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Abstract. We prove some results on the farthest points in convex metric
spaces and in linear metric spaces. The continuity of the farthest point map
and characterization of strictly convex linear metric spaces in terms of farthest
points are also discussed.

1. Introduction

Consider the geometric problem: Given a nonempty bounded subset C of a
metric space (X, ρ) and a point x ∈ X , does there exist a point y ∈ C which is
farthest from x? Is such a y unique? Precisely speaking, we consider the existence
and uniqueness problem of a point y ∈ C satisfying ρ(x, y) = sup{ρ(x, z) : z ∈ C}.
Such a y is called a farthest point in C from x. The set of all such y ∈ C is denoted
by FC(x) and when there is exactly one y satisfying ρ(x, y) = sup{ρ(x, z) : z ∈ C}
then FC(x) is denoted by qC(x). If C is a nonempty closed subset of a metric space
(X, ρ), then a nearest point in C is defined analogously. A point z ∈ C is a nearest
point to x ∈ X if ρ(x, z) = inf{ρ(x, y) : y ∈ C}. The set of all such z ∈ C is
denoted by PC(x). The geometric nature of the space X is very much involved in
discussing farthest and nearest points.

Farthest points have applications in the study of extremal structure of sets,
characterization of compact convex sets, finding deviation of sets, and they are
important building blocks of convex sets which are extensively applied in program-
ming [11]. It is strange; rather unfortunate that very little has been done in the
theory of farthest points as compared to the theory of nearest points. Moreover,
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most of the literature available in the theory of farthest points is either in Hilbert
spaces or in normed linear spaces (see e.g., [2, 3, 5, 8, 10, 11, 13] and references
therein). The development of farthest point theory in more general spaces is a
challenging one. Some attempts have been made in this direction. Ever since
Takahashi [17] introduced convex metric spaces, efforts are being made to extend
results from the theory of Hilbert spaces and normed linear spaces to convex metric
spaces [12, 14]. This paper is also a step in this direction, where we discuss some
results on farthest points in convex metric spaces and in linear metric spaces. The
continuity of the farthest point map and characterization of strictly convex linear
metric spaces in terms of farthest points are also discussed.

2. Notations and definitions

We begin with a few definitions and notations. For a metric space (X, ρ) and
the closed interval I = [0, 1], a mapping W : X × X × I → X is said to be a convex
structure on X if for all x, y ∈ X , λ ∈ I,

ρ(u, W (x, y, λ)) 6 λρ(u, x) + (1 − λ)ρ(u, y)

holds for all u ∈ X . The metric space (X, ρ) together with a convex structure is
called a convex metric space [17].

Motivated by the linear case, Machado [9] defined multiple convex combina-
tions as follows. Let (X, ρ) be a convex metric space. For x1, x2, . . . , xn ∈ X,
λ1, λ2, . . . , λn ∈ [0, 1] and

∑n

i=1 λi = 1, set

W (x1, x2, . . . , xn, λ1, λ2, . . . , λn)

= W
(

W
(

x1, x2, . . . , xn−1,
λ1

1 − λn

,
λ2

1 − λn

, . . . ,
λn−1

1 − λn

)

, xn, 1 − λn

)

if λn 6= 1 and W (x1, x2, . . . , xn, 0, 0, . . . , 1) = xn.
For a subset T of a convex metric space (X, ρ), define convex hull of T [6] as

Conv(T ) =
⋃

n∈N

W (t1, t2, . . . , tn, λ1, λ2, . . . , λn) =
⋃

n∈N

W n(T ),

W n(T ) = W (W n−1(T )), n > 2, W 1(T ) = {W (t1, t2, λ) : λ ∈ [0, 1], t1, t2 ∈ T }.
This implies (see [6]) that for every x ∈ X ,

ρ(x, W (t1, t2, . . . , tn, λ1, λ2, . . . , λn)) 6 λ1ρ(x, t1) + λ2ρ(x, t2) + . . . + λnρ(x, tn),

λi > 0,
∑n

i=1 λi = 1, ti ∈ T .
A convex metric space (X, ρ) is called an M -space [7] if for every two points

x, y ∈ X with ρ(x, y) = λ, and for every r ∈ [0, λ], there exists a unique zr ∈ X
such that B[x, r] ∩ B[y, λ − r] = {zr}, where B[x, r] = {y ∈ X : ρ(x, y) 6 r}.

