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CENTERS OF SKEW POLYNOMIAL RINGS

Waldo Arriagada and Hugo Ramírez

Abstract. We determine the center C(K[x; δ]) of the ring of skew polynomials
K[x; δ], where K is a field and δ is a non-zero derivation over K. We prove
that C(K[x; δ]) = ker δ, if δ is transcendental over K. On the contrary, if
δ is algebraic over K, then C(K[x; δ]) = (ker δ)[η(x)]. The term η(x) is the
minimal polynomial of δ over K.

1. The ring of skew polynomials

Let K be a field and let δ be a non-zero derivation on K, cf. [4, 13]. That is,
a linear function δ : K → K such that δ(ab) = aδ(b) + δ(a)b for any a, b ∈ K. The
ring of skew polynomials in x and coefficients in K is the set

K[x; δ] =

{

∑

i∈N

xiai : {ai} ⊂ K has finite support

}

,

endowed with the usual equality, addition and equipped with multiplication rule:
ax = xa+δ(a), a ∈ K. Since their formal introduction in the 1930’s by Oystein Ore,
skew polynomial rings and their iterated constructions have been further developed
by N. Jacobson, S. A. Amitsur, P. M. Cohn, G. Cauchon, T. Y. Lam, A. Leroy, and
J. Matczuk, and complete treatments can be found in the literature, cf. [5, 9,

10]. Computationally, such rings appear in the context of uncoupling and solving
systems of linear differential and difference equations in closed form, cf. [1, 3, 12].

First, we notice that the multiplication rule and induction yield the relation:

(1.1) axn =

n
∑

k=0

(n

k

)

xkδn−k(a), a ∈ K, n > 1.

In addition, the following properties are satisfied in the ring K[x; δ], see [2, 6, 8].

(1) The function deg : K[x; δ] r {0} → N defined by deg(f) = max{i : ai 6= 0},
where f(x) =

∑

i xiai 6= 0, is a degree function satisfying

deg(f ± g) 6 max{deg(f); deg(g)}
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Further, deg(f · g) = deg(f) + deg(g), for f, g ∈ K[x; δ] r {0}.
(2) K[x; δ] is an integral domain satisfying the right and left division algorithm.

Hence, it is a principal right and left ideal domain.
(3) Consider the triple (A, a0, σ), where A is a ring, a0 ∈ A and σ : K → A is a

ring homomorphism. If

(1.2) a0σ(a) = σ(a)a0 + σ(δ(a)), a ∈ K,

then there exists a unique σ̄ : K[x; δ] → A with σ̄|K = σ and σ̄(x) = a0. Fur-
ther, when such a σ̄ exists, σ̄(f(x)) = f σ̄(a0), where f σ̄(a0) ∈ A is obtained
via substitution of each coefficient of f(x) by its image under σ̄, and x by a0.

Corollary 1.1. The ring homomorphism σ : K → End(K, +), a 7→ σ(a),
where σ(a) : b 7→ ba, extends as a unique σ̄ : K[x; δ] → End(K, +), where σ̄(x) = δ.
Moreover, σ̄ is K-linear when End(K, +) is considered as a right K-vector space
via the action fλ = f(σ(λ)).

Proof. To extend σ it suffices that identity (1.2) be fulfilled, with a0 = δ.
But this is the case. Indeed, let a ∈ K; one has

[σ(a) ◦ δ + σ(δ(a))](b) = δ(b)a + bδ(a) = δ(ab) = (δ ◦ σ(a))(b), b ∈ K.

The extension σ̄ is K-linear since σ̄(fλ) = σ̄(f) ◦ σ̄(λ) = σ̄(f)(σ(λ)) = σ̄(f)λ. �

Let σ̄ : K[x; δ] → End(K, +) be the linear homomorphism of Corollary 1.1 and

K[δ] = Im(σ̄) =

{ n
∑

i=0

δiai : n ∈ N, ; ai ∈ K

}

,

where δiai = δi ◦σ(ai). Then K[δ] is a subring of End(K, +) isomorphic to K[x; δ].
It is, moreover, a right vector space over K.

