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FEKETE TYPE POINTS FOR
RIDGE FUNCTION INTERPOLATION

AND HYPERBOLIC POTENTIAL THEORY

Len Bos, Stefano De Marchi, and Norm Levenberg

Abstract. We apply hyperbolic potential theory to the study of the asymp-
totics of Fekete type points for univariate ridge function interpolation.

1. Introduction

Suppose that f : C → C and g : Cd → C is defined by g(x) = f(t · x) where
t ∈ Cd is fixed and t · x = t1x1 + · · · + tdxd. In the case of t = iω with ω ∈ Rd

and f(z) = ez, g(x) = eiω·x and hence we refer to t as a (generalized) “frequency”.
Such an g is called a ridge function (or sometimes a planar wave). If we have n
such frequencies t1, . . . , tn ∈ Cd then the span of the associated ridge functions

Vn := span
(

{f(t1 · x), f(t2 · x), . . . , f(tn · x)}
)

form a linear “frequency space” and may be used as the basis of a multivariate
interpolation scheme for data in Cd in the following way. Suppose that the “sites”
si ∈ K ⊂ C

d, 1 6 i 6 n, where K is compact, are given together with values
zi ∈ C, 1 6 i 6 n. We look for an interpolant of the form

p(x) =

n
∑

j=1

ajf(tj · x),

i.e., a p ∈ Vn such that

(1.1) p(si) = zi, 1 6 i 6 n.

Applying the conditions (1.1) to the equation for p results in a linear system with
coefficient matrix Mn(s, t) := [f(tj · si)]16i,j6n.

If the frequencies tj or the sites si, or both, may freely be adjusted within
K, then it is reasonable to ask for those points which produce “best” or at least
“good” interpolants. Of course, the numerical conditioning of the matrix Mn will
play an important role in the answer to such questions and hence it would be
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useful to know which frequencies tj and/or points si produce the best conditioned
matrix Mn. Unfortunately, this is likely a forbiddingly difficult problem, and hence,
as a first step, it is reasonable to ask for those frequencies tj and/or points si in K
for which which det(Mn) is as large as possible. Mn is an analogue of the classical
Vandermonde matrix and so in analogy with this case, we refer to such optimal
points as ridge Fekete points. In [4], specifying to Rd and two particular classes of
ridge functions, we proved the following theorem.

Theorem 1.1. Suppose that f(x) = exp(αx) or f(x) = exp(−βx2) for some

α, β > 0. Suppose further that ŝ1 < ŝ2 < · · · < ŝn ∈ [a, b] are points which maximize
either

(1) det(Mn(s, t)), s ∈ [a, b]n, where t ∈ [a, b]n are fixed but distinct
(2) det(Mn(s, s)), s ∈ [a, b]n.

Then the discrete measures µ
(n)
ŝ := 1

n

∑n
i=1 δŝi

tend weak-* to the arcsine measure

µ∗ given by

dµ∗ =
1

π

1
√

(b − x)(x − a)
dx.

See [10] for error estimates of such interpolants. We also remark that, in
contrast, for radial basis interpolation by basis functions of the form g(|x|) with
g′(0) 6= 0, the optimal points are asymptotically uniformly distributed; see [5]
or [3].

As is well known, the arcsine measure µ∗ is also the so-called equilibrium mea-
sure of complex potential theory, a theory fundamental for the study of the asymp-
totics of good points for univariate polynomial interpolation; see, for example [1]
or [2]. This theorem may be paraphrased to say that for the exponential basis
functions optimal points for ridge function interpolation behave (asymptotically)
exactly like those for polynomial interpolation. In this paper we show that, depend-
ing on the basis function f(x), this is not always the case. Indeed, for a different
family of functions, it is hyperbolic potential theory that plays a central role. In
particular, this shows that the asymptotic distribution of ridge Fekete points, in
general, depends on the function f .

2. A first example and hyperbolic potential theory

Consider the function f(z) := 1/(1 − z) and the corresponding ridge function
g(x) = f(tx) where d = 1 so that t, x ∈ C. Then, for sites si, 1 6 i 6 n and
frequencies ti, 1 6 i 6 n distinct, the matrix Mn(s, t) = [1/(1 − sitj)]16i,j6n is a
variant of the so-called Cauchy matrix (see [6, p. 268]) and its determinant may be
explicitly calculated.

Proposition 2.1. We have

det(Mn(s, t)) =
V (s)V (t)

∏n
i,j=1(1 − sitj)

where V (x) :=
∏

i>j(xi − xj) is the classical Vandermonde determinant.
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Proof. We may write

1

1 − sitj
=

1

si

1

ai + bj

where ai := 1/si and bj := −tj . Hence

det(Mn(s, t)) =

( n
∏

i=1

1

si

)n

det
(

[1/(ai + bj)]
)

.

