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ON STURDY FRAME OF ABSTRACT ALGEBRAS

Yong Shao and Miaomiao Ren

Abstract. We introduce the notion of a sturdy frame of abstract algebras
which is a common generalization of a sturdy semilattice of semigroups, the
sum of lattice ordered systems, the strong distributive lattice of semirings, the
sturdy frame of type (2, 2) algebras and the strong b-lattice of semirings. Also,
we give some properties and characterizations of the sturdy frame of abstract
algebras. As an application, we study the sturdy distributive lattice of lattice
ordered groups.

1. Introduction and preliminaries

The union of algebras of the same type has been studied by many algebraists.
The sturdy semilattice of semigroups is introduced by Petrich in [14]. It is an
important tool to study the structures of semigroups, for example, see [15]. Pastijn
[12] introduces the sum of a lattice ordered system. Ghosh [3] and Guo, Sen,
and Shum [19] introduce the concept of strong distributive lattice of semirings,
respectively. By using this concept, Guo, Sen, and Shum [5, 19] study structures
of idempotent semirings. Zhao, Guo, and Shum [22] introduce and study sturdy
frame of type (2, 2) algebras. By introducing strong b-lattice of semirings, Sen,
Maity, and Shum [20] study generalized Clifford semirings. We introduce and
study a sturdy frame of abstract algebras which is a common generalization of a
sturdy semilattice of semigroups, the sum of lattice ordered systems, the strong
distributive lattice of semirings, the sturdy frame of type (2, 2) algebras and the
strong b-lattice of semirings.

Throughout this paper, unless otherwise stated, we consider abstract algebras
and terms of a fixed type F without nullary operation symbols. For an algebra A,
we shall denote the universe of A by A. Moreover, we shall write the symbols of
mappings on the right and the symbols of operations on the left.
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An algebra A is called idempotent if fA(a, . . . , a) = a for any n-ary f ∈ F and
any a ∈ A. Bands, idempotent semirings and lattices are examples of idempotent
algebras. By a frame B we mean an idempotent algebra endowed with an upper
semilattice order 6 satisfying fB(b1, . . . , bn) 6 b1 ∨ · · · ∨ bn for any n-ary f ∈ F
and any b1, . . . , bn ∈ B, where b1 ∨ · · · ∨ bn = lub{b1, . . . , bn}. It is easy to see that
semilattices and lattices are frames.

Let B be a frame and {Aα | α ∈ B} a family of pairwise disjoint algebras,
indexed by B. For each pair α, β of elements of B such that α 6 β, let ϕα,β :
Aα → Aβ be a monomorphism, and assume that

(a) ϕα,α = 1Aα
for every α ∈ B;

(b) ϕα,βϕβ,γ = ϕα,γ for every α, β, γ ∈ B such that α 6 β 6 γ;
(c) If n-ary f ∈ F and α1 ∨ · · · ∨ αn 6 γ for α1, . . . , αn, γ ∈ B, then

fAγ (a1ϕα1,γ , . . . , anϕαn,γ) ∈ (AfB(α1,...,αn))ϕfB(α1,...,αn),γ

for any ai ∈ Aαi
, 1 6 i 6 n.

Let A =
⋃

α∈B Aα, and define an n-ary operation f on A by

fA(a1, . . . , an) = fAα(a1ϕα1,α, . . . , anϕαn,α)ϕ−1
fB(α1,...,αn),α

for any ai ∈ Aαi
, 1 6 i 6 n, where α = α1 ∨ · · · ∨ αn. Then we can check that

A = 〈A, F 〉 is an algebra of type F , denoted by A = [B,6; Aα, ϕα,β ]. We call the
constructed algebra A = [B,6; Aα, ϕα,β ] the sturdy frame of algebras Aα.

