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WEIGHTED MARKOV–BERNSTEIN

INEQUALITIES FOR ENTIRE FUNCTIONS

OF EXPONENTIAL TYPE

Doron S. Lubinsky

Abstract. We prove weighted Markov–Bernstein inequalities of the form
∫

∞

−∞

|f ′(x)|pw(x) dx 6 C(σ + 1)p

∫

∞

−∞

|f(x)|pw(x) dx

Here w satisfies certain doubling type properties, f is an entire function of
exponential type 6 σ, p > 0, and C is independent of f and σ. For example,
w(x) = (1 + x2)α satisfies the conditions for any α ∈ R. Classical doubling
inequalities of Mastroianni and Totik inspired this result.

1. Introduction

The classical Markov–Bernstein inequality for the unit circle asserts that for
polynomials P of degree 6 n, and 0 < p 6 ∞,

(1.1) ‖P ′‖Lp(Γ) 6 n‖P ‖Lp(Γ).

Here Γ is the unit circle, and if p < ∞,

‖P ‖Lp(Γ) =

(
∫ π

−π

|P (eiθ)|pdθ

)1/p

.

Of course, it was proved earlier for 1 6 p 6 ∞, and later for 0 < p < 1 by
Arestov [1]. There is a close cousin for entire functions f of exponential type 6 σ,
and 0 < p 6 ∞:

(1.2) ‖f ′‖Lp(R) 6 σ‖f‖Lp(R).

It too was earlier proved for 1 6 p 6 ∞, and later for 0 < p < 1. See [15]. In fact,
these inequalities are equivalent, and can be derived from each other–as follows,
for example, from the methods of [10] where there is a similar equivalence between
Marcinkiewicz–Zygmund and Plancherel–Polya inequalities. These are yet more
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illustrations of the classical link between approximation theory for polynomials
and that for entire functions of exponential type, amply explored in the memoir of
Ganzburg [8], and in the books of Timan [17], and Trigub and Belinsky [18], for
example.

There is a vast literature on Markov–Bernstein inequalities, both for polyno-
mials [5,12,14], and entire functions of exponential type. For the latter, there are
Szegő type inequalities, and sharp inequalities for various subclasses of entire func-
tions with special properties–see [4,6,16]. In another direction, weighted Bernstein
inequalities involving inner functions, and model spaces have been investigated by
Baranov [2,3].

For polynomials, one of the most beautiful results involves doubling weights,
and is due to Mastroianni and Totik [13]. Recall the setting: let W : [−π, π] →
[0, ∞) be measurable. Extend W as a 2π periodic function to the real line. We say
that W is doubling if there is a constant L (called a doubling constant for W ) such
that for all intervals I, we have

∫

2I
W 6 L

∫

I
W . Here 2I is the interval with the

same center as I, but with twice the length. A typical doubling weight is

W (t) = h(t)
k

∏

j=1

|t − βj |γj ,

where h is bounded above and below by positive constants, and all {βj} are distinct
and lie in [−π, π], while all γj > −1. An immediate consequence of Theorem 4.1
in [13, p. 45] is that for 1 6 p < ∞,

∫ π

−π

|P ′(eiθ)|p W (θ) dθ 6 Cnp

∫ π

−π

|P (eiθ)|p W (θ) dθ,

valid for n > 1 and all polynomials P of degree 6 n. This was extended to 0 < p < 1
by Erdelyi [7]. The constant C depends only on p and the doubling constant L,
not on the particular W .

In this paper, inspired by the results of Mastroanni, Totik, and Erdelyi, we
prove weighted Markov–Bernstein inequalities. Our most general result follows.

Theorem 1.1. Let σ, p > 0, r ∈ (0, 1], and let w : R → [0, ∞) be a measurable

function satisfying the following:

(I) The one-sided doubling condition about 0: there exists L > 1, such that for

|a| > r,

(1.3)

∣

∣

∣

∣

∫ 2a

a

w

∣

∣

∣

∣

6 L

∣

∣

∣

∣

∫ a

a/2
w

∣

∣

∣

∣

.