This latter determinant is the Cauchy determinant for which Davis [6, p. 268] gives
the formula

det
(

[1/(ai + bj)]
)

=
V (a)V (b)

∏n
i,j=1(ai + bj)

.

Elementary algebra then gives us the result. �

Take now t = s ∈ Rn. Then

det(Mn(s, s)) =
(V (s))2

∏n
i,j=1(1 − sisj)

=

(
∏

i>j(si − sj)
)2

∏

i6=j(1 − sisj)

1
∏n

i=1(1 − s2
i )

=

(

∏

i>j(si − sj)
∏

i>j(1 − sisj)

)2
1

∏n
i=1(1 − s2

i )
=

(

∏

i>j

[si, sj]h

)2
1

∏n
i=1(1 − s2

i )
(2.1)

where

[α, β]h :=
∣

∣

∣

α − β

1 − αβ

∣

∣

∣

is the pseudohyperbolic distance between α, β ∈ C.

Remark 2.1. Let D = {z ∈ C : |z| < 1} be the open unit disk. Equipped
with the hyperbolic distance

{α, β}h := inf
γ

∫

γ

|dz|
1 − |z|2 , α, β ∈ D

where the inf is taken over all rectifiable curves in D connecting α to β, D becomes
the hyperbolic plane. It can be shown that [α, β]h = tanh({α, β}h).

We then define the hyperbolic Vandermonde determinant to be

H(s) :=
∏

i>j

[si, sj ]h.

Suppose that K ⊂ D is compact. A set of points t(n) = {t
(n)
1 , . . . , t

(n)
n } ⊂ K

that maximize H(s) for s ∈ Kn form a hyperbolic analogue of classical Fekete
points. As they were first studied by Tsuji they are often referred to as Tsuji points.
Hyperbolic potential theory, as introduced in Tsuji [9, p. 94], may be thought of as
classical complex potential theory with the euclidean distance |α − β| replaced by
the pseudohyperbolic distance; see also the survey by Kirsch [8, § 6.2]. In particular,
for a probability measure µ with support in K, its energy is

I(µ) :=

∫

K

∫

K

log

(

1

[α, β]h

)

dµ(α) dµ(β)
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and its hyperbolic conductor potential is

Uh
µ (α) :=

∫

K

log

(

1

[α, β]h

)

dµ(β).

Let Vh(K) := infµ I(µ). It is known that

lim
n→∞

H(t(n))1/(n

2) = exp(−Vh(K)) =: caph(K),

the hyperbolic capacity of K. If caph(K) > 0 then there exists a unique minimizing
measure, µh

K , called the hyperbolic equilibrium measure. For µ = µh
K , the potential

function Uµ is harmonic in DrK and has the properties that Uµ(α) = 0 for α ∈ ∂D,
Uµ(α) 6 Vh(K) on D and Uµ(α) = Vh(K) q.e. on K; i.e., for α ∈ K rP where P is
a (possibly empty) polar set (a set P is polar if there exists a subharmonic function
u 6≡ −∞ with P ⊂ {u = −∞}). Points of K r P are called regular points of K.

If we define the discrete measures supported on the Tsuji points,

µn :=
1

n

n
∑

i=1

δ
t

(n)
i

,

then µn → µh
K , weak−∗. More generally we have (cf. the proof of Thm. 1.5 in [1])

Theorem 2.1. Suppose that s(n) ∈ Kn is a sequence of sets of points such that

lim
n→∞

H(s(n))1/(n

2) = caph(K).

Then for the discrete measures µn := 1
n

∑n
i=1 δ

s
(n)
i

, we have limn→∞ µn = µh
K ,

weak-*.

From this we may conclude

Theorem 2.2. Suppose that for K ⊂ D compact, s(n) ∈ Kn is such that

∣

∣ det
(

Mn

(

s(n), s(n)))∣

∣ = max
s∈Kn

|det(Mn(s, s))| , n = 1, 2, . . . ,

i.e., s(n) is a set of ridge Fekete points, and µn := 1
n

∑n
i=1 δ

s
(n)
i

. Then

lim
n→∞

µn = µh
K , weak- ∗ .

Proof. By Theorem 2.1 it is sufficient to prove that

lim
n→∞

H(s(n))1/(n

2) = caph(K).

