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ON ALMOST ω1-n-SIMPLY PRESENTED

ABELIAN p-GROUPS

Peter Danchev

Abstract. We define and investigate the class of almost ω1-n-simply pre-
sented p-torsion abelian groups, which class properly contains the subclasses
of almost n-simply presented groups and ω1-n-simply presented groups, re-
spectively. The obtained results generalize those obtained by us in Korean J.
Math. (2014) and J. Algebra Appl. (2015).

1. Introduction and background

In what follows, all considered groups are additive p-primary abelian, where p
is a fixed prime integer. Also, let n > 0 be a nonnegative integer. As usual, for
any ordinal α, the symbol pαG denotes the pα-th power subgroup of G, that is, the
subgroup of G consisting of all elements with heights > α. In the case when α = ω,
pωG is just called the first Ulm subgroup of G. We say that the group G is separable
if pωG = {0}.

All unexplained notions and notations are mainly standard and follow essen-
tially those from [5] and [6]. For the specific terminology, we provide the reader
with the following:

• [9] A reduced group G is said to be almost totally projective if it has a collec-
tion C consisting of nice subgroups of G satisfying the following three conditions:

(1) {0} ∈ C;
(2) C is closed with respect to ascending unions, i.e., if Hi ∈ C with Hi ⊆ Hj

whenever i 6 j (i, j ∈ I), then
⋃

i∈I Hi ∈ C;
(3) If K is a countable subgroup of G, then there is L ∈ C (that is, a nice

subgroup L of G) such that K ⊆ L and L is countable.
If G is separable, it is known as an almost direct sum of cyclic groups.
• A group G is said to be almost simply presented if it is the direct sum of a

divisible group and an almost totally projective group.
The last concept can be generalized for any natural number n as follows:
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• [2] A group G is said to be almost n-simply presented if there is L 6 G[pn]
with G/L almost simply presented.

If L is nice in G, the latter group will be called nicely almost n-simply presented.
• [3] A group G is said to be almost pω+n-projective if there is P 6 G[pn] with

G/P an almost direct sum of cyclic groups.
• [3] A group G is said to be almost ω1-pω+n-projective if there is a countable

subgroup C 6 G such that G/C is almost pω+n-projective.
These two concepts can be extended in the sense of [4] like this:

Definition 1.1. A group G is called almost ω1-n-simply presented if there
exists a countable subgroup K of G such that G/K is almost n-simply presented.
In addition, if K is finite, G is said to be almost ω-n-simply presented.

When K is a priory chosen to be nice in G, one may state the following:

Definition 1.2. The group G is called nicely almost ω1-n-simply presented if
there exists a countable nice subgroup N of G such that G/N is almost n-simply
presented. In addition, if K is finite, G is said to be nicely almost ω-n-simply
presented.

Apparently, almost ω1-pω+n-projective groups and almost ω-n-simply presented
groups are themselves nicely almost ω1-n-simply presented and nicely almost ω-
n-simply presented, respectively. Besides, owing to Theorem 2.25 of [2], nicely
almost ω1-n-simply presented groups with countable first Ulm subgroup are almost
n-simply presented (compare with Corollary 3.1 listed below).

On the other vein, Hill and Megibben gave in [7] the definition of a c.c. group
as a group G such that pω(G/C) is countable whenever C 6 G is a countable
subgroup. Since pωG/(pωG ∩ C) ∼= (pωG + C)/C ⊆ pω(G/C) is countable, it easily
follows that pωG must be countable as well.

Our purpose here is to give a systematic study of the defined above two group
classes as thereby we somewhat settle Problem 3 in [2]. Our work is organized as
follows: In the next section we state and prove some preliminary technical claims
and a background material. After that, in the third section, we proceed by prov-
ing the most of our basic results as we leave some specific of them in the fourth
section. We close in the final section with some left-open problems of interest and
importance.

2. Preliminaries and backgrounds

The following two technicalities are pivotal for the “niceness" property (cf. [2]
too).

Lemma 2.1. Suppose that α is an ordinal, and that G and F are groups where
F is finite. Then the following formula is fulfilled:

pα(G + F ) = pαG + [F ∩ pα(G + F )] ⊆ pαG + F.