(II) The growth condition about integers: there exist B, β > 1 such that for k > 0
and −1 6 j 6 max

{

2k + 1, 1
r

}

,

(1.4)

∫ (j+1)r

jr

w 6 B(1 + r|j − k|)β

∫ (k+1)r

kr

w.
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Assume also the analogous condition for k < 0. For t ∈ R, let

(1.5) wr(t) =
1

2r

∫ t+r

t−r

w(s) ds.

Then for entire functions f of exponential type 6 σ, we have

(1.6)

∫ ∞

−∞

|f ′(t)|pwr(t) dt 6 C(σ + 1)p

∫ ∞

−∞

|f(t)|pwr(t) dt,

provided the right-hand side is finite. Here C depends on B, β, p and L, but is

independent of σ, r, f , and the particular w.

Corollary 1.2. Let p > 0. Assume that all the conditions of Theorem 1.1
hold for some r0 ∈ (0, 1), and all r ∈ (0, r0), with L, B and β independent of r.

Then for σ > 0, and entire functions f of exponential type 6 σ, we have

(1.7)

∫ ∞

−∞

|f ′(t)|pw(t) dt 6 C(σ + 1)p

∫ ∞

−∞

|f(t)|pw(t) dt,

provided the right-hand side is finite. Here C depends on B, β, p and L, but is

independent of σ, f , and the particular w.

Corollary 1.3. Let σ, p > 0, and let w : R → (0, ∞) be a measurable function

satisfying the following: for some M > 1, we have for for t ∈ R r {0} and both
1
2 6 s

t 6 2 and |s − t| 6 2,

(1.8)
1

M
6

w(s)

w(t)
6 M.

Then for entire functions f of exponential type 6 σ, we have

(1.9)

∫ ∞

−∞

|f ′(t)|pw(t) dt 6 C(σ + 1)p

∫ ∞

−∞

|f(t)|pw(t) dt,

provided the right-hand side is finite. Here C depends on M , but is independent of

σ, w and f .

Corollary 1.4. Let σ, p > 0, and α ∈ R. Then for entire functions f of

exponential type 6 σ, we have

(1.10)

∫ ∞

−∞

|f ′(t)|p(1 + t2)αdt 6 C(σ + 1)p

∫ ∞

−∞

|f(t)|p(1 + t2)αdt,

provided the right-hand side is finite. Here C is independent of σ and f .

To the best of our knowledge, even the inequalities in Corollary 1.4 are new.
Almost all existing inequalities in the literature are unweighted, though they involve
sharp constants as in (1.2). We note that if 1 = λ1 < λ2 < · · · , and f(x) =
∑m

j=1 cjλ−ix
j , we used orthogonal Dirichlet polynomials in [11] to prove

(
∫ ∞

−∞

|f ′(x)|2

1 + x2 dx

)1/2

6

{

log λm + (log λm)1/2
}

(
∫ ∞

−∞

|f(x)|2

1 + x2 dx

)1/2

.

Here one cannot replace log λm +(log λm)1/2 by any factor smaller than log λm +C1

for some C1 > 0. This inequality reflects the fact that f is entire of type 6 log λm.
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It is noteworthy that if one allows the weight to depend on the exponential type
of the function, then it suffices to prove results for entire functions of exponential
type 1. Indeed, suppose that for some weight w and all entire functions f of
exponential type at most 1; we have

∫ ∞

−∞

|f ′(t)|pw(t) dt 6 C1

∫ ∞

−∞

|f(t)|pw(t) dt.

If now f is entire of exponential type 6 σ, and we apply this last inequality to
g(t) = f(t/σ), which does have type 6 1, and then make a substitution t = σs, we
obtain for all entire functions f of exponential type 6 σ,

∫ ∞

−∞

|f ′(s)|pw(σs) ds 6 C1σp

∫ ∞

−∞

|f(s)|pw(σs) ds.

However, the goal of this paper is estimates in which the weight does not depend
on σ.