First note that since K ⊂ D, there exists a constant δ > 0 such that 0 < δ 6

|1 − s2
i | 6 2, for all s ∈ K. If we let, as before, t(n) ∈ Kn denote the Tsuji points

for K, we have immediately that H(s(n)) 6 H(t(n)). Further, by the definition
of s(n),

∣

∣det
(

Mn

(

t(n), t(n)
))

∣

∣ 6
∣

∣det
(

Mn

(

s(n), s(n)
))

∣

∣ so that from (2.1) applied to
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s = t(n) and to s = s(n) we have

H2(t(n))
1

∏n
i=1 |1 − (t

(n)
i )2|

=
∣

∣det
(

Mn

(

t(n), t(n)))
∣

∣

6
∣

∣det
(

Mn

(

s(n), s(n)))∣

∣ = H2(s(n))
1

∏n
i=1 |1 − (s

(n)
i )2|

.

It follows that

H2(t(n))

( n
∏

i=1

|1 − (s
(n)
i )2|

|1 − (t
(n)
i )2|

)

6 H2(s(n)) 6 H2(t(n))

and hence (δ/2)nH2(t(n)) 6 H2(s(n)) 6 H2(t(n)). Clearly then

lim
n→∞

H(s(n))1/(n

2) = lim
n→∞

H(t(n))1/(n

2) = caph(K)

and we are done. �

Now let us return to the case when K is a real interval. For simplicity let
us take K = [−a, a] ⊂ D. We first note that µh

K is not the same as the classical
equilibrium measure

µ∗ =
1

π

1√
a2 − x2

dx.

For if µh
K = µ∗ then it would have to be the case that

(2.2)

∫ a

−a

log

(

1

|α − β|

)

dµ∗(β) −
∫ a

−a

log

(

1

[α, β]h

)

dµ∗(β)

is constant q.e. for α ∈ [−a, a] as, from the classical theory, the first term in (2.2)
is also constant on [−a, a]. Hence we would have that

∫ a

−a

log

(

[α, β]h
|α − β|

)

dµ∗(β) = − 1

π

∫ a

−a

log (1 − αβ)
dβ

√

a2 − β2

is constant q.e. on [−a, a]. However, a direct calculation shows that

1

π

∫ a

−a

log(1 − αβ)
dβ

√

a2 − β2
= log

(

1 +
√

1 − a2α2

2

)

which is clearly not constant in α, a contradiction.
Alternatively, we may note that in this case

Uh
µ (α) =

∫ a

−a

log
∣

∣

∣

1 − αβ

α − β

∣

∣

∣
dµ(β)

and for |α| = 1,
∣

∣

∣

1 − αβ

α − β

∣

∣

∣
=

∣

∣

∣

α(α − β)

α − β

∣

∣

∣
= |α| = 1

so that Uh
µ (α) = 0, |α| = 1. Then, from the fact that, for µ = µh

K , Uh
K(α) ≡ Vh(K)

on [−a, a], it follows that Uh
K is a multiple of the relative extremal function

ω(α, K,D) := sup{u(α) : u shm in D, u < 0 on D, u 6 −1 on K},
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so that µh
K = c ∆ω(α, K,D) for some constant c. In particular,

µh
K 6= 1

π

dβ
√

a2 − β2
,

since the right-hand side is the classical equilibrium measure of [−a, a], which is a
multiple of the laplacian of the global extremal function

sup
{

u(α) : u shm in C, u(z) − log |z| = 0(1) (|z| → ∞), u 6 0 on [−a, a]
}

= log
∣

∣α/a −
√

(α/a)2 − 1
∣

∣.

3. A generalized family of functions

Consider now the family of functions fc(z) := c2/(c2 − z), c > 1 with gc(x) =
fc(tx). These functions are analytic in the disks Dc := {z ∈ C : |z| < c2} ⊃ D.
The matrices Mn(s, t) for s, t ∈ Rn then become Mn(s, t) = [c2/(c2 −sitj)] ∈ Rn×n.
It is easy to verify, using Proposition 2.1, that

Proposition 3.1. We have

det(Mn(s, t)) =
V (s′)V (t′)

∏n
i,j=1(1 − s′

it
′
j)

where s′ := s/c, t′ = t/c and V (x) :=
∏

i>j(xi − xj) is the classical Vandermonde

determinant.

Suppose that K ⊂ D. It follows that the points that maximize the determinant
of Mn(s, s), s ⊂ K, have a limiting measure given by that of the dilation by c of
that for K/c. Specifically, if we denote this measure by dµ∗

c it is such that
∫

K

f(β) dµ∗
c(β) =

∫

K/c

f(cβ) dµh
K/c(β).

In particular
∫

K

log
∣

∣

∣

1 − αβ

α − β

∣

∣

∣
dµ∗

c(β) =

∫

K/c

log
∣

∣

∣

1 − αcβ

α − cβ

∣

∣

∣
dµh

K/c(β).

