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THE INDEX OF PRODUCT SYSTEMS

OF HILBERT MODULES:

TWO EQUIVALENT DEFINITIONS

Biljana Vujošević

Abstract. We prove that a conditionally completely positive definite kernel,
as the generator of completely positive definite (CPD) semigroup associated
with a continuous set of units for a product system over a C∗-algebra B, allows
a construction of a Hilbert B − B module. That construction is used to define
the index of the initial product system. It is proved that such definition is
equivalent to the one previously given by Kečkić and Vujošević [On the index
of product systems of Hilbert modules, Filomat, to appear, ArXiv:1111.1935v1
[math.OA] 8 Nov 2011]. Also, it is pointed out that the new definition of the
index corresponds to the one given earlier by Arveson (in the case B = C).

1. Introduction

Product systems over C have been studied during last several decades in con-
nection with E0-semigroups acting on a type I factor. Although the main problem
of classification of all nonisomorphic product systems is still open, this theory is
well developed. The reader is referred to [2] and references therein. In the present
century there are some significant results that generalize this theory to product
systems over a C∗-algebra B, either in connection with E0 semigroups (see [8, 10])
or in connection with quantum probability dynamics (see [4, 3, 9]).

There are many difficulties in generalizing the notion of the index of a product
system introduced in [1] to this more general concept. Up to our knowledge there
are attempts in this direction done in [11] and recently in [5].

Here we give another definition of the index of product systems of Hilbert B–B
modules and show that it is equivalent to the one previously given in [5]. Also, we
point out that the new definition of index corresponds to the one given by Arveson
(in the case B = C).

Throughout the paper B will denote a unital C∗-algebra and 1 will denote its
unit.

The rest of Section 1 is devoted to basic definitions.
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50 VUJOŠEVIĆ

Definition 1.1. a) A product system over C∗-algebra B is a family (Et)t>0 of
Hilbert B–B modules, with E0

∼= B, and a family of (unitary) isomorphisms ϕt,s :
Et ⊗Es → Et+s, where ⊗ stands for the so called inner tensor product obtained by
identifications ub⊗v ∼ u⊗bv, u⊗vb ∼ (u⊗v)b, bu⊗v ∼ b(u⊗v), (u ∈ Et, v ∈ Es,
b ∈ B) and then completing in the inner product 〈u ⊗ v, u1 ⊗ v1〉 = 〈v, 〈u, u1〉 v1〉;

b) Unit on E is a family ut ∈ Et, t > 0, such that u0 = 1 and ϕt,s(ut ⊗ us) =
ut+s, which will be abbreviated to ut ⊗us = ut+s. A unit ut is unital if 〈ut, ut〉 = 1.
It is central if for all b ∈ B and all t > 0 there holds but = utb;

Definition 1.2. Two units ut and vt give rise to the family of mappings Ku,v
t :

B → B, given by Ku,v
t (b) = 〈ut, bvt〉. All Ku,v

t are bounded C-linear operators
on B, and this family forms a semigroup. The set of units S is continuous if

the corresponding semigroup (Kξ,η
t )ξ,η∈S (with respect to Schur multiplying) is

uniformly continuous. A single unit ut is uniformly continuous, or briefly just
continuous, if the set {u} is continuous, that is, the corresponding family Ku,u

t is
continuous in the norm of the space B(B) (the algebra of all bounded C-linear
operators on B).

As it can be seen in [3], for a (uniformly) continuous set of units U , there can
be formed a uniformly continuous completely positive definite semigroup (CPD-
semigroup further on) K = (Kt)t∈R+

.

Denote by L = d
dtK |t=0 the generator of CPD-semigroup K. It is well known

[3] that L is conditionally completely positive definite, that is, for all finite n-tuples
x1, . . . , xn ∈ U and for all aj , bj ∈ B there holds

(1.1)

n
∑

j=1

ajbj = 0 =⇒
n

∑

i,j=1

b∗
i Lxi,xj (a∗

i aj)bj > 0.

Also,

(1.2) Ly,x(b) = Lx,y(b∗)∗.

It is known that K is uniquely determined by L. More precisely, K can be re-
covered from L by K = etL using the Schur product, i.e., Kx,y

t (b) = 〈xt, byt〉 =
(exp tLx,y)(b).

Remark 1.1. One should distinguish the continuous set of units from the set

of continuous units. In the second case only Kξ,ξ
t should be uniformly continuous

for ξ ∈ S, whereas in the first case all Kξ,η
t should be uniformly continuous.