Proof. We will use a transfinite induction on α. First, if α−1 exists, we have
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pα(G + F ) = p(pα−1(G + F )) = p(pα−1G + [F ∩ pα−1(G + F )])

= p(pα−1G) + p(F ∩ pα−1(G + F ))

⊆ pαG + [F ∩ p(pα−1(G + F ))] = pαG + [F ∩ pα(G + F )].

Since the reverse inclusion “⊇" is obvious, we obtain the desired equality.
If now α − 1 does not exist, we have that

pα(G + F ) =
⋂

β<α

(pβ(G + F )) ⊆
⋂

β<α

(pβG + F ) =
⋂

β<α

pβG + F = pαG + F.

In fact, the second sign “=" follows like this: Given x ∈
⋂

β<α(pβG + F ), we write
that x = gβ1

+ f1 = · · · = gβs
+ fs = . . . where f1, . . . , fs ∈ F are the all elements

of F ; gβ1
∈ pβ1G, . . . , gβs

∈ pβsG with β1 < · · · < βs < · · · .
Since F is finite, while the number of equalities is infinite due to the infinite

cardinality of α, we infer that gβs
∈ pβG for any ordinal β < α which means

that gβs
∈

⋂

β<α pβG = pαG. Thus x ∈
⋂

β<α pβG + F = pαG + F , as claimed.

Furthermore, pα(G + F ) ⊆ (pαG + F ) ∩ pα(G + F ) = pαG + [F ∩ pα(G + F )] which
is obviously equivalent to an equality. �

Lemma 2.2. Let N be a nice subgroup of a group G. Then
(i) N + R is nice in G for every finite subgroup R 6 G;
(ii) N is nice in G + F for each finite group F .

Proof. (i) For any limit ordinal γ, we deduce that
⋂

δ<γ

(N + R + pδG) ⊆ R +
⋂

δ<γ

(N + pδG) = R + N + pγG

as required. Indeed, the relation “⊆" follows like this: Given x ∈
⋂

δ<γ(N + R +

pδG), we write x = a1 +r1 +g1 = · · · = as +rs+gs = · · · = ak +r1 +gk = . . . , where
a1, . . . , ak ∈ N ; r1, . . . , rk ∈ R; g1 ∈ pδ1G, . . . , gk ∈ pδkG with δ1 < · · · < δk. So
a1 +g1 = · · · = ak +gk = · · · ∈

⋂

δ<γ(N +pδG) and hence x ∈ R+
⋂

δ<γ(N +pδG),
as required.

(ii) Since N is nice in G, we may write
⋂

δ<γ [N + pδG] = N + pγG for every
limit ordinal γ. Furthermore, with Lemma 2.1 at hand, we subsequently deduce
that

⋂

δ<γ

[N + pδ(G + F )] =
⋂

δ<γ

[N + pδG + (F ∩ pδ(G + F ))]

⊆
⋂

δ<γ

(N + pδG) + [F ∩ pγ(G + F )]

= N + pγG + [F ∩ pγ(G + F )] = N + pγ(G + F ).

The inclusion “⊆" follows thus: Given x ∈ ∩δ<γ [N + pδG + (F ∩ pδ(G + F ))],
we write x = a1 + g1 + f1 = · · · = as + gs + fs = · · · = ak + gk + f1 = . . . , where
a1, . . . , ak ∈N ; g1 ∈ pδ1 G, . . . , gk ∈pδk G; f1 ∈F ∩pδ1 (G+F ), . . . , fk ∈ F ∩pδk (G+F )
with δ1 < · · · < δk. Hence a1 + g1 = · · · = ak + gk = · · · ∈

⋂

δ<γ(N + pδG) and
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because the number of the fi’s (1 6 i 6 k) is finite whereas the number of equalities
is not, we can deduce that f1 ∈

⋂

δ<γ(F ∩pδ(G+F )) = F ∩pγ(G+F ), as needed. �

The following can be seen as Proposition 2.20 from [2]. It is listed here only
for the sake of completeness and the readers’ convenience.

Lemma 2.3. If T is almost n-simply presented and G/T is countable, then G
is almost n-simply presented.

Proof. Write G = T +K, where K 6 G is countable. With bullet three listed
above at hand, there exists P 6 T [pn] such that T/P is almost simply presented.
Furthermore, G/P = (T/P ) + (K + P )/P , where (K + P )/P ∼= K/(K ∩ P ) is
countable. Thus Theorem 1 of [1] (see [8] too) can be employed to show that G/P
is almost simply presented, as required. �

The next statement appears as Proposition 2.23 (b) in [2] in the case of almost
n-simply presented groups. We here extend it even in the situation of nicely almost
n-simply presented groups.