We prove the results in Section 2. Throughout C, C1, C2, . . . denote positive
constants independent of f, σ, r. The same symbol does not necessarily denote the
same constant in different occurrences.

2. Proofs of the results

Throughout, we let S(t) = sin πt/πt denote the sinc kernel. We will use the
bounds |S(t)| 6 min{1, 1/π|t|}. We begin by applying (1.2) to

(2.1) g(t) = f(t)
[

S
( t

ℓ

)

+ iS
( t

ℓ
+

1

2

)]ℓ

,

where ℓ is a fixed positive integer. This yields:

Lemma 2.1. Let ℓ > 1, p > 0, and f be entire of exponential type 6 σ. Then

(2.2)

∫ ∞

−∞

|f ′(t)|p(1 + |t|)−ℓpdt 6 C(σ + 1)p

∫ ∞

−∞

|f(t)|p(1 + |t|)−ℓpdt,

where C is independent of f and σ.

Proof. Let h(t) = S
(

t
ℓ

)

+ iS
(

t
ℓ + 1

2

)

, so that g of (2.1) satisfies g = fhℓ.
First note that for real t,

(2.3) |h(t)| 6 min

{

2,
ℓ

π|t|
+

2ℓ

π(|t| + ℓ/2)

}

6 C(1 + |t|)−1,

where C depends only on ℓ. By (1.2), and some simple calculations, also,

(2.4) |h′(t)| 6 C(1 + |t|)−1,

where again C depends only on ℓ. In the other direction, we see that

|h(t)|2 =

(

sin π t
ℓ

π t
ℓ

)2

+

(

cos π t
ℓ

π
(

t
ℓ + 1

2

)

)2

>

(

sin π t
ℓ

)2
+

(

cos π t
ℓ

)2

(

π
(
∣

∣

t
ℓ

∣

∣ + 1
2

))2 > C(1 + |t|)−2.(2.5)
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Then, recalling (2.1),

|f ′(t)h(t)ℓ| = |g′(t) − f(t)ℓh(t)ℓ−1h′(t)|

6 |g′(t)| + C|f(t)|(1 + |t|)−ℓ,(2.6)

by (2.3) and (2.4). Now g is entire of exponential type 6 σ + 1, and (2.3) shows
that

∫ ∞

−∞

|g(t)|pdt 6 C

∫ ∞

−∞

|f(t)|p(1 + |t|)−ℓpdt < ∞,

so applying (1.2) to g gives
∫ ∞

−∞

|g′(t)|pdt 6 (σ + 1)p

∫ ∞

−∞

|g(t)|pdt 6 C(σ + 1)p

∫ ∞

−∞

|f(t)|p(1 + |t|)−ℓpdt.

Together with (2.6), and (2.5), this yields
∫ ∞

−∞

|f ′(t)|p(1 + |t|)−ℓpdt 6 C

∫ ∞

−∞

∣

∣f ′(t)h(t)ℓ
∣

∣

p
dt

6 C

∫ ∞

−∞

(

|g′(t)|p + C|f(t)|p(1 + |t|)−ℓp
)

dt

6 C{(σ + 1)p + 1}

∫ ∞

−∞

|f(t)|p(1 + |t|)−ℓpdt.

So we have the result. �

From this we deduce:

Lemma 2.2. Let σ, p > 0, ℓ > 1, and let w : R → [0, ∞) be a measurable

function. Let

(2.7) H(t) =

∫ ∞

−∞

w(x)

(1 + |x − t|)ℓp
dx, t ∈ R,

and assume that this is finite for t ∈ R. Then for entire functions f of exponential

type 6 σ for which the right-hand side is finite,

(2.8)

∫ ∞

−∞

|f ′(t)|pH(t) dt 6 C(σ + 1)p

∫ ∞

−∞

|f(t)|pH(t) dt,

where C depends only on ℓ and p. In particular, it is independent of f, σ, w, H.

