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HOPF ALGEBRA OF PROJECTION FUNCTIONS

Žarko Mijajlović and Aleksandar Pejović

Abstract. We study Hopf algebras over projection functions of the complex
vector CX appropriate for computing inversion formulas from discrete math-
ematics. Using calculus of projection functions introduced in this way, we
derived various inversion formulas, including Gould’s inversion formula and
its generalizations.

1. Introduction

The main idea of the paper is explained by the following example. Let C be
the set of complex numbers, Z the set of integers, N the set of nonnegative integers
and CZ the complex vector space. We remind that a function πn : CZ → C, n ∈ Z,
is a projection if πn(f) = f(n), f ∈ CZ . Let A be the subspace of the vector
space of linear functionals of CZ where A is generated by projections πn, n ∈ Z.
We introduce an associative and commutative algebra A = (A, ·) over A defining
multiplication of projections by πm · πn = πm+n. Obviously, the power (π1)n is
equal to πn. Hence, if π denotes π1, then πn = πn. By projection calculus we
shall mean calculation in the algebra A. It appears that the algebra A is very
appropriate for computing various inversion formulas from discrete mathematics.

Now we proceed to our example. Let F = {f ∈ CZ :
∧

n<0 f(n) = 0}. Obvi-

ously F is a subspace of CZ and we may identify F and CN . Also, f ∈ F if and
only if for all n < 0, πn(f) = πn(f) = 0. We shall prove by projection calculus the
following well known inversion formula

(1.1) gn =
∑

k

(n

k

)

fn−2k ⇔ fn =
∑

2k6n

(−1)k n

n − k

(n − k

k

)

gn−2k, f, g ∈ F .

For this purpose let us introduce the functional θ = π + π−1. Then

(1.2) θn =
∑

k

(n

k

)

πn−2k.
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24 MIJAJLOVIĆ AND PEJOVIĆ

If f ∈ F and g ∈ F is defined by gn = g(n) = θn(f), n ∈ N , then by (1.2)
we have gn =

∑

k

(

n
k

)

fn−2k. For the proof of equivalence (1.1), we express πn

by a polynomial of θ using Tchebychev polynomials. Let Tn(x) be a Tchebychev
polynomial of the first kind and Cn(x) = 1

2 Tn(2x). Then Cn(x) is also called
Tchebychev polynomial of the first kind and it is well known Cn(x) satisfies the
following identities (see for example [1, 13]):

(1.3) Cn(x + x−1) = xn + x−n, n > 0,

(1.4) Cn(x) =
∑

2k6n

(−1)k n

n − k

(n − k

k

)

xn−2k, n > 0.

Hence, we have

(1.5) πn = Cn(θ) − π−n, n ∈ Z.

Therefore, if f ∈ F and n > 0 then, as π−n(f) = 0, we have fn = πn(f) =
Cn(θ)(f) − πn(f) = Cn(θ)(f). Hence

fn =
∑

2k6n

(−1)k n

n − k

(n − k

k

)

θn−2k(f) =
∑

2k6n

(−1)k n

n − k

(n − k

k

)

gn−2k.

Thus we proved direction (⇒) of equivalence (1.1). The other direction follows from
the following observation. The equalities gm =

∑

k

(

m
k

)

fm−2k, m = 0, 1, . . . , n, can
be written as P ·F = G, where P is a regular triangular matrix, G = [g0, g1, . . . , gn]
and F = [f0, f1, . . . , fn]. Then the righthand side of the equivalence (1.1) is written
as F = Q · G where Q = P −1 and entries of Q are exactly coefficients appearing in
expansion of fn by gn−2k. As from F = Q · G follows P · F = G, it also follows the
direction (⇐) in (1.1).

2. Hopf algebra of projection functions

We show that the algebra A discussed in the previous section and similar
algebras naturally bear the structure of Hopf algebra. Even if the next definitions
and analysis can be applied to an arbitrary field K, we shall assume K = C. Let
I ⊆ C, I 6= ∅ and A the subspace of the vector space of linear functionals of
the complex space CI , generated by projection functions πi, i ∈ I. Suppose that
I is a subgroup of the additive group of C or of the multiplicative part C∗ of C.
Assuming the usual notation for Hopf algebras and related notions (see for example
[4] or [18]), it is easy to see that in both of the following two cases we obtain a
Hopf algebra.