Lemma 2.4. If S is a subgroup of a group G such that G/S is finite, then G
is (nicely) almost n-simply presented if and only if S is (nicely) almost n-simply
presented.

Proof. Write G = S + F , where F 6 G is finite. Suppose first that S is
nicely almost n-simply presented. With bullet three quoted above in hand, there
is Z 6 S[pn] which is nice in S such that S/Z is almost simply presented. We
therefore have that G/Z = [S/Z] + [(F + Z)/Z], where (F + Z)/Z ∼= F/(F ∩ Z) is
finite. Again by virtue of Theorem 1 in [1], G/Z should be almost simply presented.
But Z is nice in G utilizing Lemma 2.2 (ii), as required.

Reciprocally, let G be nicely almost n-simply presented. Since ptG = ptS for
some t ∈ N, and in Lemma 2.3 (iii) of [2] it was established that any group A
is nicely almost n-simply presented if and only if so is ptA, one may derive that
S is nicely almost n-simply presented. Actually, this idea also provides a new
verification of the sufficiency, considered above.

The same method works for almost n-simply presented groups as well. �

So, we are now coming to the following (see also Proposition 2.23 (a) from [2]).

Lemma 2.5. A group G is almost n-simply presented if and only if G/F is
almost n-simply presented for some finite subgroup F of G.

Proof. The “and only if" direction was proved as Corollary 2.19 in [2].
To treat the “if" one, write (G/F )/(A/F ) ∼= G/A is almost simply presented for

some A 6 G such that pnA ⊆ F ⊆ A. Since pnA is finite, it is a routine technical
exercise to check that A = L + A[pn] for some finite L 6 A. Furthermore, G/A ∼=
(G/A[pn])/(A/A[pn]) being almost simply presented with finite A/A[pn] ∼= L/L[pn]
implies with the help of [1] (see [8] or [9] as well) that G/A[pn] is almost simply
presented, as required. �

With the last assertion at hand, one observes that almost ω-n-simply presented
groups are exactly the almost n-simply presented ones.
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3. Main results

We begin this section with some different characterizations of almost ω1-n-
simply presented groups. The first major result is the following:

Theorem 3.1. The following points are equivalent:

(i) G is almost ω1-n-simply presented;
(ii) G/(C ⊕ L) is almost simply presented, where C is a countable subgroup

of G and L is a pn-bounded subgroup of G;
(iii) G/L is almost ω1-simply presented for some L 6 G[pn].

Proof. (i) ⇔ (ii). Foremost, letting point (i) be fulfilled, given G/K is almost
n-simply presented for some countable subgroup K 6 G. Thus there is A/K with
A 6 G and pnA ⊆ K such that G/A is almost simply presented. But it is well
known that A = C ⊕ L, and hence (ii) holds.

Conversely, assume that clause (ii) is true. Thus G/(C ⊕ L) ∼= [G/C]/[(C ⊕
L)/C] is almost simply presented, where (C ⊕ L)/C ∼= L is pn-bounded. Therefore
G/C is almost n-simply presented, as required.

(ii) ⇔ (iii). First, assuming that point (ii) is valid, we see that G/(C ⊕ L) ∼=
[G/L]/[(C ⊕ L)/L] is almost simply presented, where (C ⊕ L)/L ∼= C is countable.
So, G/L is almost ω1-simply presented.

Reciprocally, let clause (iii) be true, so given G/L is almost ω1-simply presented
for some pn-bounded subgroup L. Hence there is a countable subgroup B/L with
B 6 G such that (G/L)/(B/L) ∼= G/B is almost simply presented. Besides,
B = L + K for some countable K 6 B. Since pnL = {0}, we write L = L1 ⊕ L2,
where L2 is countable and L ∩ K ⊆ L2. Observe that B = L1 + (K + L2), where
L1 is pn-bounded and K + L2 is countable. Moreover, L1 ∩ (K + L2) = {0}; indeed
take a = b + c, where a ∈ L1, b ∈ K and c ∈ L2. Furthermore, a − c ∈ L ∩ K ⊆ L2,
whence a ∈ L1 ∩ L2 = {0} and so a = 0. Finally, B = L1 ⊕ (K + L2) and thus
G/(C ⊕ M) is almost simply presented for the countable C = K + L2 and the
pn-bounded M = L1, as stated. �

We continue with some other structural affirmations.