Lemma 1.1 (Jacobson–Bourbaki). Let A ∋ 1 be a subring of End(K, +) such
that: (a) A is a right vector subspace of End(K, +) over K, (b) [A : K] = ν. Then
k = {a ∈ K : σ(a) ◦ f = f ◦ σ(a), ∀f ∈ A} is a subfield of K such that [K : k] = ν.
Further, A = Endk(K, +) as a vector space over k.

The next result is a standard consequence of the division algorithm in K[x; δ],
cf. [9].

Proposition 1.1. Let f(x) ∈ K[x; δ] be of minimal degree deg(f), such that
f(δ) = 0. Then [K[δ] : K] = deg(f). If g ∈ K[x; δ] satisfies g(δ) = 0, then f

divides g.

2. Commutator

Let A be a ring. The commutator of a, b ∈ A is [a, b] = ab − ba. It is easy to
see that the commutator satisfies the following properties:

(4) [·, ·] : A × A → A is bi-additive.
(5) For every a, b ∈ A the functions δa, δb : A → A defined by δa = [a, ·] and

δb = [·, b] are derivations. They are called the internal derivations induced
by a and b, respectively.



CENTERS OF SKEW POLYNOMIAL RINGS 183

(6) Any ring homomorphism σ : A → B preserves the commutator, i.e.,

σ[a, b] = [σ(a), σ(b)], a, b ∈ A.

In the sequel we will denote κ = ker δ = {a ∈ K : δ(a) = 0}. (And hence, κ is
a subfield of the field K.)

Proposition 2.1. In the ring A = K[x; δ] the following properties are fulfilled.

(a) [a, xn] =
∑n−1

k=0

(

n
k

)

xkδn−k(a), for each a ∈ K and n > 1. In particular,
[a, x] = δ(a), and hence [a, xn] = 0 for all a ∈ κ.

(b) [xna, x] = xn[a, x] for all a ∈ K and n ∈ N.
(c) The commutator [·, ·] : K[x; δ] × K[x; δ] → K[x; δ] is κ-bilinear.

Proof. (a) This is a consequence of (1.1):

[a, xn] = axn − xna =
n

∑

k=0

(n

k

)

xkδn−k(a) − xna =
n−1
∑

k=0

(n

k

)

xkδn−k(a).

(b) [xna, x] = xnax − xxna = xnax − xn+1a = xn(ax − xa) = xn[a, x].

(c) Let f ∈ K[x; δ] and let δf (·) = [·, f ] be the internal derivation induced by f .
Then for every a, λ ∈ κ and any positive integer i,

[λxia, f ] = δf (λxia) = δf (λ)xia + λδf (xia) = [λ, f ]xia + λ[xia, f ] = λ[xia, f ],

since [λ, f ] = 0. Indeed, if f(x) =
∑n

i=0 xiai, then by (4),
[

λ,
∑

xiai

]

=
∑

δλ(xiai) =
∑

(

δλ(xi)ai + xiδλ(ai)
)

=
∑

(

[λ, xi]ai + xi[λ, ai]
)

,

and this last quantity vanishes by (a). Hence, [·, f ] is homogeneous on monomials
xiai and by additivity it is homogeneous on polynomials. We prove in an analogous
way that [f, ·] is homogeneous on polynomials. �

Corollary 2.1. Let f(x) =
∑n

i=0xiai ∈ K[x; δ] and a ∈ K. Then

(a) [f(x), x] =
∑n

i=0xiδ(ai),

(b) [a, f(x)] =
∑n

i=1

∑i−1
k=0

(

i
k

)

xkδi−k(a)ai.

Proof. (a) [
∑

xiai, x] =
∑

xi[ai, x] =
∑

xiδ(ai).