Additive case, I is a subgroup of (C, +, 0). Hopf algebra HI = (A,▽, 1,△, ε)
over the complex field C is defined as follows: ▽(πi ⊗ πj) = πi+j , in multiplicative
notation πi · πj = πi+j , 1(z) = π0, z ∈ C, △(πi) = πi ⊗ πi and ε(πi) = 0, i, j ∈ I.
The map a : πi 7→ π−i, i ∈ I, is the antipod.

Multiplicative case, I is a subgroup of (C∗, ·, 1). Hopf algebra HI = (A,▽, 1,△, ε)
over the complex field C is defined taking: ▽(πi ⊗ πj) = πij , in multiplicative no-
tation πi · πj = πij , 1(z) = π1, z ∈ C, △(πi) = πi ⊗ πi and ε(πi) = 1, i, j ∈ I. The
map a : πi 7→ πi−1 , i ∈ I, is the antipod.
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Obviously, in both cases HI is commutative and in fact HI is a Hopf subalgebra
of the dual Hopf algebra of the group Hopf algebra C[I]. If I = (Z, +, 0) we obtain
algebra A presented in the previous section.

Even if the additive and the multiplicative cases are similarly defined, they
may produce examples of quite different nature. In an additive case if we take
π = π1, we may write πi instead of πi and if I is the set of real numbers, then
the ring AI = (A, +, ·, 0, 1) is an integral domain and it is isomorphic to the ring
of polynomials over C in the variable π, see [5] and [14]. If I is the additive
group of integers, then AI = Z[π, π−1] is the ring of Laurent polynomials in the
indeterminate π. On the other hand, in the multiplicative case, if I = 〈ε〉, εn = 1,
then AI has divisors of zero. For example, if ε is a primitive root of x3 − 1 and
a = 1 + πε + πε2 , b = 1 + ε2πε + επε2 , then ab = 0.

Let S ⊆ I and S′ = IrS. Then we can identify the space CS with the subspace
FS = {f ∈ CZ :

∧

x∈S′ f(x) = 0} of CI . In the example from the previous section,
obviously S is the set of nonnegative integers. For deriving inversion formulas for
functions f : S → C, we shall use their replicas in FS. This derivation is related
but not the same as that one in the umbral calculus, see for example [3]. We also
note that Tchebychev polynomials and their variants have been already the subject
of investigation in context of Hopf algebras and from the purely algebraic point of
view, see for example [2] and [6].

3. Linear functional θ = π + π
−r

Let us suppose notation and definitions as previously introduced. Here we shall
consider linear functionals of CZ of the form

θ = π + π−r, r is a nonnegative integer,

in the ring AI = Z[π, π−1]. Then for m = r + 1

(3.1) θn =
∑

k

(n

k

)

πn−mk, n = 1, 2, . . . .

We shall prove that πn can be expressed as stated in the following theorem.

Theorem 3.1. There are polynomials Pn(x) and Qn(x) with integer coefficients

such that

(3.2) πn = Sn(θ) − Qn(π−1), Qn(0) = 0.

Our main aim is to find explicitly polynomials Sn(x) and Qn(x). For this
purpose, we shall need some properties of symmetric functions related to the poly-
nomial p(x) = xm +axm−1 +b, a, b ∈ C. Let λ1, λ2, . . . , λm be the roots of p(x) and
sn(a, b) = λn

1 + λn
2 + · · ·+ λn

m the nth power sum of the roots. Using Girard-Waring
formula for symmetric functions, Gould (see [9] or [12]) derived the formula

(3.3) sn(a, b) =
∑

06k6n/m

(−1)n−rk n

n − rk

(n − rk

k

)

an−mkbk, m = r + 1.

Using this formula, the following proposition is easily deduced.
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Proposition 3.1. Let m = r + 1 and un = sn(−a, b), where sn(a, b) is defined

by (3.3). Then for all positive integers n

(3.4) un =
∑

06k6n/m

(−1)k n

n − rk

(n − rk

k

)

an−mkbk.

If 1 6 n 6 r, then un = an and also um = am − mb. The sequence un with these

initial conditions is the unique solution of the difference equation

(3.5) vn+1 − avn + bvn−r = 0.