Example 2.1. Let (X, ρ) be a closed ball of S2,r of radius η with πr/4 <
η < πr/2. Since X is convex and contains no diametral point pairs of the S2,r,
(X, ρ) is an M -space. Here S2,r is the 2-dimensional spherical space of radius r.
Its elements are all the ordered 3-tuples x = (x1, x2, x3) of real numbers with
∑3

i=1 x2
i = r2, distance ‘ρ’ is defined for each pair of elements x, y to be the smallest
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nonnegative number xy such that cos(xy/r) = r−2 ∑3
i=1 xiyi. The space (X, ρ) is

an M -space [7].

A metric space (X, ρ) is called externally convex [7] if for all distinct points
x, y such that ρ(x, y) = λ, and r > λ there exists a unique z of X such that
ρ(x, y) + ρ(y, z) = ρ(x, z) = r.

Example 2.2. Consider metric space (X, ρ) consisting of points on lines y = 1
and y = 2 in the cartesian plane with x > 0. Let the distance ρ(x, y) for x = (x1, y1)
and y = (x2, y2) be given by |x1 − x2| if y1 = y2 and 1 + |x1| + |x2| if y1 6= y2. This
satisfies the condition of external convexity. It may be noted that the space X is
not a normed linear space as it is not a linear space [7].

If X is a strictly convex Banach space, then it is an externally convex M -
space [7].

If (X, ρ) is a convex metric space, then for each two distinct points x, y ∈ X
and for every λ ∈ (0, 1) there exists a point z such that ρ(x, z) = (1 − λ)ρ(x, y) and
ρ(z, y) = λρ(x, y). For M -space such a z is always unique.

A linear metric space (X, ρ) is said to be strictly convex [1] (see also [15]) if
for x, y ∈ X , x 6= y, ρ(x, 0) 6 r, ρ(y, 0) 6 r imply ρ(x+y

2 , 0) < r, r > 0.
A point x in a convex subset C of a linear metric space (X, ρ) is called an

extreme point if x1, x2 ∈ C and x = λx1+(1−λ)x2 for 0 < λ < 1 imply x1 = x2 = x.
The set of extreme points of C is denoted by ext C.

Example 2.3. If R3 is given by the maximum norm

‖(ξ1, ξ2, ξ3)‖ = max{|ξ1|, |ξ2|, |ξ3|}

then the unit ball is a cube. The extreme points are the eight vertices of the cube.

Let C be a bounded subset of a metric space (X, ρ) and x ∈ X ; then we define
the sets FC(x) = {z ∈ C : z is a farthest point in C from x} and far(C) = {z ∈
C : z is a farthest point in C from some point in X}.

A nonempty subset T of a convex metric space (X, ρ) is said to be convex [17]
if W (x, y, λ) ∈ T for every x, y ∈ T and λ ∈ I.

We shall denote by [x, y] the line segment joining the points x and y i.e.,
[x, y] = {z ∈ X : ρ(x, z) + ρ(z, y) = ρ(x, y)}. The set [x, y〉 = {z ∈ X : ρ(x, y) +
ρ(y, z) = ρ(x, z)} denotes a half ray starting from x and passing through y i.e., it
is the union of the line segments [x, z] where [x, y] ⊆ [x, z].

Throughout the paper cl(T ) will stand for closure of T , ∂T for boundary of T ,
X r T for complement of T in X .

3. On nearest and farthest points

We have the following interesting relationship between the nearest and the
farthest points in convex metric spaces (for Banach spaces, see [10, Remark 2.2]).
Suppose C is a nonempty bounded closed subset of an externally convex M -space
(X, ρ). If z ∈ C is a farthest point from an x ∈ X , then z is also a nearest
point in C. Indeed, z is a nearest point in C from any point which is on the line
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connecting x and z and lies on the opposite side of z to x. So, if there exists no
nearest point in C, then there also exists no farthest point in C. This is shown by
the following proposition.

Proposition 3.1. Let C be a nonempty bounded closed subset of an externally
convex M -space (X, ρ). If z ∈ FC(x) then z ∈ PC(x′) for every x′ ∈ [x, z〉 r [x, z].