Proof. For a given x, and f , apply Lemma 2.1 to the function f(· + x), so
that we are translating the variable. Making a substitution s = t + x yields

∫ ∞

−∞

|f ′(s)|p
ds

(1 + |s − x|)ℓp
6 C(σ + 1)p

∫ ∞

−∞

|f(s)|p
ds

(1 + |s − x|)ℓp
.

Now multiply by w(x) and integrate over all real x, and then interchange the
integrals. The convergence of the right-hand side in (2.8), and the nonnegativity
of the integrand justifies the interchange of integrals. �

Our final lemma before proving Theorem 1.1 involves upper and lower bounds
on wr.
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Lemma 2.3. Assume the hypotheses of Theorem 1.1. Then for some C1, C2 > 0

that depend on L, B, β,
∫ 0

−1 w,
∫ 1

0 w, but not on r, t, nor on the particular w,

(2.9) C2(1 + |t|)−β 6 wr(t) 6 C1(1 + |t|)log2 L.

Proof. We first establish the lower bound. Let us assume first that t > 0 and
choose j0 > 0 such that j0r 6 t < (j0 + 1)r. Note that then

j0r > t − r and (j0 + 1)r 6 t + r;

(j0 − 1)r 6 t − r and (j0 + 2)r > t + r.(2.10)

Then, using (1.4),

∫ t+r

t−r

w >

∫ (j0+1)r

j0r

w > B−1(1 + j0r)−β

∫ r

0
w

> B−1(1 + t)−β

∫ r

0
w > B−1(1 + t)−β(1 + B(1 + 2β))−1

∫ r

−r

w,

again by (1.4). Thus for t > 0, and some C depending only on B, β,

(2.11) wr(t) > C(1 + t)−βwr(0).

Next, using (1.4),

∫ 1

0
w 6

[1/r]
∑

j=0

∫ (j+1)r

jr

w 6 B

(
∫ r

0
w

) [1/r]
∑

j=0

(1 + jr)β 6 B

(
∫ r

0
w

)
∫ [1/r]+1

0
(1 + sr)βds

= B

(

1

r

∫ r

0
w

)
∫ r[1/r]+r

0
(1 + y)βdy 6 B

(

1

r

∫ r

0
w

)
∫ 2

0
(1 + y)βdy.

A similar estimate holds for
∫ 0

−1 w, so for some C depending only on B, β,

(2.12)

∫ 1

−1
w 6 Cwr(0).

Together with (2.11), this establishes the lower bound for t > 0, and of course t < 0
is similar. We turn to the upper bound. Again, we assume t > 0, and that j0 is as
above. We see using (2.10), and then (1.4), that

∫ t+r

t−r

w 6

∫ (j0+2)r

(j0−1)r

w 6 (1 + 2B2β)

∫ (j0+1)r

j0r

w.

We continue this using (1.4), as

6 (1 + 2β+1B)
1

[1/r] + 1

j0+[1/r]
∑

k=j0

B(1 + |j0 − k|r)β

∫ (k+1)r

kr

w

6 (1 + 2β+1B)B2βr

∫ (j0+[1/r]+1)r

j0r

w.
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Thus we have shown that

wr(t) 6 C

∫ j0r+2

j0r

w,

where C is independent of r, t, but depends on B and β. We continue this using
(2.10), and then (1.3), as

6 C

[
∫ 1

0
w +

∫ t+2

1
w

]

6 C

[
∫ 1

0
w +

∑

06k6log2(t+2)

∫ 2k+1

2k

w

]

6 C

(
∫ 1

0
w

) [

1 +
∑

06k6log2(t+2)

Lk+1
]

6 C

(
∫ 1

0
w

)

Llog2(t+2)

= C

(
∫ 1

0
w

)

(t + 2)log2 L.

This gives the upper bound for t > 0, and the case t < 0 is similar. �

Proof of Theorem 1.1. Choose ℓ so large that

(2.13) log2 L + β − ℓp 6 −2.