In Section 2 the auxiliary statements, that are necessary for the proofs of the
main result, are listed. In Section 3 another definition of the index of product
systems of Hilbert B − B modules is obtained and the equivalency with the one
previously given in [5] is proved. Also, it is pointed out that the new definition of
the index corresponds to the one given by Arveson (in the case B = C).
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2. Preliminary results

In [6], Liebscher and Skeide introduce an interesting way to obtain new units
in a given product system. The results are stated in Lemma 3.1, Proposition 3.3
and Lemma 3.4 of the mentioned paper and here they are quoted as

Proposition 2.1. a) Suppose that a continuous set S of units generates a
product system E. Let t 7→ yt ∈ Et be a mapping (not necessarily unit), with K
and Kξ ∈ B(B) (ξ ∈ S) such that for all b ∈ B

〈yt, byt〉 = b + tK(b) + O(t2) and 〈yt, bξt〉 = b + tKξ(b) + O(t2).

Then there exists a product system F ⊇ E and a unit ζ such that S ∪ {ζ} is
continuous and Lζ,ζ = K, Lζ,ξ = Kξ.

b) The following three conditions are equivalent.

(1) ζ ∈ E;
(2) ζ can be obtained as the norm limit of the sequence (yt/n)⊗n;

(3) limn→∞〈ζt, (yt/n)⊗n〉 = 〈ζt, ζt〉.

Remark 2.1. In [6], a more general limit over the filter of all partitions of
segment [0, t] was considered instead of limn→∞(yt/n)⊗n. However, such a general
context is not necessary here.

The previous proposition is used in [5, Proposition 2.3] to obtain new units in
a product system in the following way.

Suppose that a continuous set S of units generates a product system E. Let
xj ∈ S, κj ∈ B, j = 1, . . . , n such that

∑

κj = 1. Then the functions t 7→
∑n

j=1 κjxj
t and t 7→

∑n
j=1 xj

tκj satisfy all the assumptions of Proposition 2.1 and

the resulting units, denoted by κ1x1 ⊞ · · · ⊞ κnxn and x1κ1 ⊞ · · · ⊞ xnκn, belong
to E. For example, the kernels of ζ = κ1x1 ⊞ κ2x2 ⊞ κ3x3 are

(2.1)

Lζ, ζ = Lx1, x1

Lκ
∗

1
Rκ1

+ Lx1, x2

Lκ
∗

1
Rκ2

+ Lx1, x3

Lκ
∗

1
Rκ3

+ Lx2, x1

Lκ
∗

2
Rκ1

+ Lx2, x2

Lκ∗

2
Rκ2

+ Lx2, x3

Lκ∗

2
Rκ3

+ Lx3, x1

Lκ∗

3
Rκ1

+ Lx3, x2

Lκ∗

3
Rκ2

+ Lx3, x3

Lκ∗

3
Rκ3

,

Lζ, ξ = Lx1, ξLκ
∗

1
+ Lx2, ξLκ

∗

2
+ Lx3, ξLκ

∗

3
,

where Lb, Rb : B → B are the left and the right multiplication operators for b ∈ B.
Proposition 3.1 from [5] is quoted here as

Proposition 2.2. Let U be the set of all continuous units on a product sys-
tem E. The relation ρ on U defined by

x ρ y ⇔ {x, y} is a continuous set

is an equivalence relation.

Thus, the set of all continuous units on some product system can be decomposed
into mutually disjoint collection of maximal continuous sets.

Let E be a product system over a unital C∗-algebra B with at least one contin-
uous unit. (In view of [9, Definition 4.4] this means that E is non type III product
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system.) Further, let ω be an arbitrary continuous unit in E and let U = Uω be
the set of all uniformly continuous units that are equivalent to ω. (That refers to
the equivalence relation ρ on U defined in Proposition 2.2.) As it can be seen in
[5], the addition and multiplication by b ∈ B on Uω are defined by

(2.2) x + y = x ⊞ y ⊞ −ω, b · x = bx ⊞ (1 − b)ω, x · b = xb ⊞ ω(1 − b),

and the kernels of x + y, x · a, a · x are

(2.3)
Lx+y, x+y = Lx, x+ Lx, y − Lx, ω + Ly, x+ Ly, y − Ly, ω − Lω, x− Lω, y + Lω, ω,