Proof. Identity (3.4) immediately follows from (3.3). For the second part of
the proposition, we can write (3.4) as

(3.6) un = an +
∑

16k6n/m

(−1)k n

n − rk

(n − rk

k

)

an−mkbk.

If n 6 r, then the sum in (3.6) is empty, hence un = an. Similarly,

um = am − mb +
∑

26k6n/m

(−1)k m

m − rk

(m − rk

k

)

am−mkbk = am − mb.

The sequence un satisfies (3.5) since un is a linear combination of the roots of the
characteristic equation of (3.5). The order of this recurrence is m and values for
u1, u2, . . . , um are determined, hence the uniqueness follows. �

Now we proceed to the proof of identity (3.2). For this purpose, we shall deliver
recurrence relations for the polynomials Sn(θ) and Rn(π).

Lemma 3.1. Let r be a nonnegative integer, m = r + 1, θ = π + π−r and

1 6 l 6 r. Then for the polynomials in (3.2) we can take:

(a) Sl(θ) = θl and Sm = θm − m.

(b) Ql(t) = trl((1+t−m)l−t−ml), Qm(t) = trm((1+t−m)m−t−m2

−mtm−m2

).

Proof. By identity (3.1), after short calculation we have

πl = θl −
∑

k>1

( l

k

)

πl−mk = θl − π−rl((1 + πm)l − πml).

Hence, Sl(θ) = θl and Ql(π
−1) = π−rl((1 + πm)l − πml) for 1 6 l 6 r. Taking

t = π−1, we have Ql(t) = trl((1 + t−m)l − t−ml).
According to identity (3.1) we also have

πm = θm − m −
∑

k>2

(m

k

)

πm−mk,

hence

πm = (θm − m) − π−rm((1 + πm)m − πm2

− mπm2
−m).

Therefore Sm = θn − m and Qm(π−1) = π−rm((1 + πm)m − πm2

− mπm2
−m).

Taking t = π−1, we have Qm(t) = trm((1 + t−m)m − t−m2

− mt−m2+m). �
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Now we shall deliver the recursive relations for polynomials Sn(t) and Qn(t)
appearing in (3.2). In the following we shall take m = r + 1.

Assuming identity (3.2), we have θπn = θSn(θ) − θRn(π−1), hence

(π + π−r)πn = θSn(θ) − (π + π−r)Qn(π−1),

πn+1 = θSn(θ) − πn−r − (π + π−r)Rn(π−1).
(3.7)

Assuming recurrence (3.2) for n − r, i.e., πn−r = Sn−r(θ) − Qn−r(π−1), we obtain

(3.8) πn+1 = θSn(θ) − Sn−r(θ) − ((π + π−r)Qn(π−1) − Qn−r(π−1)).

With regard to (3.2) we have πn+1 = Sn+1(θ) − Qn+1(π−1) and comparing with
(3.8), we have

Sn+1(θ) = θSn(θ) − Sn−r(θ),

Qn+1(π−1) = (π + π−r)Qn(π−1) − Qn−r(π−1).
(3.9)

Taking the substitution t = π−1 and using (3.9) it is easy to deduce that Qn(t)
satisfies the recurrence

(3.10) tQn+1(t) = (1 + tr+1)Qn(t) − tQn−r(t).

Lemma 3.2. We have Qn(0) = 0 for all n > 0.

Proof. Let m = r + 1. First assume 1 6 n 6 r. With regard to Lema 3.1 we
have

Qn(t) = trn((1 + t−m)n − t−mn)

= trn
(

1 +
(n

1

)

t−m + · · · +
( n

n − 1

)

t−m(n−1)
)

.

As rn − m(n − 1) = m − n > 0, it follows that t | Qn(t). Further,

Qm(t) = trm((1 + t−m)m − t−m2

− mt−m2+m)

= trm
(

1 +
(m

1

)

t−m + · · · +
( m

m − 2

)

t−m(m−2)
)

.

As −m2 + 2m + rm = m > 0, it follows that t | Qn(t).
Therefore, we proved that t | Qn(t) for n 6 m, i.e., Qn(0) = 0. For n > m we

use the recurrence (3.10). We see immediately that t | Qn(t). �

Corollary 3.1. The constant term of Qn(t) is equal to 0.