Proof. Suppose z ∈ FC(x) then ρ(x, z) > ρ(x, y) for all y ∈ C. Let x′ ∈
[x, z〉 r [x, z] be arbitrary. Consider

ρ(x′, z) = ρ(x′, x) − ρ(x, z) 6 ρ(x′, x) − ρ(x, y) for all y ∈ C

6 ρ(x′, y) + ρ(x, y) − ρ(x, y) = ρ(x′, y) for all y ∈ C,

i.e., ρ(x′, z) 6 ρ(x′, y) for all y ∈ C. Hence z ∈ PC(x′). �

Corollary 3.1. If there exists no nearest point in C, then there also exists
no farthest point in C i.e., if C is antiproximinal (very nonproximinal), then C is
antipodal.

Remark 3.1. Edelstein and Thomson [4] gave an example showing that in
c0 (space of all convergent sequences converging to 0) with the usual norm, there
exists a nonempty bounded closed convex symmetric subset S which has no nearest
point and hence there exist no farthest points in S.

Concerning farthest points, the following two results were proved in [14]:

Proposition 3.2. Let K be a bounded subset of an M -space (X, ρ) and k0 ∈
FK(x0) for x0 ∈ X; then k0 ∈ FK(x) for all x ∈ [k0, x0〉 r [k0, x0].

Proposition 3.3. Let K be a bounded subset of a convex metric space (X, ρ)
and x0 ∈ X. Then k0 ∈ FK(x0) iff k0 is a farthest point from x0 in [k0, y] for each
y ∈ K.

Motivated by Propositions 3.2 and 3.3 the following property was considered
in farthest points. A bounded subset T of a convex metric space (X, ρ) is said to
have property (SF ) (see [5, 14]) if x0 ∈ X and k0 ∈ FK(x0) imply k0 is a farthest
point from y for all y ∈ [x0, k0] i.e., k0 ∈ FK(W (x0, k0, λ)), 0 6 λ 6 1. Concerning
property (SF), the following result was proved in [14].

Proposition 3.4. A bounded subset K of a convex metric space (X, ρ) has
property (SF ) iff K is a singleton.

In the light of the above three propositions, we discuss the following property in
convex metric spaces (in Banach spaces, this property was introduced by Baronti
[2]). Let (X, ρ) be a convex metric space and K a nonempty subset of X . We
say that P (x, d) is true for some d ∈ (0, 1) (see [2]) if y ∈ FK(x), y′ ∈ [x, y] such
that ρ(y′, y) = (1 − t)ρ(x, y), ρ(y′, x) = tρ(x, y), for 0 < t 6 d imply y ∈ FK(y′)).
Equivalently, y ∈ FK(x) ⇒ y ∈ FT (W (x, y, t)), 0 < t 6 d i.e., if y is the farthest
point from x in K, then y is also the farthest point from W (x, y, t) for 0 < t 6 d.
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Example 3.1. Let X = R r {0} with the usual metric and K = [−1, 1]r {0}.
The property P (x, d) is true for x = 1, −1 and d = 1/2. FK(−1) = 1, FK(x) = 1 ≡
y for all x ∈ [−1, 0), FK(ty+(1−t)x) = 1, 0 < t 6 d. FK(1) = −1, FK(x) = −1 ≡ y
for all x ∈ (0, −1], FK(ty + (1 − t)x) = −1.

Remark 3.2. FK(−1) = 1 but FK(x) 6= 1 for all x ∈ [−1, 1] i.e., for all
x ∈ [−1, FK(−1)]. FK(1) = −1 but FK(x) 6= −1 for all x ∈ [FK(1), 1].

Example 3.2. Let K =
{

(x, y) : x = −
√

1 − y2, −1 6 y 6 1
}

be a subset

of R2 with the usual metric. Then P (z, d) is true for z = (1, 0) and d = 1/2,
whereas P (z, d) is not true for z = (0, 0).

The number r(T ) = inf{r(T, x) : x ∈ X} where r(T, x) = supy∈T ρ(x, y) is
called Chebyshev radius of T . A center or the Chebyshev center of T is a point c,
if it exists, such that r(T, c) = r(T ).

The following result shows that for a remotal set, property P (c, d) can not be
true if c is the center of the set.

Proposition 3.5. If T is a remotal subset of a convex metric space (X, ρ),
then P (c, d), 0 < d < 1 cannot be true if c is the center of the set T .