Proposition 3.1. If G is nicely almost ω1-n-simply presented, then G/pωG is
almost pω+n-projective. In particular, separable nicely almost ω1-n-simply presented
groups are always almost pω+n-projective.

Proof. According to Corollary 2.8 of [3], one observes that the quotient
(G/N)/pω(G/N) ∼= G/(pωG + N) is almost pω+n-projective, where N is a count-
able nice subgroup of G. But G/(pωG + N) ∼= [G/pωG]/[(pωG + N)/pωG], where
it is obvious that (pωG + N)/pωG ∼= N/(N ∩ pωG) is countable. Henceforth, we
apply Proposition 2.10 from [3] to get the first claim. The second part is its trivial
consequence. �

Corollary 3.1. Suppose G is a group for which pωG is countable. Then G is
nicely almost ω1-n-simply presented if and only if G is almost ω1-pω+n-projective.



108 DANCHEV

Proof. In view of Proposition 3.1, the factor-group G/pωG is almost pω+n-
projective. Hence, in virtue of [3], G is almost ω1-pω+n-projective, as expected.

The reverse implication is obvious. �

Proposition 3.2. If G is both an almost ω1-n-simply presented group and a
c.c. group, then G/pωG is almost pω+n-projective.

Proof. Let G/K be an almost n-simply presented group, where K is a count-
able subgroup of G. Therefore, we apply Corollary 2.8 from [3] to show that

(G/K)/pω(G/K) ∼= G/

[

⋂

i<ω

(piG + K)

]

∼= (G/pωG)/

[

⋂

i<ω

(piG + K)/pωG

]

is almost pω+n-projective. Since [
⋂

i<ω(piG + K)]/pωG is countable, again Propo-

sition 2.10 in [3] applies to get that G/pωG remains almost pω+n-projective, as
desired. �

As two immediate consequences, we deduce:

Corollary 3.2. Suppose G is a c.c. group. Then G is almost ω1-n-simply
presented if and only if G is almost ω1-pω+n-projective.

Proof. The sufficiency being elementary, we deal with the necessity. Since
c.c. groups are obviously with countable first Ulm subgroup, Proposition 3.2 allows
us to conclude with the help of [3] that G is almost ω1-pω+n-projective, as stated.

�

We recollect that a group is termed weakly ω1-separable if it is a separable
c.c. group. So, we directly obtain:

Corollary 3.3. Suppose G is a weakly ω1-separable group. Then G is almost
ω1-n-simply presented if and only if G is almost pω+n-projective.

Furthermore, we come to the following.

Proposition 3.3. Suppose that A is a group with a countable subgroup L.
Then A is almost ω1-n-simply presented if and only if A/L is almost ω1-n-simply
presented.

Proof. First, let us assume that A be almost ω1-n-simply presented, hence
A/K is almost n-simply presented for some countable K 6 A. But

[A/L]/[(L + K)/L] ∼= A/(L + K) ∼= [A/K]/[(L + K)/K],

where the last factor-group [A/K]/[(L + K)/K] is almost n-simply presented by
Proposition 2.18 (or Corollary 2.19) of [2] since (L+K)/K is countable. Therefore,
[A/L]/[(L + K)/L] is almost n-simply presented with countable (L + K)/L ∼=
K/(K ∩ L), as wanted.

Reciprocally, let us now A/L be almost ω1-n-simply presented, and so let C/L
be a countable subgroup of A/L for some C 6 A such that (A/L)/(C/L) ∼= A/C is
almost n-simply presented. Observing that C is of necessity countable, we deduce
via Definition 1.1 that A is almost ω1-n-simply presented, as formulated. �
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As an easy consequence, we deduce:

Corollary 3.4. Suppose A is a group such that pαA is countable for some
ordinal α. Then A is almost ω1-n-simply presented if and only if A/pαA is almost
ω1-n-simply presented.

Proposition 3.4. Let A be a group with a subgroup G such that A/G is count-
able. Then A is almost ω1-n-simply presented if and only if G is almost ω1-n-simply
presented.