Proof of Theorem 3.1. The proof immediately follows by induction from
recurrence relations 3.9, derivations 3.7, 3.8 and the previous corollary. �

Now we deliver the explicit forms of the polynomials Sn(x) and Qn(t).

Proposition 3.2. Let r be a positive integer, m = r+1 and assume a sequence

of polynomials Sn(x) ∈ Z[x] satisfies:

(a) Sn+1(x) = xSn(x) − Sn−r(x)
(b) Sl(x) = xl, 1 6 l 6 r, and Sm(x) = xm − m.
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Then for all positive integers n

(3.11) Sn(x) =
∑

06k6n/m

(−1)k n

n − rk

(n − rk

k

)

xn−mk.

Proof. The characteristic equation of the recurrence (a) is

(3.12) λm − xλm−1 + 1 = 0.

It is easy to see that equation (3.12) has no multiple roots, hence if λ1, λ2, . . . , λm

are roots of (3.12) then

Sn(x) = c1λn
1 + c2λn

2 + · · · + cmλn
m,

for some unique constants c1, c2, . . . , cm. As any linear combination of the n-th
powers of λ1, λ2, . . . , λm satisfies recurrence (3.11), due to the initial conditions (b)
and the uniqueness of the constants c1, c2, . . . , cm, according to Proposition 3.1 we
have ci = 1, i 6 m, and

�(3.13) Sn(x) = sn(−x, 1) =
∑

06k6n/m

(−1)k n

n − rk

(n − rk

k

)

xn−mk.

We note that for the most applications the explicit form 3.13 of the polynomials
Sn(t) and the recurrence 3.2 are sufficient. However, if one wants to find the
polynomials Qn(t), it is possible and convenient to introduce new polynomials
Rn(t) and hn(t) with integer coefficients related to Qn(t) in the following way

Qn(t−1) = t−rnRn(t), n ∈ N,

Rn(t) = hn(tm), n ∈ N.
(3.14)

We also note that the polynomials Sn(x) are related to the so called incomplete
polynomials, see [17], and to the orthogonal polynomials on the radial rays in the
complex plane which were introduced by Milovanović in [15] and studied in details
in [16].

It is easy to prove the following proposition.

Proposition 3.3. Let r be a nonnegative integer, m = r + 1, θ = π + π−r and

1 6 l 6 r. Then

(a) Rl(π) = (1 + πm)l − πml, Rm(π) = (1 + πm)m − πm2

− mπm2
−m.

(b) deg(Rn(π)) < rn, n ∈ N .

(c) hn+1(t) = (1 + t)hn(x) − trhn−r(x)
(d) hl(x) = (1 + t)l − tl, 1 6 l 6 r, and hm(x) = (1 + t)m − tm − mtm−1.

From the next theorem and relations 3.14 immediately follows the explicit form
of the polynomial Qn(t).

Theorem 3.2. Assume that a sequence of polynomials hn(t) ∈ Z[t] satisfies

conditions (c) and (d) in the previous proposition. Then for all positive integers n

(3.15) hn(t) = fn(t) + gn(t),
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where

fn(t) = (t + 1)n − tn, gn(t) =
∑

16k6n/m

(−1)k n

n − rk

(n − rk

k

)

(1 + t)n−mktrk.

Proof. The characteristic equation of the recurrence (a) is

λm − (1 + t)λm−1 + tr = 0.

The roots λ1, λ2, . . . , λm of this equation are distinct and its one root is t, so we
can take λr+1 = λm = t. Let un = λn

1 + λn
2 + · · · + λn

r and sn = un + λn
m = un + tn.

From Proposition 3.1, sn = (1 + t)n for 1 6 n 6 r and sm = (1 + t)m − mtm−1.
Hence, un = (1 + t)n − tn for 1 6 n 6 r and um = (1 + t)m − tm − mtm−1. Also, un

obviously satisfies the recurrence un+1(t) = (1+t)un(t)−trun−r(t). Therefore, due
to the the same initial conditions for un and hn, by induction we have immediately
un = hn for all n, i.e., hn(t) = sn − tn. From Proposition 3.1, we have

sn =
∑

06k6n/m

(−1)k n

n − rk

(n − rk

k

)

(1 + t)n−mktrk.