Note that this choice does not depend on w. Let H be as in Lemma 2.2. We
estimate H above and below. Let us assume first that t > 0 and choose j0 > 0 such
that j0r 6 t < (j0 + 1)r, so that (2.10) holds. Split

H(t) =

(
∫ 0

−∞

+

∫ max{(2j0+1)r,1}

0
+

∫ ∞

max{(2j0+1)r,1}

)

w(s)

(1 + |s − t|)ℓp
ds

= I1 + I2 + I3.(2.14)

We start with the central integral I2 as it will contribute to both our upper and
lower bounds. We use our growth condition (1.4) as well as that fact that for
s ∈ [jr, (j + 1)r], we have |s − t| > |j − j0|r − r > 1

2 |j − j0|r if |j − j0| > 2. If
|j − j0| 6 2, observe that |j − j0|r 6 2. Thus

I2 6

max{2j0+1,[1/r]}
∑

j=0

∫ (j+1)r

jr

w(s)

(1 + |s − t|)ℓp
ds(2.15)

6

max{2j0+1,[1/r]}
∑

j=0

1
(

1
4 (1 + |j − j0|r)

)ℓp

∫ (j+1)r

jr

w(s) ds

6 4ℓpB

(
∫ (j0+1)r

j0r

w(s) ds

) max{2j0+1,[1/r]}
∑

j=0

1

(1 + |j − j0|r)ℓp−β

6 4ℓpB

(
∫ t+r

t−r

w(s) ds

) ∞
∑

k=−∞

1

(1 + |k|r)ℓp−β

6 4ℓp+3Brwr(t)

∫ ∞

−∞

1

(1 + |s|r)ℓp−β
ds 6 C1wr(t).



188 LUBINSKY

Here C1 depends on B, β, ℓ, p but is independent of r and w. We have also used
(2.13) and L > 1 to ensure the convergence of the integral in the second last line.
Note that we could not simply use the upper bound in Lemma 2.3 for wr, as we
need the last right-hand side of (2.15) to involve wr(t). In the other direction, we
see from (1.4) that

I2 >

max{2j0+1,[1/r]−1}
∑

j=j0

1

(1 + |j − j0|r + r)ℓp

∫ (j+1)r

jr

w(s) ds(2.16)

> B−1
(

∫ (j0+1)r

j0r

w(s) ds

) max{2j0+1,[1/r]−1}
∑

j=j0

1

(2 + |j − j0|r)ℓp+β

> B−1
(

∫ (j0+1)r

j0r

w(s) ds

) max{j0+1,[1/r]−1−j0}
∑

k=0

1

(2 + kr)ℓp+β
.

Here, using our growth condition (1.4), and then (2.10),

(1 + 2B2β)

∫ (j0+1)r

j0r

w(s) ds >

∫ (j0+2)r

(j0−1)r

w(s)ds >

∫ t+r

t−r

w(s) ds = 2rwr(t),

and

max{j0+1,[1/r]−1−j0}
∑

k=0

1

(2 + kr)ℓp+β
>

∫ max{j0+2,[1/r]−j0}

0

1

(2 + tr)ℓp+β
dt

=
1

r

∫ max{(j0+1)r,r[1/r]−j0r}

0

1

(2 + s)ℓp+β
ds

>
1

r

∫ 1/2

0

1

(2 + s)ℓp+β
ds,

since if (j0 + 1)r 6 1
2 , then r[1/r] − j0r > 1 − r − j0r > 1

2 . Substituting the last
two inequalities in (2.16), and using (2.15), we have shown that for t > 0,

(2.17) C1wr(t) > I2 > C2wr(t),

where C1 and C2 depend on ℓ, p, β, B, but not on r or the particular w. Next, our
doubling condition (1.3) gives

I1 6

∞
∑

j=0

∫ −2j

−2j+1

w(s)

(1 + |s| + t)ℓp
ds +

1

(1 + t)ℓp

∫ 0

−1
w(2.18)

