(2.47) A ≪

k
∏

r=1

M1/k = M ≪

t
∑

i=m+1

Hi.

Based on (2.47) and (2.29) we conclude that

(2.48) A ≪

t
∑

i=m+1

exp2

(

iq
(1

p
−

1

q

)

n
∑

j−1

lj

)

Eq
2il1 ...2i...2iln

(f)p.
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Finally, from (2.48), based on (2.14), the inequality (2.13) follows. If rj = 0, then
σ =

(

1
p − 1

q

)
∑n

j=1 lj, therefore in view of (2.3) and (2.13) we deduce that the

sequence {Gm} is a Cauchy sequence in the space Lq and therefore it tends to a
function f in Lq [2, 1.3.9]. Thus, we have

(2.49) f
(q)
= g1...1 +

∞
∑

λ=0

ξλ.

In the next step we prove equality (2.5). To do it we estimate the quantity

(2.50) B =
∥

∥G
(r1,...,rn)
t − G(r1,...,rn)

m

∥

∥

q

q
=

∥

∥

∥

∥

t
∑

λ=m+1

ξ
(r1,...,rn)
λ

∥

∥

∥

∥

q

q

.

Applying the inequality of the Bernstein type [2, 3.2.2], we get

∥

∥ξ
(r1,...,rn)
λ

∥

∥

q
6

( n
∏

j=1

2ljrj

)

2λ(l1r1+···+lnrn)‖ξλ‖q

hence, in view of (2.11), it follows

(2.51) ‖ξ
(r1,...,rn)
λ ‖ ≪ 2λσE2λl1 ...2λ...2λln (f)p.

Now, using for B the same procedure by which we estimated A, we get (see the
estimation of B in [6, (2.50)–(2.65)]

(2.52)
∥

∥G
(r1,...,rn)
t − G(r1,...,rn)

m

∥

∥

q
≪

{ t
∑

λ=m+1

2λqσEq
2λl1 ...2λ...2λln

(f)p

}1/q

.

In view of condition (2.3) and inequality (2.52) we conclude that the sequence
{

G
(r1,...,rn)
m

}

is a Cauchy sequence in Lq. If we denote G
(r1,...,rn)
m → h, m → ∞,

then we conclude (see [2, 4.4.7] or [4, 6.3.31]) that h = f (r1,...,rn). This means that
equality (2.5) holds. �

3. The converse theorem of approximation

Now we are going to prove a converse theorem of approximation, analogously
to the result in [5] and give some consequences.

Theorem 3.1. Let the conditions of Theorem 2.1 be satisfied (the condition
(2.3) where σ is given by (2.4)), and let k and mi be given natural numbers. Then
the inequality

ωk

(

f (r1,...,rn); 0, . . . , 0,
1

mi
, 0, . . . , 0

)

q
(3.1)

6 C

{

1

mk
i

[

‖f‖q
p +

mi
∑

λ=1

λq(σ+k)−1Eq
λl1 ...λ...λln

(f)p

]1/q

+

[ ∞
∑

λ=mi+1

λqσ−1Eq
λl1 ...λ...λln

(f)p

]1/q}
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holds, where the constant C does not depend either on f or mi = 1, 2, . . . .

Proof. For the modulus of smoothness ωk of the derivative f (r1,...,rn) of the
function f we have

ωk(f (r1,...,rn); 1/mi)q 6 ωk(f (r1,...,rn) − G(r1,...,rn)
m ; 1/mi)q(3.2)

+ωk(G(r1,...,rn)
m ; 1/mi)q = I1 + I2.

For I1 we obtain

(3.3) I1 ≪ ‖f (r1,...,rn) − G(r1,...,rn)
m ‖q =

∥

∥

∥

∥

∞
∑

λ=m+1

ξ
(r1,...,rn)
λ

∥

∥

∥

∥

q

.

In the same way by which inequality (2.17) was established, in view of (3.3), we
conclude that

(3.4) I1 ≪

{ ∞
∑

λ=m+1

2λqσEq
2λl1 ...2λ...2λln

(f)p

}1/q

.

In virtue of the properties of the modulus of smoothness [2, 4.4.4(2)] we have

(3.5) I2 = ωk(G(r1,...,rn)
m ; 1/mi)q 6

1

mk
i

‖G(r1,...,ri+k,...,rn)
m ‖q.

In the same way by which the inequality (2.17) was established, putting ri + k
instead of ri, and since li = 1, we get the estimate

(3.6) ‖G(r1,...,ri+k,...,rn)
m ‖q ≪

{

‖f‖q
p +

∞
∑

λ=0

2λq(σ+k)Eq
2λl1 ...2λ...2λln

(f)p

}1/q

.

Now, in view of (3.2), (3.4), (3.5) and (3.6), we obtain

(3.7) ωk(f (r1,...,rn); 1/mi)q ≪

{ ∞
∑

λ=mi+1

2λqσEq
2λl1 ...2λ...2λln

(f)p

}1/q

+
1

mk
i

{

‖f‖q
p +

mi
∑

λ=0

2λq(σ+k)Eq
2λl1 ...2λ...2λln

(f)p

}1/q

.