Proof. Let P (c, d) be true where c is a center of T i.e., r(T, c) = inf{r(T, x) :
x ∈ X}, so r(T, c) 6 r(T, x) for all x ∈ X . Let y ∈ FT (c) and property P (c, d) is
true. Then for all y′ ∈ [c, y] such that ρ(y′, y) = (1 − t)ρ(c, y), ρ(y′, c) = tρ(c, y),
for 0 < t 6 d, we have y ∈ FT (y′). But this implies r(T, y′) = ρ(y′, y) < ρ(c, y) =
r(T, c), which is not true as r(T, c) = inf{r(T, x) : x ∈ X}. �

4. On remotality and unique remotality of convex hulls

A bounded subset T of a metric space (X, ρ) is said to be remotal (uniquely
remotal) if for each x ∈ X there exists at least one (exactly one) t ∈ T such that
ρ(x, t) = sup{ρ(x, y) : y ∈ T } ≡ δ(x, T ). Such a point t is called a farthest point
from x in T .

For remotal sets in convex metric spaces, we have

Proposition 4.1. A bounded subset T of a convex metric space (X, ρ) is re-
motal iff Conv(T ) is remotal.

Proof. Let T ′ ≡ Conv(T ), T be remotal, and x ∈ X be arbitrary. Then
there exists at least one t ∈ T such that ρ(x, t) = sup{ρ(x, t1) : t1 ∈ T } ≡ δ(x, T ).
Let t′ ∈ T ′ be arbitrary. Then t′ = W (t1, t2, . . . , tm, λ1, λ2, . . . , λm), for some
t1, t2, . . . , tm ∈ T , λ1, λ2, . . . , λm ∈ [0, 1] and

∑m
i=1 λi = 1. Consider

ρ(x, t′) = ρ(x, W (t1, t2, . . . , tm, λ1, λ2, . . . , λm))

6 λ1ρ(x, t1) + λ2ρ(x, t2) + . . . + λmρ(x, tm)

6 λ1ρ(x, t) + λ2ρ(x, t) + . . . + λmρ(x, t)

= (λ1 + λ2 + . . . + λm)ρ(x, t) = δ(x, T ).
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Thus δ(x, T ) = ρ(x, t) 6 sup{ρ(x, t′) : t′ ∈ T ′} 6 δ(x, T ). Hence δ(x, T ) =
sup{ρ(x, t′) : t′ ∈ T ′} = ρ(x, t). Also t ∈ T implies t ∈ T ′ and so t is farthest point
from x in T ′. Hence T ′ = Conv(T ) is remotal.

Conversely, suppose that T ′ is remotal. Let x ∈ X . Since T ⊂ T ′, sup{ρ(x, t) :
t ∈ T } 6 sup{ρ(x, t′) : t′ ∈ T ′} i.e., δ(x, T ) 6 δ(x, T ′). Now let t′′ ∈ T ′ i.e., t′′ =
W (t1, t2, . . . , tm, λ1, λ2, . . . , λm), for some t1, t2, . . . , tm ∈ T , λ1, λ2, . . . , λm ∈ [0, 1]
and

∑m
i=1 λi = 1, such that ρ(x, t′′) = δ(x, T ′) = sup{ρ(x, t′) : t′ ∈ T ′}. Consider

δ(x, T ′) = ρ(x, t′′) = ρ(x, W (t1, t2, . . . , tm, λ1, λ2, . . . , λm))

6 λ1ρ(x, t1) + λ2ρ(x, t2) + · · · + λmρ(x, tm)

6 λ1δ(x, T ) + λ2δ(x, T ) + · · · + λmδ(x, T )

= (λ1 + λ2 + · · · + λm)δ(x, T ) = δ(x, T ).

i.e., δ(x, T ′) 6 δ(x, T ). So, we have δ(x, T ′) = δ(x, T ). Now t′′ is the far-
thest point from x in T ′. If t′′ ∈ T , then T is remotal. If t′′ /∈ T , then t′′ =
W (t1, t2, . . . , tm, λ1, λ2, . . . , λm) for some t1, t2, . . . , tm ∈ T , t1, t2, . . . , tm 6= t′′,
λ1, λ2, . . . , λm ∈ [0, 1], and

∑m
i=1 λi = 1 and ρ(x, ti) 6 δ(x, T ). Suppose ρ(x, ti) <

δ(x, T ) for at least one i. Consider

δ(x, T ) = δ(x, T ′) = ρ(x, t′′) = ρ(x, W (t1, t2, . . . , tm, λ1, λ2, . . . , λm))

