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UNIT GROUPS OF FINITE RINGS

WITH PRODUCTS OF ZERO DIVISORS

IN THEIR COEFFICIENT SUBRINGS

Chiteng’a John Chikunji

Communicated by Siniša Crvenković

Abstract. Let R be a completely primary finite ring with identity 1 6= 0 in
which the product of any two zero divisors lies in its coefficient subring. We
determine the structure of the group of units GR of these rings in the case
when R is commutative and in some particular cases, obtain the structure and
linearly independent generators of GR.

1. Introduction

All rings considered in this paper are associative (but not necessarily commu-
tative) with identity element 1 6= 0. Let R be a completely primary finite ring with
unique maximal ideal J . It is easy to see (cf. [3]) that |R| = pnr, |J | = p(n−1)r,
and the characteristic of R is pk, for some prime p and positive integers n, k and
r with 1 6 k 6 n. If k = n, then R is of the form Zpn [x]/(f) and R = Zpn [b],
where Zpn is the ring of integers modulo pn, f(x) is a monic polynomial over Zpn

and irreducible modulo p, and b is an element of R of multiplicative order pr − 1.
These rings are uniquely determined by the integers p, n, r; they are called Galois
rings and we shall denote them by GR(pn, pnr).

Let R be a commutative completely primary finite ring. It is well known that
any two coefficient subrings of R are conjugate (cf. [2]). Also if R0 is a coefficient
subring of R, then there exist u1, . . . , uh in J such that

R = R0 ⊕ R0u1 ⊕ · · · ⊕ R0uh (as R0-modules)

and uir = rui, for all r in R0 and for all i = 1, . . . , h. (This is a direct consequence
of Theorems 2-2 and 2-4 in [4]).

Throughout this paper, for a given commutative completely primary finite ring
R with maximal ideal J , let F = R/J , and let F∗ and GR denote the multiplicative
group of units of F and R, respectively.
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Let R0 = GR(pn, pnr), R be a commutative completely primary finite ring
with J 2 contained in R0 and let u1, . . . , uh be elements in J . Since R0 ∩ R0ui = 0
and the product of any two zero divisors is in R0, we have that pui = 0 for all
i = 1, . . . , h. But uiuj is an element of pR0; thus uiuj is an element of pn−1R0,
for all i = 1, . . . , h. Suppose that uiuj, uiuk are non-zero elements of pR0 with
j 6= k. Then uiujR0 = uiukR0 = pn−1R0 and we get uiuj = uiukα, where α
is an element of 〈b〉. Thus, uj − ukα is an element of ann(ui), the annihilator of
ui, and subsequently it is contained in pR0 ⊕ R0u1 ⊕ · · · ⊕ R0uh (j 6= k). This
implies that uj is an element of pR0 ⊕ R0u1 ⊕ · · · ⊕ R0uh, which is a contradiction.
Therefore, for all i = 1, . . . , h, either uiuj is zero for all j = 1, . . . , h or uiuj is
non-zero for only one j = 1, . . . , h. We assume w is the number of ui such that
uiuj is zero for all j = 1, . . . , h and λ is the number of the other ui. Let us reindex
u1, . . . , uh in such way that for each i = 1, . . . , λ, there exists only one j = 1, . . . , h
with uiuj = pn−1αij , where αij is an element of 〈b〉, and let θ be the function from
{1, . . . , λ} to {1, . . . , h} determined by θ(i) = j. Clearly, θ is injective.

Let s be the number of i in {1, . . . , λ} such that θ(i) = i and t be λ − s. We
reindex u1, . . . , uλ such that θ(i) = i for all i = 1, . . . , s and suppose αiθ(i) = βi for
all i = 1, . . . , s. Put ve = ue for all i = 1, . . . , s and ve = ueαe for all i = s+1, . . . , h,
where if e is in the image of θ, say e = θ(i), then αe = 1. Thus, uiuθ(i) = pn−1 for

all i = s+1, . . . , λ. Hence, either u2
i = 0, u2

i = pn−1 or u2
i = αpn−1, α ∈ 〈b〉−{0, 1};

and uiuj = 0 for all i 6= j.