Proof. Write A = G+C where C is countable and assume that G is almost ω1-
n-simply presented. Now, Definition 1.1 insures that there is a countable subgroup
K such that G/K is almost n-simply presented. Consequently, A/K = (G/K) +
(C + K)/K. Employing Lemma 2.3, A/K is almost n-simply presented since (C +
K)/K is obviously countable. This gives that A is almost ω1-n-simply presented,
as desired.

Conversely, let us assume that A is almost ω1-n-simply presented. Now, Propo-
sition 3.3 guarantees that (G+C)/C ∼= G/(G∩C) is almost ω1-n-simply presented.
But G ∩ C is countable and again Proposition 3.3 will work to get that G is almost
ω1-n-simply presented, as wanted. �

We are now ready to prove the following central result:

Theorem 3.2. The class of almost ω1-n-simply presented groups is closed un-
der the formation of ω1-bijections, and is the smallest class containing almost n-
simply presented groups with this property.

In other words, if f : G → A is an ω1-bijective homomorphism and G is an
almost ω1-n-simply presented group, then A is an almost ω1-n-simply presented
group, and thus almost ω1-n-simply presented groups form the minimal class of
groups possessing that property.

Proof. The first part follows by [10, Lemma 1.9] accomplished with Propo-
sitions 3.3 and 3.4.

For the second one, that it is the minimal class possessing that property, we
making use Proposition 1.10 of [10] and Theorem 3.1. �

Proposition 3.5. Suppose A is a group with a finite subgroup F . Then A is
nicely almost ω1-n-simply presented if and only if A/F is nicely almost ω1-n-simply
presented.

Proof. Assume first that A is nicely almost ω1-n-simply presented, i.e., there
is a countable nice subgroup N such that A/N is almost n-simply presented. Ob-
serving as above that

[A/F ]/[(F + N)/F ] ∼= A/(F + N) ∼= [A/N ]/[(F + N)/N ],

and that [A/N ]/[(F + N)/N ] is almost n-simply presented, it follows that A/F is
nicely almost ω1-n-simply presented, because (F + N)/F is countable and nice in
A/F in accordance with Lemma 2.2 (i).
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Conversely, given that A/F is nicely almost ω1-n-simply presented, so there
exists a countable nice subgroup C/F of A/F with C 6 A such that the factor-
group (A/F )/(C/F ) ∼= A/C is almost n-simply presented. Since F is nice in A,
one can see that C is countable and nice in A (see [5]), whence Definition 1.2 gives
the claim. �

Proposition 3.6. Let A be a group with a subgroup G such that A/G is finite.
Then A is almost ω1-pω+n-projective if and only if G is almost ω1-pω+n-projective.

Proof. Repeating the same method as in Proposition 3.3 combined with
Proposition 3.5, we complete the arguments. �

We are now ready to establish the following main result:

Theorem 3.3. The class of nicely almost ω1-n-simply presented groups is
closed under taking ω-bijections.

Proof. Follows by our discussion in Section 2 (see again [10, Lemma 1.9])
along with Propositions 3.5 and 3.6. �

Proposition 3.7. Let A be a group with a countable nice subgroup N . If A/N
is nicely almost ω1-n-simply presented, then so is A.

4. Nunke-like theorems

We will now prove some versions of Nunke-esque results for the new group
classes defined in the introductory section. Generalizing the given above concept
of a c.c. group, introduced in [7], one may define the following notion:

Definition 4.1. Let λ be an ordinal. A group G is said to be λ-countably
if for any countable subgroup K 6 G the quotient pλ(G/K)/(pλG + K)/K =
pλ((G/K)/(pλG + K)/K) is countable.

Theorem 4.1. Suppose G is a λ + n-countably group for some ordinal λ such
that pλG is almost n-simply presented. Then G is almost ω1-n-simply presented if
and only if G/pλ+nG is almost ω1-n-simply presented.

Proof. (⇒) Given G/K is an almost n-simply presented group for some count-
able K 6 G. Consequently, Theorem 2.7 (a) in [2] forces that

(G/K)/pλ+n(G/K) ∼= [(G/K)/(pλ+nG + K)/K]/[pλ+n(G/K)/(pλ+nG + K)/K]

= [(G/K)/(pλ+nG + K)/K]/pλ+n((G/K)/(pλ+nG + K)/K)

is also almost n-simply presented. Because of the countability of the quotient
pλ+n(G/K)/[(pλ+nG + K)/K] = pλ+n((G/K)/(pλ+nG + K)/K), a simple appeal
to Theorem 2.10 of [2] leads to almost n-simply presentness of

[G/K]/[(pλ+nG + K)/K] ∼= G/(pλ+nG + K) ∼= [G/pλ+nG]/[(pλ+nG + K)/pλ+nG].