6 λ1ρ(x, t1) + λ2ρ(x, t2) + · · · + λmρ(x, tm)

< λ1δ(x, T ) + λ2δ(x, T ) + · · · + λmδ(x, T )

= (λ1 + λ2 + · · · + λm)δ(x, T ) = δ(x, T ).

i.e., δ(x, T ) < δ(x, T ), which is not possible. Therefore our supposition is wrong
i.e., ρ(x, ti) = δ(x, T ) for every i and so all the ti’s are the farthest points from x
in T and hence T is remotal. �

Remark 4.1. It was remarked in [3] that a bounded subset T of a normed
linear space is remotal iff Conv(T ) is remotal.

A result similar to Proposition 4.1 is also true for uniquely remotal sets i.e., we
have:

Proposition 4.2. A bounded subset T of a convex metric space (X, ρ) is
uniquely remotal iff Conv(T ) is uniquely remotal.

Proof. Let T ′ ≡ Conv(T ). We first assume that T is uniquely remotal. Let
x ∈ X be arbitrary and let t′ ∈ T ′. Then t′ = W (t1, t2, . . . , tm, λ1, λ2, . . . , λm), for
some t1, t2, . . . , tm ∈ T , λ1, λ2, . . . , λm ∈ [0, 1], and

∑m

i=1 λi = 1. Consider

ρ(x, t′) = ρ(x, W (t1, t2, . . . , tm, λ1, λ2, . . . , λm))

6 λ1ρ(x, t1) + λ2ρ(x, t2) + · · · + λmρ(x, tm)

6 λ1ρ(x, qT (x)) + λ2ρ(x, qT (x)) + · · · + λmρ(x, qT (x))

= (λ1 + λ2 + · · · + λm)ρ(x, qT (x)) = ρ(x, qT (x)).
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Thus ρ(x, qT (x)) 6 sup{ρ(x, t′) : t′ ∈ T ′} 6 ρ(x, qT (x)). Hence ρ(x, qT (x)) =
sup{ρ(x, t′) : t′ ∈ T ′}. Also t ∈ T implies t ∈ T ′ and so t is the farthest point from
x in T ′. Hence T ′ = Conv(T ) is remotal.

Now to prove that T ′ is uniquely remotal. Let t′′ 6= qT (x) ∈ T ′, t′′ /∈ T
be any other element such that ρ(x, t′′) = sup{ρ(x, t′) : t′ ∈ T ′} = ρ(x, qT (x)).
Therefore, t′′ = W (t1, t2, . . . , tm, λ1, λ2, . . . , λm), for some t1, t2, . . . , tm ∈ T , λ1, λ2,
. . . , λm ∈ [0, 1],

∑m
i=1 λi = 1 and t′′ 6= t1, t2, . . . , tm. Also ρ(x, ti) 6 ρ(x, qT (x)).

Let ρ(x, ti) < ρ(x, qT (x)) for at least one i. Consider

ρ(x, qT (x)) = ρ(x, t′′) = ρ(x, W (t1, t2, . . . , tm, λ1, λ2, . . . , λm))

6 λ1ρ(x, t1) + λ2ρ(x, t2) + · · · + λmρ(x, tm)

< λ1ρ(x, qT (x)) + λ2ρ(x, qT (x)) + · · · + λmρ(x, qT (x))

= (λ1 + λ2 + · · · + λm)ρ(x, qT (x)) = ρ(x, qT (x)).

i.e., ρ(x, qT (x)) < ρ(x, qT (x)), which is not possible. Therefore our supposition is
wrong and so ρ(x, ti) = ρ(x, qT (x)) for every i and so all the ti’s are the farthest
points from x in T , which is also not true as T is uniquely remotal. Therefore our
supposition that t′′ /∈ T , t′′ 6= qT (x) is also wrong and hence T ′ is uniquely remotal.

Conversely, suppose that T ′ is uniquely remotal. Let x ∈ X . Since T ⊂ T ′,
sup{ρ(x, t) : t ∈ T } 6 sup{ρ(x, t′) : t′ ∈ T ′} i.e., ρ(x, qT (x)) 6 ρ(x, qT ′(x)). If
qT ′(x) ∈ T , then ρ(x, qT ′ (x)) 6 ρ(x, qT (x)) and if qT ′(x) /∈ T , then qT ′(x) =
W (t1, t2, . . . , tm, λ1, λ2, . . . , λm), for some t1, t2, . . . , tm ∈ T , λ1, λ2, . . . , λm ∈ [0, 1],
and

∑m

i=1 λi = 1.