Let

(3.8) q(σ + k) = s, Eq
2λl1 ...2λ...2λln

(f)p = A2λ .

Then, using inequality (1.1), (Lemma 1.1), we get

m
∑

λ=0

2λsA2λ = A1 + 2sA2 + 2s
m

∑

λ=2

2(λ−1)sA2λ 6 A1 + 2sA2 + 2s
m

∑

λ=2

2λ

∑

i=2λ−1+1

is−1Ai

= A1 + 2sA2 + 2s

{ 2m−1
∑

i=3

is−1Ai +

2m

∑

i=2m−1+1

is−1Ai

}

.
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Using Lemma 1.2, from the previous inequality, it follows

(3.9)

m
∑

λ=0

2λsA2λ ≪

2m−1
∑

i=1

is−1Ai.

Choosing m so that 2m−1 6 mi < 2m, from (3.9) it follows
∑m

λ=0 2λsA2λ ≪
∑mi

i=1 is−1Ai, i.e.,

(3.10)

m
∑

λ=0

2λq(σ+k)A2λ ≪

mi
∑

i=1

iq(σ+k)−1Ai.

To estimate the first sum in (3.7) we use (1.2), (Lemma 1.1.), and get

∞
∑

λ=m+1

2λqσA2λ = 2−qσ
∞

∑

λ=m+1

2(λ+1)qσA2λ 6 2−qσ22qσ
∞

∑

λ=m+1

2λ

∑

i=2λ−1+1

iqσ−1Ai

= 2qσ{(2m + 1)qσ−1A2m+1 + · · · + (2m+1)qσ−1A2m+1 + · · · },

hence, using that mi < 2m, it follows

(3.11)

∞
∑

λ=m+1

2λqσA2λ 6 2qσ
∞

∑

λ=mi+1

iqσ−1Ai.

Putting Ai = Eq
i (equality (3.8)), from (3.7) and (3.11), it follows (3.1). �

Corollary 3.1. For n = 1 it holds that lj = 1, rj = r, σ = r + 1
p − 1

q and we

get the corresponding theorems and inequalities for a function of one variable.

Corollary 3.2. If lj = 1, j = 1, 2, . . . , n and rj = 0, j 6= i, ri = r, then
σ = n( 1

p − 1
q ) + r. Therefore, the condition

∞
∑

λ=1

λq[r+n(1/p−1/q)]−1Eq
λ...λ...λ(f)p < ∞

implies that the function f has a derivative ∂rf/∂xr with respect to any variable xi

belonging to Lq. For the modulus of smoothness the corresponding inequality holds.

Corollary 3.3. Applying the inequality (
∑

ak)s 6
∑

(ak)s, ak > 0, 0 < s 6

1, for s = 1/q, from (3.7) it follows

ωk(f (r1,...,rn); 1/mi)q ≪

∞
∑

λ=mi+1

2λσE2λl1 ...2λ...2λln (f)p

+
1

mk
i

{

‖f‖q
p +

mi
∑

λ=0

2λ(σ+k)E2λl1 ...2λ...2λln (f)p

}

.
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wherefrom

ωk(f (r1,...,rn); 1/mi)q ≪

∞
∑

λ=mi+1

λσ−1Eλl1 ...λ...λln (f)p(3.12)

+
1

mk
i

{

‖f‖p +

mi
∑

λ=1

λσ+k−1Eλl1 ...λ...λln (f)p

}

.

For n = 1 inequality (3.12) implies inequality 6.4.1(3) in [4]. For rj = 0, j 6= i,
ri = r (j = 1, . . . , n) it holds that σ = r + ( 1

p − 1
q )

∑n
j=1 lj, and from (3.12) it

follows inequality 6.4.3(8) in [4].

Corollary 3.4. For p = q it holds that σ =
∑n

j=1 ljrj, and from (3.12) we
get the corresponding result in Lp.

Remark 3.1. Some results of this paper were presented at the First Mathe-
matical Conference of the Republic of Srpska (Pale, May 21-22, 2011).
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2. S. M. Nikol’skĭı, Approximation of Functions of Several Variables and Imbedding Theorems,
Second edition, revised and supplemented, Nauka, Moscow, 1977 (in Russian).

3. M. K. Potapov, Imbedding theorems in the mixed metric, Trudy Mat. inst. AN SSSR 156 (1980),
143–156 (in Russian)

4. A. F. Timan, Theory of Approximation of Functions of Real Variable, Gos. Izdat. FM, Moscow,
1960 (in Russian).

5. M. Tomić, On converse theorem of approximation in various metrics for periodic functions of

several variables, Facta Univ., Ser. Math. Inform. 15 (2000), 49–56.
6. On representation of derivatives of functions in Lp, Mat. Vesn. 62(3) (2010), 235–250.

University of East Sarajevo (Received 12 08 2010)
East Sarajevo (Revised 30 09 2013)
Republic of Srpska


	1. Introduction and preliminaries
	2. Theorem of representation
	3. The converse theorem of approximation
	References