2. Construction A

Let R0 be a Galois ring of the form GR(pn, pnr) and F be R0/pR0. Let U be an
F-space which when considered as an R0-module has a generating set {u1, . . . , uh}
such that pui = 0 for all i = 1, . . . , uh. Also assume that s, t, w are non-negative
integers such that h = s + t + w and suppose that θ is an injective function from
{s + 1, . . . , s + t} to {s + 1, . . . , h}. On the additive group

R = R0 ⊕ R0u1 ⊕ · · · ⊕ R0uh,

define the multiplication as follows:

uiuj = 0, for i 6= j (1 6 i, j 6 h);

u2
i = αip

n−1, for i = 1, . . . , s;

u2
i = pn−1, for i = s + 1, . . . , s + t;

u2
i = 0, for i = s + t + 1, . . . , h;

uir
∗ = r∗ui, for all i = 1, . . . , h;

where αi are non-trivial elements of F∗ and r∗ is the image of r under the canonical
homomorphism from R0 to F ∼= R0/pR0.

It can easily be verified that R is an associative ring with identity 1 6= 0.

Theorem 2.1. Let R be a commutative completely primary finite ring. Then

the product of any two zero divisors is an element of its coefficient subring R0 if

and only if R is one of the rings given by Construction A.
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The proof follows from the discussion before Construction A; the converse that
J 2 lies in R0 is easy to check.

These rings were studied by Alkhamees [1], who gave their complete general
construction for both commutative and non-commutative cases.

We notice that charR = pn; J = pR0 ⊕ R0u1 ⊕ · · · ⊕ R0uh, J 2 = pR0, and
J n = 0. Also, notice that |R| = p(n+h)r, |J | = p(n+h−1)r and hence, R/J ∼= Fpr .

3. The group of units of R

There are many important results on the group of units of certain finite rings.
For example, it is well known that the multiplicative group of the finite field GF (pr)
is a cyclic group of order pr−1, and the multiplicative group of the finite ring Z/pk

Z,
the ring of integers modulo pk, for p a prime number, and k a positive integer, is a
cyclic group of order pk−1(p − 1).

Let GR0
denote the group of units of the Galois ring R0 = GR(pn, pnr). Then

GR0
has the following structure [3]:

Theorem 3.1. GR0
= 〈b〉 × (1 + pR0), where 〈b〉 is the cyclic group of order

pr − 1 and 1 + pR0 is of order p(n−1)r whose structure is described below.

(i) If (a) p is odd, or (b) p = 2 and n 6 2, then 1 + pR0 is the direct product of

r cyclic groups each of order p(n−1).

(ii) When p = 2 and n > 3, the group 1 + pR0 is the direct product of a cyclic

group of order 2, a cyclic group of order 2(n−2) and r−1 cyclic groups each of order

2(n−1).

We now determine the structure of the group of units of this paper. We first
recall that

GR = 〈b〉 × (1 + J ), |GR| = |R| − |J | = p(n+h)r − p(n+h−1)r

and in fact |1 + J | = p(n+h−1)r.
To simplify the problem, we split our study into two cases, namely,

(1) the case when u2
j = 0 for every j = 1, . . . , h; and

(2) the case when u2
j = αjpn−1, where αj ∈ F

∗ for every j = 1, . . . , h.

We shall use the information from the two cases in order to obtain the general
structure of GR (see Theorem 4.1). We treat the cases separately.

Let ε1, ε2, . . . εr be elements of R0 with ε1 = 1 so that ε1, ε2, . . . , εr ∈ R0/pR0
∼=

GF (pr) form a basis of GF (pr) over its prime subfield GF (p).