ρ(x, qT ′ (x)) = ρ(x, W (t1, t2, . . . , tm, λ1, λ2, . . . , λm))

6 λ1ρ(x, t1) + λ2ρ(x, t2) + · · · + λmρ(x, tm)

6 λ1ρ(x, qT (x)) + λ2ρ(x, qT (x)) + · · · + λmρ(x, qT (x))

= (λ1 + λ2 + · · · + λm)ρ(x, qT (x)) = ρ(x, qT (x)).

Therefore ρ(x, qT ′(x)) 6 ρ(x, qT (x)) and so ρ(x, qT ′(x)) = ρ(x, qT (x)). The same
argument as above shows that qT (x) = {qT ′(x)}. Hence T is uniquely remotal. �

Remark 4.2. It was remarked in [11] that a bounded subset T of a normed
linear space is uniquely remotal iff Conv(T ) is uniquely remotal.

5. On continuity of farthest point map

The set-valued map FT : X → 2T , where 2T is the collection of all subsets of T ,
defined by FT (x) = {t ∈ T : ρ(x, t) = supy∈T ρ(x, y)} is called the farthest point
map (f.p.m.). For uniquely remotal sets T , the f.p.m. FT is single-valued and is
denoted by qT .

In the next result, we study the continuity of the farthest point map in exter-
nally convex M -spaces.

Proposition 5.1. Let T be a uniquely remotal subset of an externally convex
M -space (X, ρ), then the f.p.m. qT is continuous at x0 iff the restriction of qT to
Ex0

is continuous, where Ex0
= {x ∈ X : ρ(x, qT (x)) > ρ(x0, qT (x0))}.
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Proof. Suppose that the restriction of qT to Ex0
is continuous. If T is sin-

gleton, say T = {t}, then qT (x) = t for all x ∈ X . Let x ∈ X be arbitrary with
ρ(x, x0) < δ. Then ρ(qT (x), qT (x0)) = ρ(t, t) = 0 < ε for all ε. Hence qT is contin-
uous at x0. So we can assume that T is not a singleton. Let V be a neighborhood
of qT (x0). Then by the continuity of qT

∣

∣

Ex0

, there is a neighborhood of x0, say

G, such that qT (Ex0
∩ G) ⊆ V . Choose δ > 0, such that the open ball B2δ(x0) is

contained in G, where B2δ(x0) = {x ∈ X : d(x, x0) < 2δ}. Let x ∈ Bδ(x0) r Ex0

and y ∈ [qT (x), x, −[ be such that ρ(y, qT (x)) = ρ(x0, qT (x0)). Consider

ρ(y, qT (x)) = ρ(y, x) + ρ(x, qT (x)) > ρ(y, x) + ρ(x, z) > ρ(y, z) for all z ∈ T.

Thus qT (x) = qT (y). So, we get ρ(y, qT (y)) = ρ(x0, qT (x0)). This gives
y ∈ Ex0

. Consider

ρ(y, x0) 6 ρ(y, x) + ρ(x, x0) = ρ(y, qT (x)) − ρ(x, qT (x)) + ρ(x, x0)

= ρ(x0, qT (x0)) − ρ(x, qT (x)) + ρ(x, x0)

6 ρ(x0, x) + ρ(x, qT (x0)) − ρ(x, qT (x)) + ρ(x, x0)

6 ρ(x0, x) + ρ(x, x0) = 2ρ(x, x0) < 2δ

i.e., ρ(y, x0) < 2δ implies y ∈ B2δ(x0) ⊂ G. So y ∈ G ∩ Ex0
gives qT (y) ∈ V .

Therefore qT (Bδ(x0)) ⊆ V as x ∈ Bδ(x0)r Ex0
is arbitrary and qT (x) ∈ V . Hence

qT is continuous at x0.
Conversely, suppose qT is continuous at x0. Since restriction of a continuous

map is continuous, qT

∣

∣

Ex0

is continuous at x0. �

Remark 5.1. For normed linear spaces this proposition was proved in [13].