Lx+y, ξ = Lx, ξ + Ly, ξ − Lω, ξ,

(2.4)
Lx·a,x·a = a∗Lx,xa + (1 − a)∗Lω,xa + a∗Lx,ω(1 − a) + (1 − a)∗Lω,ω(1 − a),

Lx·a,ξ = a∗Lx,ξ + (1 − a)∗Lω,ξ, ξ ∈ U ,

(2.5)
La·x,a·x = Lx,xLa∗Ra + Lω,xL1−a∗Ra + Lx,ωLa∗R1−a + Lω,ωL1−a∗R1−a,

La·x,ξ = Lx,ξLa∗ + Lω,ξL1−a∗ , ξ ∈ U ,

where Lb, Rb : B → B are the left and right multiplication operators for b ∈ B.

Remark 2.2. For x, y ∈ Uω, x − y = x ⊞ (−y) ⊞ ω.

According to [5, Theorem 3.2], the set U with respect to the operations defined
by (2.2) is a left–right B–B module.

In [5] it was proved that the mapping 〈·, ·〉1 : U × U → B given by

(2.6) 〈x, y〉1 = (Lx,y − Lx,ω − Lω,y + Lω,ω)(1)

(ω is the same as in (2.2)) is a B-valued semi-inner product (in the sense that it
can be degenerate, i.e., 〈x, x〉1 = 0 need not imply x = 0) and that it satisfies all
the customary properties:

(a) For all x, y, z ∈ U , and α, β ∈ C 〈x, αy + βz〉1 = α 〈x, y〉1 + β 〈x, z〉1;
(b) For all x, y ∈ U , a ∈ B 〈x, y · a〉1 = 〈x, y〉1 a;
(c) For all x, y ∈ U 〈x, y〉1 = 〈y, x〉∗

1;
(d) For all x ∈ U 〈x, x〉1 > 0.
Also, the set N = {x ∈ U | 〈x, x〉1 = 0} is a submodule of U and U/N is a

pre-Hilbert left–right B–B module.

3. The result

The definition of the index of the product system with at least one continuous
unit, given in [5], is quoted here as

Definition 3.1. Let E be a product system, and let ω be a continuous unit
on E. The index of a pair (E, ω) is the completion of pre-Hilbert left–right module
U/∼, where U = Uω is the maximal continuous set of units containing ω, and ∼
is the equivalence relation defined by x ∼ y if and only if x − y ∈ N where N is
the set mentioned at the end of Section 2. Naturally, the index will be denoted by
ind(E, ω).



TWO EQUIVALENT DEFINITIONS OF THE INDEX OF PRODUCT SYSTEMS 53

Remark 3.1. If {ω, ω′} is a continuous set, then ind(E, ω) ∼= ind(E, ω′).
Indeed, then Uω = Uω′ and the isometric isomorphism is given by translation
x 7→ x ⊞ −ω ⊞ ω′. Therefore, ind(E, ω) is independent on the choice of ω in
the same continuous set of units.

The index of the product systems with at least one continuous unit may also
be defined in a different way and we prove that these two definitions are equivalent.
In detail, let E be a product system and let U be a continuous set of units in E.
Consider the B-bimodule BUB where BUB is the set of all formal sums

∑

i aixibi,
xi ∈ U , ai, bi ∈ B with identification subject to the relations

(λa)xb ∼ ax(λb) (λ ∈ C), (a1 + a2)xb ∼ a1xb + a2xb, ax(b1 + b2) ∼ axb1 + axb2.

For c ∈ B,
(
∑

i aixibi

)

c =
∑

i aixi(bic) and c
(
∑

i aixibi

)

=
∑

i(cai)xibi. Also

consider B-subbimodule (BUB)0 =
{

∑

i aixibi ∈ BUB |
∑

i aibi = 0
}

and define
the map 〈·, ·〉 : (BUB)0 × (BUB)0 → B by

(3.1)

〈

∑

i

aixibi,
∑

j

a′
jx′

jb′
j

〉

=
∑

i,j

b∗
i Lxi,x′

j (a∗
i a′

j)b′
j .