(b) Since the commutator is bi-additive, we have

[a, f(x)] = [a, a0 + xa1 + · · · + xnan] = [a, a0] + [a, xa1] + · · · + [a, xnan]

= [a, x]a1 + · · · + [a, xn]an.

The conclusion follows from Proposition 2.1(a). �

3. Results

The center of a ring A is the subring C(A) = {a ∈ A : [a, b] = 0, ∀b ∈ A}. The
elements of C(A) are called central.

Lemma 3.1. Let a, b ∈ C(A) with b cancelable. If c ∈ A such that a = bc, then
c is also central.

Proof. For any α ∈ A, 0 = αa − aα = αbc − bcα = b(αc − cα). �
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The next lemma is a useful result that follows from Kummer’s theorem [7].

Lemma 3.2. [11] Let j be a nonzero natural number and p a prime number.
Assume that j = j0 + j1p + · · · + jrpr (jr 6= 0) is the p-adic decomposition of j. If
(

j
k

)

= 0 (mod p) for all k = 1, . . . , j − 1 then j0 = · · · = jr−1 = 0, jr = 1. That is,
j = pr.

The next theorem is the core result of the paper.

Theorem 3.1. If the derivation δ is transcendental over K, then C(K[x; δ]) = κ.
On the contrary, if δ is algebraic over K, then there exist a positive integer N and
a prime p such that ch(K) = p (where ch(K) is the characteristics of K) and the
center C(K[x; δ]) = κ[η(x)], where

η(x) = xα1 + xp2

α2 + · · · + xpN

αi ∈ ker δ,

is the minimal polynomial of δ over K. In this case we have also [K : κ] = pN .

Proof. Let us assume that f(x) =
∑m

i=0 xibi ∈ K[x; δ], with bm 6= 0 and
m = deg(f) > 1. Then f(x) is central if and only if f(x) commutes with x and
with every a ∈ K. That is, [f(x), x] = [a, f(x)] = 0. By Corollary 2.1, these
conditions are simultaneously equivalent to bi ∈ κ for i = 0, . . . , m and

(3.1) δ(a)b1 + · · · +

i−1
∑

k=0

( i

k

)

xkδi−k(a)bi + · · · +

m−1
∑

k=0

(m

k

)

xkδm−k(a)bm = 0,

for every a ∈ K. Hence, if δ is transcendental over K, the coefficients bi, i = 1,

. . . , m vanish and f(x) = b0 ∈ κ, which proves the first statement of the theorem.
Let us suppose that δ is algebraic over K. Since (3.1) is a null polynomial, the

coefficient of the power xi−1 is zero. That is:

δ
( i

i − 1

)

bi + δ2
( i + 1

i − 1

)

bi+1 + · · · + δm−i+1
( m

i − 1

)

bm = 0, i = 1, . . . , m.

In particular, δb1 + δ2b2 + · · · + δmbm = 0 for i = 1, and δmbm = 0 for i = m.
Since δ 6= 0, δmbm = 0 ⇒ mbm = 0 ⇔ (m · 1K)bm = 0, where 1K is the multi-
plicative unit of K. Hence, m · 1K = 0 and then there exists a prime number p

such that ch(K) = p. (In particular, ch(K) is nonzero). Further, if we define
g(x) = f(x) − f(0), then g(x) is central and g(δ) = 0. Hence, there exists a monic
polynomial η(x) ∈ K[x; δ] with η(0) = 0 and of minimal degree deg(η) = n > 1,
such that η(δ) = 0. Write