6. On unique remotality of closure of a set

Proposition 6.1. Let T be a nonempty uniquely remotal subset of a strongly
externally convex metric space (X, ρ). Then cl(T ) ≡ T is also uniquely remotal and
the farthest point maps qT : X → T and q

T
: X → T coincide.

Proof. Let x ∈ X and set r = sup{ρ(x, z) : z ∈ T } = sup{ρ(x, z) : z ∈ cl(T )}.
If r = 0, then T = cl(T ) = {x} and hence the assertion of proposition holds. So let
r > 0 and suppose that y ∈ cl(T ) satisfy ρ(x, y) = r (i.e., y is the farthest point in
cl(T ) from x). To show that cl(T ) is uniquely remotal, we shall show that y ∈ T
and hence y = qT (x). By external convexity, there exists a unique x0 ∈ X with

(6.1) ρ(x, x0) = r and ρ(y, x0) = ρ(y, x) + ρ(x, x0) = 2r

On the other hand, T ⊂ B[x, r] implies ρ(x0, z) 6 ρ(x0, x) + ρ(x, z) 6 2r for
all z ∈ T . Hence ρ(x0, z) 6 2r holds for every z ∈ cl(T ). Therefore (6.1) implies y
is a farthest point in cl(T ) from x0.

Next, Let z0 = qT (x0) ∈ T. Then, ρ(x0, z0) = 2r and hence

2r = ρ(x0, z0) 6 ρ(x0, x) + ρ(x, z0) 6 2r
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holds(using (6.1) and T ⊂ B[x, r]). Therefore, 2r = ρ(x0, z0) = ρ(x0, x) + ρ(x, z0).
Together with (6.1) and the uniqueness assertion in the definition of external con-
vexity, this implies y = z0 ∈ T (as x0 6= x). �

Remark 6.1. It was remarked in [11] that in strictly convex normed linear
spaces, the unique farthest point property is inherited by closure of the set.

7. A characterization of linear metric spaces

The geometric nature of the underlying space plays an important role in dis-
cussing nearest and farthest points. The following proposition shows that structure
of the set of farthest points can be used to characterize strictly convex linear metric
spaces.

Proposition 7.1. Let (X, ρ) be a linear metric space; then the following are
equivalent:

(1) X is strictly convex.
(2) For a bounded closed convex subset C of X, far(C) ⊂ ext(C).
(3) For a compact convex subset C of X, far(C) ⊂ ext(C).

Proof. (1) ⇒ (2) Let X be strictly convex and C a bounded closed convex
subset of X . Suppose far(C) 6⊂ ext(C) i.e., there exists x′ ∈ far(C) such that
x′ /∈ ext(C). Then there exist x, y ∈ C, x 6= y such that x′ is mid-point of x
and y i.e., x′ = x+y

2 . Now x′ ∈ far(C) implies x′ ∈ FC(y′) for some y′ ∈ X i.e.,
ρ(x′, y′) = sup{ρ(z, y′) : z ∈ C} ≡ r. Since x, y ∈ C, ρ(x, y′) 6 r, ρ(y, y′) 6 r
and so the strict convexity of X implies ρ(x′, y′) < r, which is absurd. Hence
far(C) ⊂ ext(C).

(2) ⇒ (3) This is obvious.
(3) ⇒ (1) Suppose far(C) ⊂ ext(C) for every compact convex subset C of X .

Let if possible, X be not strictly convex. Then there is a segment [a, b] on the
sphere S(0, r), a, b ∈ X (see [16]). Let C = [a, b]; then C ⊂ far(C) as every point
of [a, b] is farthest from 0 but y /∈ ext(C) for any y ∈ (a, b), contradicting the fact
that far(C) ⊂ ext(C). Hence X is strictly convex. �

The following example shows that if X is not strictly convex, then a farthest
point in C need not be an extreme point of C.

Example 7.1. Let X = R
2 be the metric space with ρ(x, y) = max{|x1 − x2|,

|y1 − y2|} where x = (x1, x2) and y = (y1, y2), and let C = {(−1, y) : −1 6 y 6 1}.
Then z = (−1, 0) is the farthest point from the origin (0, 0) since its distance from
each element of C is 1. Hence far(C) is nonempty as z ∈ far(C) but z is not an
extreme point of C [18].

Remark 7.1. For normed linear spaces such a characterization of strictly con-
vex normed linear spaces was given in [10].
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