Lemma 3.1. The map (3.1) satisfies the following properties:
(a) For all ai, bi, ci, c′

i, di, d′
i ∈ B, xi, yi, y′

i ∈ U , α, β ∈ C

〈

∑

i

aixibi, α
∑

i

ciyidi + β
∑

i

c′
iy

′
id

′
i

〉

= α

〈

∑

i

aixibi,
∑

i

ciyidi

〉

+ β

〈

∑

i

aixibi,
∑

i

c′
iy

′
id

′
i

〉

;

(b) For all ai, a′
i, bi, b′

i ∈ B, xi, x′
i ∈ U , c ∈ B

〈

∑

i

aixibi,
(

∑

i

a′
ix

′
ib

′
i

)

c

〉

=

〈

∑

i

aixibi,
∑

i

a′
ix

′
ib

′
i

〉

c;

(c) For all ai, a′
i, bi, b′

i ∈ B, xi, x′
i ∈ U

〈

∑

i

aixibi,
∑

i

a′
ix

′
ib

′
i

〉

=

〈

∑

i

a′
ix

′
ib

′
i,

∑

i

aixibi

〉∗

;

(d) For all ai, bi ∈ B, xi ∈ U
〈

∑

i aixibi,
∑

i aixibi

〉

> 0.

Proof. (a), (b) are easy to check. For (c) use (1.2) and (d) follows since L is
conditionally CPD (1.1). �

From the previous lemma, the Causchy–Schwartz inequality can be derived (see
[7, Proposition 1.2.4]):

〈

∑

i

aixibi,
∑

i

a′
ix

′
ib

′
i

〉〈

∑

i

aixibi,
∑

i

a′
ix

′
ib

′
i

〉∗

6

〈

∑

i

aixibi,
∑

i

aixibi

〉
∥

∥

∥

∥

〈

∑

i

a′
ix

′
ib

′
i,

∑

i

a′
ix

′
ib

′
i

〉
∥

∥

∥

∥

.
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It follows that the set N =
{

∑

i aixibi ∈ (BUB)0 |
〈

∑

i aixibi,
∑

i aixibi

〉

= 0
}

is

equal to
{

∑

i aixibi ∈ (BUB)0 | ∀
∑

i a′
ix

′
ib

′
i ∈ (BUB)0,

〈
∑

i aixibi,
∑

i a′
ix

′
ib

′
i

〉

= 0
}

.
So, N is a submodule of (BUB)0 and (BUB)0/N is a pre-Hilbert left–right B–B
module.

Theorem 3.1. Let E be a product system over a unital C∗-algebra B. Let ω be
an arbitrary continuous unit in E and let U be the maximal continuous set of units
containing ω. The mapping f : U/∼ → (BUB)0/N defined by f([y]) = y − ω + N is
an isomorphism between pre-Hilbert B–B module U/∼ introduced in Definition 3.1
and pre-Hilbert B–B module (BUB)0/N .

Proof. Let y, y′ ∈ U and y ∼ y′, i.e., 〈y − y′, y − y′〉1 = 0 (the substraction
is as in Remark 2.2). For 1y1 + (−1)y′1 ∈ (BUB)0 we also write y − y′ ∈ (BUB)0.
By (3.1) there holds

〈y − y′, y − y′〉 = Ly,y(1) − Ly,y′

(1) − Ly′,y(1) + Ly′,y′

(1),

and also, by (2.6) and (2.1),

〈y − y′, y − y′〉1 = 〈y ⊞ (−y′) ⊞ ω, y ⊞ (−y′) ⊞ ω〉1

= Ly,y(1) − Ly,y′

(1) − Ly′,y(1) + Ly′,y′

(1).

Therefore, y − y′ ∈ N which means that f is well defined. Let [y], [z] ∈ U/∼.

〈f([y]), f([z])〉(BUB)0/N = 〈y − ω + N , z − ω + N 〉(BUB)0/N = 〈y − ω, z − ω〉

= Ly,z(1) − Lω,z(1) − Ly,ω(1) + Lω,ω(1)

= 〈y, z〉1 = 〈[y], [z]〉U/∼

,

so f is an isometry. For the surjectivity of f , it needs to be proved that for all
∑

i aixibi +N in (BUB)0/N there exists [y] ∈ U/∼ such that
∑

i aixibi −y+ω ∈ N .
The mapping t 7→ ωt +

∑

i aixi,tbi satisfies all the assumptions of Proposition 2.1
and let us denote the resulting unit by ζ. The kernels of ζ are given by

Lζ,ζ(b) = Lω,ω(b) +
∑

i

b∗
i Lxi,ω(a∗

i b) +
∑

i

Lω,xi(bai)bi +
∑

i,j

b∗
i Lxi,xj (a∗

i baj)bj ,

Lζ,ξ(b) = Lω,ξ(b) +
∑

i

b∗
i Lxi,ξ(a∗

i b), ξ ∈ U , b ∈ B.(3.2)