(3.2) η(x) =

n
∑

i=1

xiai,

with an = 1. Inasmuch as δ(1) = 0, by Corollary 2.1(a) the bracket

[η(x), x] =

n−1
∑

i=1

xiδ(ai)
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has a lower degree than η(x). Consider the homomorphism σ̄ of Corollary 1.1. We
have σ̄[η(x), x] = [σ̄(η(x)), σ̄(x)] = [η(δ), δ] = [0, δ] = 0. Hence, [η(x), x] = 0. Simi-
larly, for every a ∈ K and by Corollary 2.1(b), the commutator [a, η(x)] has a lower
degree than η(x). Also, σ̄[a, η(x)] = [σ̄(a), σ̄(η(x))] = [σ(a), η(δ)] = [σ(a), 0] = 0.
Hence, [a, η(x)] = 0, for every a ∈ K. Thus, η is central. On the other hand, we
notice that an element a ∈ K is central if and only if a ∈ κ. (Indeed, [a, q(x)] = 0
if and only if δ(a) = 0, for q ∈ K[x; δ]). Hence, κ[η(x)] ⊂ C(K[x; δ]).

Conversely, we prove by induction on the degree of f(x) that if f(x) is central,
with deg(f) > 1, then there exists g ∈ κ[x] such that f(x) = g(η(x)). Indeed, f

central ⇒ f(δ) − f(0) = 0 ⇒ η(x) divides f(x) − f(0) ⇔ f(x) − f(0) = η(x)f1(x).
By Lemma 3.1, f1 is central. If f1(x) ∈ κ, then the polynomial g(x) = f(0) +
f1(x) ∈ κ[x] satisfies f(x) = g(η(x)). By minimality, if deg(f1) > 1, and since
deg(f1) < deg(f), we have f1(x) = g1(η(x)) where g1 ∈ κ[x]. This means f(x) =
f(0) + η(x)g1(η(x)). Hence if g(x) = f(0) + xg1(x) ∈ κ[x], we have f(x) = g(η(x)).
This proves that C(κ[x; δ]) = κ[η(x)].

Now, let us determine the explicit form of the minimal polynomial (3.2). Since

η(x) is central its coefficients satisfy δ
(

i
i−1

)

ai +δ2
(

i+1
i−1

)

ai+1 + · · ·+δn−i+1
(

n
i−1

)

= 0,
for i = 1, . . . , n. That is, δ is root of the polynomials

fi(x) = x
( i

i − 1

)

ai + x2
( i + 1

i − 1

)

ai+1 + · · · + xn−i+1
( n

i − 1

)

,

for i = 1, . . . , n. Notice that if i > 2 then 1 6 deg(fi) 6 n−1. Then by minimality,
the coefficients of fi, with 2 6 i 6 n, vanish identically. These coefficients can be
arranged in rows:

(2
1

)

a2
(3

1

)

a3 · · ·
(

j
1

)

aj · · ·
(

n
1

)

, i = 2
(3

2

)

a3 · · ·
(

j

2

)

aj · · ·
(

n

2

)

, i = 3
. . .

...
...

...
(

j

j−1

)

aj · · ·
(

n

j−1

)

, i = j

. . .
...

...
(

n
n−1

)

, i = n.

Thus if aj 6= 0, for 2 6 j 6 n, then
(

j

k

)

· 1K = 0 for all k = 1, . . . , j − 1. Hence,
( j

1

)

=
( j

2

)

= · · · =
( j

j − 1

)

= 0 (mod p).

By Lemma 3.2, there exists a positive integer rj such that j = prj . Let us denote
N = rn. For l = 2, . . . , N define coefficients

αl =
{

ai if l = ri for some i,
0 otherwise.

Then the minimal polynomial has the required form η(x) = xα1 +xp2

α2 + · · ·+xpN

,
where α1 = a1 and αi ∈ ker(δ).

Finally, we know that K[δ] is a subring of End(K, +). It is moreover a right vec-
tor subspace of End(K, +) over K. By Proposition 1.1, [K[δ] : K] = deg(η) = pN .
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Further,

{a ∈ K : σ(a)◦A = A◦σ(a), A ∈ K[δ]} = {a ∈ K : σ(a)◦δ = δ◦σ(a)} = ker δ = κ.

By Lemma 1.1, [K : κ] = pN and K[δ] = Endκ(K, +). The proof is complete. �
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