It is easy to see that the sturdy semilattice of semigroups introduced by Pet-
rich [14], the sum of lattice ordered systems introduced by Pastijn [12], the strong
distributive lattice of semirings introduced by Ghosh [3] and Guo, Sen and Shum [19],
the strong b-lattice of semirings introduced by Sen, Maity and Shum [20] and the
sturdy frames of type (2, 2) algebras introduced by Zhao, Guo and Shum [22] are
all special cases of the sturdy frame of algebras. Thus the sturdy frame of algebras
provides a new tool to investigate the structures of algebras.

If A = [B,6; Aα, ϕα,β ], then it is easy to see that every Aα is a subalgebra of
A. Also, suppose that the frame B satisfies the additional condition

fB(α1, . . . αn) = α1 ∨ · · · ∨ αn

for any n-ary f ∈ F and any α1, . . . , αn ∈ B. Then the algebra [B,6; Aα, ϕα,β ]
coincides with the Płonka sum of the direct systems 〈B,6; Aα, ϕα,β〉 [17].

For notations and terminologies not given in this paper, the reader is referred to
Burris and Sankappanavar [2] and Grätzer [6] for information concerning universal
algebra, to Howie [8] and Petrich [15] for a background on semigroup theory and to
Hebisch and Weinert [7] for knowledge on semiring theory, respectively. We shall
assume that the reader is familiar with the basic results in these areas.

2. Properties and characterizations of sturdy frame of algebras

In this section we give some properties and characterizations of sturdy frame
of algebras.
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Proposition 2.1. Let A = [B,6; Aα, ϕα,β ] and t an n-ary term. Then

tA(a1, . . . , an) = tAα (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB(α1,...,αn),α

for any ai ∈ Aαi
(1 6 i 6 n), where α = α1 ∨ · · · ∨ αn.

Proof. We prove it by induction on l(t) (the length of t). If l(t) = 0, then
t = xi for some i. Further, we have that tA(a1, . . . , an) = ai and that

tAα(a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB(α1,...,αn),α = aiϕαi,αϕ−1

αi,α = ai.

It follows that tA(a1, . . . , an) = tAα(a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB(α1,...,αn),α

.

Suppose that l(t) > 1 and that the result holds for every term w with l(w) < l(t).
Then t is the form of t = f(t1(x1, . . . , xn), . . . , tk(x1, . . . , xn)), where f is an k-ary
operation symbol in F . Since l(ti) < l(t), we must have that for any i (1 6 i 6 k),

tA

i (a1, . . . , an) = tAα

i (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB

i
(α1,...,αn),α

.

Put β = tB
1 (α1, . . . , αn) ∨ · · · ∨ tB

k (α1, . . . , αn). We have

tA(a1, . . . , an)ϕtB(α1,...,αn),α

= fA
(

tA

1 (a1, . . . , an), . . . , tA

k (a1, . . . , an)
)

ϕtB(α1,...,αn),α

= fA
(

tAα

1 (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB

1
(α1,...,αn),α

, . . . ,

tAα

k (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB

k
(α1,...,αn),α

)

ϕtB(α1,...,αn),α

= fAβ
(

tAα

1 (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB

1
(α1,...,αn),α

ϕtB

1
(α1,...,αn),β , . . . ,

tAα

k (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB

k
(α1,...,αn),α

ϕtB

k
(α1,...,αn),β

)

ϕ−1
tB(α1,...,αn),β

ϕtB(α1,...,αn),α

= fAβ
(

tAα

1 (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB

1
(α1,...,αn),α

ϕtB

1
(α1,...,αn),β , . . . ,

tAα

k (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB

k
(α1,...,αn),α

ϕtB

k
(α1,...,αn),β

)

ϕ−1
tB(α1,...,αn),β

ϕtB(α1,...,αn),βϕβ,α

= fAβ
(

tAα

1 (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB

1
(α1,...,αn),α

ϕtB

1
(α1,...,αn,β), . . . ,

tAα

k (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB

k
(α1,...,αn),α

ϕtB

k
(α1,...,αn,β)

)