And since (pλ+nG + K)/pλ+nG ∼= K/(K ∩ pλ+nG) is countable, we are done.
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(⇐) Let (G/pλ+nG)/(C/pλ+nG) ∼= G/C be almost n-simply presented for
some countable C/pλ+nG with C 6 G. Write C = pλ+nG + K for some count-
able subgroup K. So, G/(pλ+nG + K) ∼= [G/K]/[(pλ+nG + K)/K] is almost n-
simply presented; note that this gives with the aid of Theorem 2.7 (a)from [2] that
pλ+n((G/K)/(pλ+nG + K)/K) = pλ+n(G/K)/(pλ+nG + K)/K is almost n-simply
presented – however we have by assumption the more restrictive condition that
this quotient is countable. Moreover, again Theorem 2.7(a) or Corollary 2.19 in [2]
applies to conclude that

[(G/K)/(pλ+nG + K)/K]/pλ+n((G/K)/(pλ+nG + K)/K)

∼= [(G/K)/(pλ+nG + K)/K]/[pλ+n(G/K)/(pλ+nG + K)/K]

∼= (G/K)/pλ+n(G/K)

is almost n-simply presented. But, on the other hand, by Theorem 2.7 (a) in [2]
we deduce that pλ+nG is almost n-simply presented. Moreover, (pλ+nG + K)/K ∼=
pλ+nG/(pλ+nG∩K), which means by Proposition 2.18 of [2] that the second term,
and hence the first one, are almost n-simply presented because pλ+nG∩K is count-
able. We therefore may apply Lemma 2.3 to derive that pλ+n(G/K) is almost n-
simply presented. Finally, utilizing Theorem 2.10 in [2] to get after all that G/K
is almost n-simply presented, as expected. �

Notice that we have not used in the necessity the condition that pλG is almost n-
simply presented, so that what immediately arises is whether or not this limitation
can be dropped off in the formulation of the theorem.

Proposition 4.1. Let G be a group and α an ordinal. If G is nicely almost ω1-
n-simply presented, then pαG and G/pαG are nicely almost ω1-n-simply presented.

Proof. Let G/N be almost n-simply presented for some countable nice sub-
group N of G. Hence, using [2], pα(G/N) = (pαG + N)/N ∼= pαG/(pαG ∩ N) is
almost n-simply presented, where pαG ∩ N is countable and nice in pαG (cf. [5]).

Moreover, (G/N)/pα(G/N) ∼= G/(pαG + N) ∼= [G/pαG]/[(pαG + N)/pαG] is
almost n-simply presented, where (pαG + N)/pαG ∼= N/(pαG ∩ N) is countable
and (pαG + N)/pαG is nice in G/pαG, because N + pαG is so in G. �

Proposition 4.2. Suppose that G/pλ+nG is almost n-simply presented for
some ordinal λ. Then G is nicely almost ω1-n-simply presented if and only if pλG
is nicely almost ω1-n-simply presented.

Proof. The “only if" part follows by a direct application of Proposition 4.1.
As for the “if" part, let pλG/Y = pλ(G/Y ) be almost n-simply presented

for some nice countable subgroup Y . Hence Y is also nice in G (see, e.g., [5]),
and besides pλ+n(G/Y ) remains almost n-simply presented in conjunction with
Theorem 2.7 (a) from [2]. But G/pλ+nG ∼= (G/Y )/pλ+n(G/Y ) is almost n-simply
presented by assumption. Now, the application of Theorem 2.10 of [2] leads us to
G/Y is almost n-simply presented, as wanted. �
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5. Open problems

In closing, we shall state two left-open questions which remain unanswered.

Problem 1. Does it follow that if G is an almost ω1-n-simply presented group
with pωG = {0}, then it is almost pω+n-projective?

Problem 2. Let α be an ordinal. Does it follow that G is (nicely) almost
ω1-n-simply presented if and only if both pαG and G/pαG are (nicely) almost
ω1-n-simply presented?
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