3.1. The case when u2
i = 0 for every i = 1, . . . , h. In this subsection, we

determine the structure of the group of units GR of the ring R in the case when
u2

i = 0 for every i = 1, . . . , h.
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Proposition 3.1. Let R be a ring given by construction A and suppose that

u2
j = 0 for every j = 1, . . . , h. Then

GR
∼=







Z2r
−1 × Z2 × Z2n−2 × Z

r−1
2n−1 × Z

r
2 × · · · × Z

r
2

︸ ︷︷ ︸

h

if p = 2,

Zpr
−1 × Z

r
pn−1 × Z

r
p × · · · × Z

r
p

︸ ︷︷ ︸

h

if p is odd.

Proof. We know that

R = R0 ⊕ R0u1 ⊕ · · · ⊕ R0uh, J = pR0 ⊕ Fu1 ⊕ · · · ⊕ Fuh,

where ui ∈ J , F ∼= R0/pR0, J n−1 6= (0), and J n = (0). Moreover,

GR
∼= (〈b〉) × (1 + J ),

where 〈b〉 is a cyclic group of order pr − 1, for every prime number p. We need to
determine the structure and linearly independent generators of 1 + J in order to
complete the proof.

Since puj = 0 for all j = 1, . . . , h, uiuj = 0 for all 1 6 i, j 6 h, and u2
j = 0 for

every j = 1, . . . , h, one easily sees that (1 + R0ui) ∩ (1 + R0uj) = {1}. Moreover,
(1 + pR0) ∩ (1 + R0uj) = {1}, for all j = 1, . . . , h. Further, it is easy to verify that
1 + R0u1 ⊕ · · · ⊕ R0uh is a subgroup of 1 + J and hence,

1 + J = (1 + pR0) × (1 + R0u1 ⊕ · · · ⊕ R0uh),

a direct product.
The structure of 1 + pR0 is well known, for example, see Theorem 3.1. We now

determine the structure of 1 + R0u1 ⊕ · · · ⊕ R0uh. For any prime p and for each
i = 1, . . . , r, we see that (1 + εju1)p = 1, (1 + εju2)p = 1, . . . , (1 + εjuh)p = 1, and
gp = 1 for all g ∈ 1 + R0u1 ⊕ · · · ⊕ R0uh.

For integers lij 6 p, we asset that
∏r

i=1

∏h

j=1{(1 + εiuj)lij = 1, will imply
lij = p, for all i = 1, . . . , r and j = 1, . . . , h.

If we set Eij = {(1 + εiuj)lij : lij = 1, . . . , p} for all i = 1, . . . , r, then we see
that Eij are all subgroups of 1 + R0u1 ⊕ · · · ⊕ R0uh and that these are all of order
p as indicated in their definition.

The argument above will show that the product of the hr subgroups Eij is
direct. Thus, their product will exhaust 1 + R0u1 ⊕ · · · ⊕ R0uh, and this completes
the proof. �

3.2. The case when u2
j = αjpn−1 for every j = 1, . . . , h; where αj ∈ F

∗.

We now consider the second case.

Proposition 3.2. Let R be a ring given by construction A and suppose that

u2
j = αjpn−1 for every j = 1, . . . , h, where αj ∈ F

∗. Then

1 + J ∼=







Z2 × Z2n−3 × Z
r−1
2n−2 × Z

r
4 × Z

r
2 × · · · × Z

r
2

︸ ︷︷ ︸

h−1

if p = 2,

Z
r
pn−1 × Z

r
p × · · · × Z

r
p

︸ ︷︷ ︸

h

if p is odd.
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Proof. The argument of the proof is similar to the proof of Proposition 3.2.
Since puj = 0 for all j = 1, . . . , h, uiuj = 0 for all 1 6 i, j 6 h, and u2

j = αpn−1 for

every j = 1, . . . , h, and a fixed α, one easily verifies that if p = 2, (1 + εiuj)4 = 1,
for every i = 1, . . . , r and j = 1, . . . , h; and if p is odd, (1 + εiuj)p = 1, for every
i = 1, . . . , r and j = 1, . . . , h. This difference, in turn, breaks into two cases to
consider.