Now, we claim that µ∗
c cannot (in general) be equal to the hyperbolic equilibrium

measure dµh
K . For suppose that they were equal and suppose that 0 ∈ K and that

α = 0 ∈ K ∩ (K/c) is a regular point. It would follow that, evaluating at α = 0,

Vh(K) =

∫

K

log
∣

∣

∣

1

β

∣

∣

∣
dµ∗

c(β) =

∫

K/c

log
∣

∣

∣

1

cβ

∣

∣

∣
dµh

K/c(β) = Vh(K/c) − log(c)

so that caph(K) = c caph(K/c). However, caph does not in general have this scaling
property. In fact, Kirsch [8, p. 278], reports that

caph([0, r]) = exp

{

− π

2

K(
√

1 − r2)

K(r)

}

where

K(r) :=

∫ 1

0

dx
√

(1 − x2)(1 − r2x2)
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is the complete elliptic integral of the first kind.
In summary, the limiting measure seems to depend on the domain of analyticity

of the basis function. To illustrate this further, we consider in the next section a
family of functions with the same domain of analyticity.

4. The family of functions fc(z) := (1 − z)−c, c > 1

We again take K = [−a, a] ⊂ D with 0 < a < 1. For s ∈ Kn, the matrix
Mn(s, s) = [(1 − sisj)−c] ∈ Rn×n. For c = 1 we recover the matrix of the first
section. Gross and Richards [7, (3.21)] give the remarkable formula

(4.1) det(Mn(s, s)) = cn(V (s))2
∫

U(n)
det(I − susu−1)−(c+n−1)du

where U(n) is the group of n × n complex unitary matrices. We remark that on
the right-hand side, we may take s ∈ Rn×n the diagonal matrix with diagonal the
vector s of the left-hand side. The measure is Haar measure on U(n). The constant
cn depends on the parameter c but its exact value will not play a role for us.

In particular this formula allows them to conclude that the matrices Mn(s, s)
are positive definite and hence have positive determinant.

First note that ‖susu−1‖2 6 ‖s‖2
2 = (max16i6n |si|)2

6 a2 so that the spectral
radius ρ(susu−1) 6 a2. It follows that 1 − a2 6 |λ| 6 1 + a2 for any eigenvalue λ
of I − susu−1, and hence

(1 − a2)n 6 det(I − susu−1) 6 (1 + a2)n.

Now consider the formula (4.1). We have

det([(1 − sisj)−c])

= cn(V (s))2
∫

U(n)
det(I − susu−1)−(c+n−1)du

= cn(V (s))2
∫

U(n)

det(I − susu−1)−(c+n−1)

det(I − susu−1)−(1+n−1)
det(I − susu−1)−(1+n−1)du

= cn(V (s))2
∫

U(n)
det(I − susu−1)−(c−1) det(I − susu−1)−ndu.

Consequently, since by assumption c > 1,

det([(1 − sisj)−c]) 6 (1 − a2)−n(c−1)cn(V (s))2
∫

U(n)
det(I − susu−1)−ndu

= (1 − a2)−n(c−1) det([(1 − sisj)−1])(4.2)

and similarly

det([(1 − sisj)−c]) > (1 + a2)−n(c−1)cn(V (s))2
∫

U(n)
det(I − susu−1)−ndu

= (1 + a2)−n(c−1) det([(1 − sisj)−1]).(4.3)
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Let now s⋆ denote the points in Kn which maximize det([(1−sisj)−c]) and t⋆ those
points in Kn which maximize det([(1 − sisj)−1]). By the definition of t⋆ we have
directly that

det([(1 − s⋆
i s⋆

j )−1]) 6 det([(1 − t⋆
i t⋆

j )−1]).

Furthermore,

det([(1 − s⋆
i s⋆

j )−1]) > (1 − a2)n(c−1) det([(1 − s⋆
i s⋆

j )−c]) by (4.2)

> (1 − a2)n(c−1) det([(1 − t⋆
i t⋆

j )−c])

> (1 − a2)n(c−1)(1 + a2)−n(c−1) det([(1 − t⋆
i t⋆

j )−1]) by (4.3)

=
(1 − a2

1 + a2

)n(c−1)
det([(1 − t⋆

i t⋆
j )−1]).

We conclude that
lim

n→∞
H(s⋆)1/(n

2) = lim
n→∞

H(t⋆)1/(n

2)

and hence, by Theorem 2.2, that the optimal points for f c also are asymptotically
distributed according to the hyperbolic equilibrium measure, µh

K .
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