6

∞
∑

j=0

1

(1 + 2j + t)ℓp

∫ −2j

−2j+1

w(s) ds +
1

(1 + t)ℓp

∫ 0

−1
w

6

∞
∑

j=0

Lj+1

(1 + 2j + t)ℓp

∫ 0

−1
w +

1

(1 + t)ℓp

∫ 0

−1
w



WEIGHTED MARKOV–BERNSTEIN INEQUALITIES 189

6

(

1

(1 + t)ℓp

∑

06j6log2(1+t)

Lj+1 + L
∑

j>log2(1+t)

( L

2ℓp

)j

+
1

(1 + t)ℓp

)
∫ 0

−1
w

6 C

(

1

(1 + t)ℓp
Llog2(1+t) +

( L

2ℓp

)log2(1+t)
)

∫ 0

−1
w

6 C

(
∫ 0

−1
w

)

(1 + t)log2 L−ℓp,

by (2.13). Here C depends only on p, ℓ, L. Next, let N = log2 max{[(2j0 + 1)r], 1},
and let j > N , and s ∈ [2j , 2j+1]. We claim that

(2.19) 1 + |s − t| > 1
3 2j .

If first j0 = 0, then N = 1 and t < r, so 1 + |s − t| > 1 + 2j − 1 = 2j. If j0 > 1,
then (j0 + 1)r 6 2

3 (2j0 + 1)r 6 2
3 2N , so |s − t| > 2j − (j0 + 1)r > 2j − 2

3 2N > 1
3 2j .

Thus we have (2.19). Then our doubling hypothesis (1.3) gives

I3 6

∞
∑

j=N

∫ 2j+1

2j

w(s)

(1 + |s − t|)ℓp
ds 6

∞
∑

j=N

1

(3−12j)ℓp

∫ 2j+1

2j

w(s) ds

6

∞
∑

j=N

1

(3−12j)ℓp
Lj+1

∫ 1

0
w 6 3ℓpL

(
∫ 1

0
w

) ∞
∑

j=N

( L

2ℓp

)j

6 (2)3ℓpL

(
∫ 1

0
w

)

( L

2ℓp

)N

6 C

(
∫ 1

0
w

)

(

max
{

[(2j0 + 1)r], 1
})log2 L−ℓp

6 C

(
∫ 1

0
w

)

(1 + t)log2 L−ℓp.

In the third last line, we used L/2ℓp 6 1/4, as follows from (2.13). In the last line,
we used (2.10). Together with (2.14), (2.17), and (2.18), we have shown that for
t > 0,

C2wr(t) 6 H(t) 6 C1

(

wr(t) +

(
∫ 1

−1
w

)

(1 + t)log2 L−ℓp

)

.

Next, from (2.11) and (2.12), we can continue this as

C2wr(t) 6 H(t) 6 C1wr(t)(1 + (1 + t)log2 L−ℓp+β) 6 C3wr(t),

by (2.13). The case t < 0 is similar. Now the result follows from Lemma 2.2. �

We note that at least for p > 1, one can use the Markov–Bernstein inequalities
in Theorem 1.1 to prove that there exists δ0 ∈ (0, 1) such that for σ > 0, and
nonidentically vanishing entire functions f of exponential type 6 σ, we have

1

2
6

∫ ∞

−∞

|f(t)|pwδ0/(σ+1)(t)dt
/

∫ ∞

−∞

|f(t)|pw(t) dt 6
3

2
.
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This gives one way to prove Corollary 1.2. However, we use a different method
below.

Proof of Corollary 1.2. First note that Lemma 2.3 and our hypotheses
imply that for some C > 1,

(2.20) C−1(1 + |t|)−β
6 wr(t) 6 C(1 + |t|)log2 L, r ∈ (0, r0) and t ∈ R.

Here C is independent of r and t. Let σ > 0 and f be entire of type 6 σ, with
the integral in the right-hand side of (1.7) finite. Let us choose k such that kp >

β + log2 L + 2, and choose ε > 0, and set g(t) = f(t)S(εt)k. By Lebesgue’s
differentiation theorem, we have for a.e. t ∈ R,

lim
r→0+

wr(t)|g(t)|p = w(t)|g(t)|p.