By (3.1), (3.2), (1.2) it follows
〈
∑

i aixibi − ζ + ω,
∑

i aixibi − ζ + ω
〉

= 0.
Therefore,

∑

i aixibi − ζ + ω ∈ N and f([ζ]) =
∑

i aixibi + N . Let [x], [y] ∈ U/∼.
Denote ζ = x + y ∈ U (the addition is as in (2.2)). By (3.1), (2.3), (1.2) it follows
that 〈ζ − x − y + ω, ζ − x − y + ω〉 = 0 which means ζ −x−y +ω ∈ N . Therefore,

f([x] + [y]) = f([x + y]) = ζ − ω + N = x − ω + y − ω + N = f([x]) + f([y]).

Let [x] ∈ U/∼ and b ∈ B. Denote η = x ·b ∈ U and µ = b ·x ∈ U (the multiplication
is as in (2.2)). By (3.1), (2.4), (2.5), (1.2) it follows that

〈η − ω − xb + ωb, η − ω − xb + ωb〉 = 0,

〈µ − ω − bx + bω, µ − ω − bx + bω〉 = 0,
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hence η − ω − xb + ωb ∈ N and µ − ω − bx + bω ∈ N . Therefore,

f([x] · b) = f([x · b]) = η − ω + N = xb − ωb + N = f([x])b,

f(b · [x]) = f([b · x]) = µ − ω + N = bx − bω + N = bf([x]). �

Corollary 3.1. Let E be a product system over a unital C∗-algebra B. Let
ω be an arbitrary continuous unit in E and let U be the maximal continuous set
of units containing ω. The index of E may also be defined as the completion of
pre-Hilbert left-right B − B module (BUB)0/N .

Remark 3.2. Let E be an Arveson product system, i.e., E is a product system
with B = C, and let U be the set of its units. As it can be found in [2], for x, y ∈ U
there exists a unique complex number c(x, y) satisfying 〈xt, yt〉 = etc(x,y). The
function c : U × U → C is the covariance function of E. It is conditionally positive
definite and there holds

(3.3) Lx,y(1) = lim
t→0

〈xt, yt〉 − 1

t
= lim

t→0

etc(x,y) − 1

t
= c(x, y).

Since all Lx,y are C-linear, the B-bimodule BUB is reduced to the complex
vector space CU consisting of all formal sums

∑

i aixi with ai ∈ C, xi ∈ U and its
B-subbimodule (BUB)0 is reduced to (CU)0 = {

∑

i aixi ∈ CU |
∑

i ai = 0}. Using
(3.3), it follows

〈

∑

i

aixi,
∑

i

a′
ix

′
i

〉

=
∑

i,j

Lxi,x′

j (aia
′
j)(3.4)

=
∑

i,j

Lxi,x′

j (1)aia
′
j =

∑

i,j

c(xi, x′
j)aia

′
j .

According to Corollary 3.1, the index of E is the completion of the inner product
space (CU)0/N where N =

{
∑

i aixi ∈ (CU)0 |
〈

∑

i aixi,
∑

i aixi

〉

= 0
}

. That
definition of the index corresponds to the one previously given by Arveson in [2].
In detail, following the notation in [2], C0U is the complex vector space consisting
of all finitely nonzero functions f : U → C satisfying

∑

x f(x) = 0. There is a
mapping 〈·, ·〉 : C0U × C0U → C defined by

(3.5) 〈f, g〉 =
∑

x,y∈U

c(x, y)f(x)g(y).

If N =
{

f | 〈f, f〉 =
∑

x,y c(x, y)f(x)f(y) = 0
}

, the mapping (3.5) is an inner

product on (C0U)/N and the index of E is defined as dimension of the completion
of (C0U)/N . A basis for C0U is given by the set {δx | x ∈ U} where δx(x) = 1 and
δx(y) = 0, ∀y 6= x. The mapping x 7→ δx is a bijection between U and the basis
vectors {δx | x ∈ U}, hence U may be considered as a linearly independent basis
for C0U . Therefore, every f ∈ C0U may be written in the form f =

∑

i aixi where
ai = f(xi) ∈ C, xi ∈ U . Consequently, we may identify (CU)0 and C0U , N and N
and the mappings in (3.4) and (3.5).
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The final conclusion is that, according to Corollary 3.1, the index of Arveson
product system E may also be defined as the completion of the inner product space
U/∼, where ∼ is the equivalence relation introduced in Definition 3.1.
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