Suppose first that p is an odd prime number. For each i = 1, . . . , r and j =

1, . . . , h, we see that for elements 1 + pεi, 1 + εiuj in 1 + J , (1 + pεi)
pn−1

= 1 and
(1 + εiuj)p = 1.

For positive integers mi 6 pn−1 and lij 6 p, we assert that the equation

r∏

i=1

{(1 + pεi)
mi } ·

r∏

i=1

h∏

j=1

{(1 + εiuj)lij } = 1,

will imply mi = pn−1, for all i = 1, . . . , r, and lij = p, for all i = 1, . . . , r and
j = 1, . . . , h.

If we set

Ei = {(1 + pεi)
mi : mi = 1, 2, . . . , pn−1},

Fij = {(1 + εiuj)lij : lij = 1, . . . , p},

we see that Ei, and Fij , are all cyclic subgroups of 1 + J and that these are all of
the precise orders indicated by their definition.

The argument above shows that the product of the (1 + h)r subgroups Ei, Fij

is direct. So, their product will exhaust 1 + J ; and we see that the proof for the
case when p is odd is complete.

We now assume that p = 2. We remark that there exists at least one element β
in R0 such that the equation x2 +x+β̄ = 0̄ over R0/pR0 has no solution in R0/pR0.
We then note that for elements (−1+2n−1ε1), (1+4β)2 = (1+8β+16β2), (1+εiuj)

and (1 + εiuj + εiuj+1) in 1 + J , (−1 + 2n−1ε1)2 = 1, (1 + 8β + 16β2)2n−3

= 1,
(1 + εiuj)4 = 1 for all i = 1, . . . , r; and j = 1, . . . , h; and for a u2

j = α2n−1 with

α fixed for every j = 1, . . . , h; (1 + εiuj + εiuj+1)2 = 1, for all i = 1, . . . , r and
j = 1, . . . , h − 1.

For positive integers k 6 2, l 6 2n−3, mi 6 4 and nij 6 2, we assert that the
equation

(−1 + 2n−1ε1)k · (1 + 8β + 16β2)l

·

r∏

i=1

{(1 + εiu1)mi } ·

r∏

i=1

h−1∏

j=1

{(1 + εiuj + εiuj+1)nij } = 1,

will imply k = 2, l = 2n−3, mi = 4 for all i = 1, . . . , r; and nij = 2 for all i = 1, . . . , r
and j = 1, . . . , h − 1.

If we set

E1 = {(−1 + 2n−1ε1)k : k = 1, 2},

E2 = {(1 + 8β + 16β2)l : l = 1, . . . , 2n−3},
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Ei1 = {(1 + εiu1)mi : mi = 1, . . . , 4},

Fij = {: (1 + εiuj + εiuj+1)nij : nij = 1, 2},

then we see that E1, E2, Ei1, Fij are all cyclic subgroups of 1 + J and that these
are all of the precise orders indicated by their definition.

The argument above shows that the product of the 2 + hr subgroups E1, E2,
Ei1, Fij is direct. So, their product will exhaust 1 + J , and we see that the proof
for the case when p = 2 is complete.

This completes the proof of the theorem. �

4. Conclusion

We now state the structure of the group of units GR of the ring R in general.

Theorem 4.1. Let R be a ring given by construction A and suppose that u2
j =

αjpn−1, for every j = 1, . . . , s, where αj ∈ F
∗ and for j = s + 1, . . . , h, u2

j = 0.

Then

1 + J ∼=







Z2 × Z2n−3 × Z
r−1
2n−2 × Z

r
4 × Z

r
2 × · · · × Z

r
2

︸ ︷︷ ︸

s−1

×Z
r
2 × · · · × Z

r
2

︸ ︷︷ ︸

h−s

if p = 2,

Z
r
pn−1 × Z

r
p × · · · × Z

r
p

︸ ︷︷ ︸

h

if p > 2,

and hence,

GR
∼=

{

Z2r
−1 × (1 + J ) if p = 2,

Zpr
−1 × (1 + J ) if p is odd.

Proof. Follows from Propositions 3.2 and 3.3. �
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