Next, (2.20) shows that for r ∈ (0, r0) and all real t

wr(t)|g(t)|p 6 C(1 + |t|)log2 L|f(t)|p min{1, 1/πε|t|}kp

6 C1(1 + |t|)log2 L−kp|f(t)|p

6 C1(1 + |t|)log2 L−kp+βw(t)|f(t)|p 6 C1C2w(t)|f(t)|p,

by Lemma 2.3 and our choice of k. Here C1 and C2 are independent of r, f but
depend on ε and w. Since C1C2w(t)|f(t)|p is independent of r and integrable by
(1.7), Lebesgue’s dominated convergence theorem gives

lim
r→0+

∫ ∞

−∞

wr(t)|g(t)|pdt =

∫ ∞

−∞

w(t)|g(t)|pdt.

Next, for each given R > 0, as g′ is bounded in each finite interval, and wr is
bounded independently of r,

lim
r→0+

∫ R

−R

wr(t)|g′(t)|pdt =

∫ R

−R

w(t)|g′(t)|pdt.

Then as g has exponential type 6 σ + kεπ, Theorem 1.1 and the last two limits
yield

∫ R

−R

w(t)
∣

∣

∣

d

dt
(f(t)S(εt))

∣

∣

∣

p

dt

6 C(σ + kεπ + 1)p

∫ ∞

−∞

w(t)|f(t)S(εt)|pdt

6 C(σ + kεπ + 1)p

∫ ∞

−∞

w(t)|f(t)|pdt,

recall that |S| 6 1. Here C is independent of ε, σ, f, R. We can now let ε → 0+,
and use the fact that S(εt) converges uniformly for t in compact subsets of C to
S(0) = 1. A similar statement then holds for the derivatives. We deduce that

∫ R

−R

w(t)|f ′(t)|pdt 6 C(σ + 1)p

∫ ∞

−∞

w(t)|f(t)|pdt.

Finally, let R → ∞. �
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Proof. Proof of Corollary 1.3 We choose r = 1 in Theorem 1.1. Our condition
(1.8) shows that for some C > 1 and all t ∈ R,

(2.21) M−1
6 w1(t)/w(t) 6 M.

That condition also gives for a > 0,
∫ 2a

a

w 6 M2aw(a) 6 4M2
∫ a

a/2
w

and similarly,
∫ −a

−2a

w 6 4M2
∫ 0

−a/2
w.

So we can choose L = 4M2 in (1.3). Next, let k > 0 and −1 6 j 6 max
{

2k + 1, 1
r

}

= 2k + 1. We have to show that (1.4) holds for the given j, k and with r = 1.
Firstly if j = −1 or 0, (1.8) gives

(2.22)

∫ j+1

j

w 6 M2
∫ 2

1
w.

So now let us consider 1 6 j 6 2k + 1. Let us first suppose that j 6 k, and choose
0 6 n 6 log2 k such that

k

2n+1 6 j 6
k

2n
.

Then by repeated use of (1.8),

(2.23)

∫ j+1

j

w 6 Mw(j) 6 M2w
( k

2n

)

6 Mn+2w(k) 6 Mn+3
∫ k+2

k

w.

Here

Mn = 2n log2 M 6 (k/j)log2 M = (1 + (k − j)/j)log2 M 6 (1 + |k − j|)log2 M .

Combined with (2.22) and (2.23), we have shown that for −1 6 j 6 k,

∫ j+1

j

w 6 M5(1 + |k − j|)log2 M

∫ k+1

k

w.

Next, if k < j 6 2k + 1,

∫ j+1

j

w 6 M2w(k) 6 M3
∫ k+1

k

w 6 M3(1 + |k − j|)log2 M

∫ k+1

k

w.

In summary, we have established (1.4) with B = M5 and β = log2 M . Then,
recalling(2.21), Theorem 1.1 gives the result. �

Proof of Corollary 1.4. It is easy to see that w(x) = (1 + x2)α satisfies
(1.8), with, for example, M = 17|α|. �
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