wherefrom we immediately deliver (3.15). �

4. Gould inversion formula

As an application of the projection calculus and a the operator θ introduced
in the previous section, we prove the Gould inversion formula, see [7] or [8]. This
formula is a generalization of inversion formula 1.1 and it states

gn =
∑

k

(n

k

)

fn−mk ⇔ fn =
∑

06k6n/m

(−1)k n

n − rk

(n − rk

k

)

gn−mk,

where f, g ∈ F , r is a nonnegative integer and m = r + 1. For the proof we use the
same technique as in the case r = 1 where we used projection calculus, Tchebychev
polynomials and their crucial properties 1.3 and 1.4. By use of this technique,
the proof of the Gould formula directly follows from Theorem 3.1 and the explicit
form 3.13 of the polynomial Sn(x).

Using linear functional identities (3.1) and (3.1) and explicit forms of the
polynomials Sn(θ) and Qn(π−1), we can generalize the Gould inversion formula.
Namely, we can find new inversion formulas for

(4.1) gn =
∑

k

(n

k

)

fn−mk+l, 0 6 l < m.

It is particularly simple to deliver the inversion formula for the case m = 2. To
see this, assume m = 2 and let us introduce the new linear functional σn = πθn.

Then σn =
∑

k

(n

k

)

πn−2k+1. By (1.5), i.e., inversion formula πn = Cn(θ) − π−n,

we have πn+1 = πCn(θ) − π1−n and so

πn+1 =
∑

k

(−1)k n

n − k

(n − k

k

)

σn−2k+1 − π1−n.



30 MIJAJLOVIĆ AND PEJOVIĆ

Hence we obtain the following inversion formula for (4.1), case m = 2, l = 1:

(4.2) fn+1 =
∑

(−1)k n

n − k

(n − k

k

)

gn−2k+1 − f1−n.

We note that for a given sequence g ∈ F , the sequence f is not uniquely determined
by (4.2) as indices in gi are shifted by one:

g0 = f1, g1 = f2 + f0, g2 = f3 + 2f1, . . .

while

f1 = g0, f2 = g1 − f0, f3 = g2 − 2g0, . . .

where f0 is arbitrary. Also note that f1−n vanishes for n > 1. In a similar manner
we can obtain the inversion formula for (4.1) in the general case. So assume (4.1)
and let us introduce the linear functional σn = πlθn. From Theorem 3.1 and
Proposition 3.2 we have

πn+l = πlSn(θ) − πlQn(π−1)

=
∑

06k6n/m

(−1)k n

n − rk

(n − rk

k

)

σn−mk+l − πlQn(π−1).

By (3.14), Lemma 3.2 and as Qn(0) = 0

Qn(t−1) = t−rnhn(tm) = cnt−λn + c′

nt−λn−m + c′′

nt−λn−2m + · · ·

where 1 6 λn 6 m. Hence πlQn(π−1) = cnπl−λn + Hn(π−1) for some polynomial
Hn(t) with integer coefficients. Therefore we obtain the inversion formula for (4.1),
0 6 l < m:

fn+l =
∑

06k6n/m

(−1)k n

n − rk

(n − rk

k

)

gn−mk+l − cnfl−λn
.

We see that f0, f1, . . . , fl can be chosen arbitrarily. The coefficient cn can be ob-
tained from the representation of the polynomial hn given by Theorem 3.2. Here
we shall find the power λn:

Proposition 4.1. We have λn = m − ρm(n) where ρm(n) is the remainder of

division of n by m (remainder function).

Proof. Note that m = r + 1. As Qn(t) = trnhn(t−m) and Qn(0) = 0, for
powers trn−lm of terms in Qn(t) we have rn − lm > 0, so l < rn/m. First assume

m | n. Then for the smallest power tλn = trn−l̄n in Qn(t) we have l̄ = rn/m − 1,
so λn = rn − l̄m = m = m − ρm(n). Assume m ∤ n. Then for l̄ = [rn/m] we have
l̄ = [n − n/m] = n − 1 − [n/m], so λn = rn − l̄m = m − ρm(n). �

In the similar way we can deliver various inversion formulas such as appearing
in [11] by studying associated functionals in the Hopf algebra A. For example, for
delivering the inverse formula for gn = fn + fn−1 + fn−2, see [10], one may use the
functional θ = π + π−1 + π−2.
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