ϕβ,α

= fAα
(

tAα

1 (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB

1
(α1,...,αn),α

ϕtB

1
(α1,...,αn,β)ϕβ,α, . . . ,

tAα

k (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB

k
(α1,...,αn),α

ϕtB

k
(α1,...,αn,β)ϕβ,α

)

= fAα
(

tAα

1 (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB

1
(α1,...,αn),α

ϕtB

1
(α1,...,αn),α, . . . ,

tAα

k (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB

k
(α1,...,αn),α

ϕtB

k
(α1,...,αn),α

)

= fAα
(

tAα

1 (a1ϕα1,α, . . . , anϕαn,α), . . . , tAα

k (a1ϕα1,α, . . . , anϕαn,α)
)

= tAα (a1ϕα1,α, . . . , anϕαn,α).
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Consequently, tA(a1, . . . , an) = tAα (a1ϕα1,α, . . . , anϕαn,α)ϕ−1
tB(α1,...,αn),α

. �

In the following we show that the sturdy frame of algebras can be represented
as a subdirect product of two algebras.

Theorem 2.1. Let A = [B,6; Aα, ϕα,β ], a ∈ Aα and b ∈ Aβ. Define binary
relations ρ and θ on A by

(a, b) ∈ ρ ⇔ α = β,

(a, b) ∈ θ ⇔ aϕα,α∨β = bϕβ,α∨β.

Then ρ and θ are congruences on A and A is a subdirect product of B and A/θ.
If each Aα satisfies an identity p ≈ q, so does A/θ.

Proof. It is easy to verify that ρ is a congruence on A and that A/ρ is
isomorphic to B. Also, it is clear that θ is reflexive and symmetric. To show that
θ is transitive, let a ∈ Aα, b ∈ Aβ and c ∈ Aγ such that (a, b) ∈ θ and (b, c) ∈ θ.
Then aϕα,α∨β = bϕβ,α∨β and bϕβ,β∨γ = cϕγ,β∨γ . Further, we have

aϕα,α∨β∨γ = aϕα,α∨βϕα∨β,α∨β∨γ = bϕβ,α∨βϕα∨β,α∨β∨γ = bϕβ,α∨β∨γ

= bϕβ,β∨γϕβ∨γ,α∨β∨γ = cϕγ,β∨γϕβ∨γ,α∨β∨γ = cϕγ,α∨β∨γ.

It follows that

aϕα,α∨γ = aϕα,α∨β∨γϕ−1
α∨γ,α∨β∨γ = cϕγ,α∨β∨γϕ−1

α∨γ,α∨β∨γ = cϕγ,α∨γ

and so (a, c) ∈ θ. This shows that θ is transitive. Thus θ is an equivalence on A.
Let ai ∈ Aαi

and bi ∈ Aβi
such that (ai, bi) ∈ θ, 1 6 i 6 n. Then aiϕαi,αi∨βi

=
biϕβi,αi∨βi

. Put α = α1 ∨ · · · ∨ αn and β = β1 ∨ · · · ∨ βn. We have

aiϕαi,αi∨βi
ϕαi∨βi,α∨β = biϕβi,αi∨βi

ϕαi∨βi,α∨β.

This implies that aiϕαi,α∨β = biϕβi,α∨β.
Choose γ = fB(α1, . . . , αn) ∨ fB(β1, . . . , βn). We have

fA(a1, . . . , an)ϕfB(α1,...,αn),γ

= fAα(a1ϕα1,α, . . . , anϕαn,α)ϕ−1
fB(α1,...,αn),α

ϕfB(α1,...,αn),γ

= fAα(a1ϕα1,α, . . . , anϕαn,α)ϕ−1
fB(α1,...,αn),α

ϕfB(α1,...,αn),α∨βϕ−1
γ,α∨β

= fAα(a1ϕα1,α, . . . , anϕαn,α)ϕ−1
fB(α1,...,αn),α

ϕfB(α1,...,αn),αϕα,α∨βϕ−1
γ,α∨β

= fAα(a1ϕα1,α, . . . , anϕαn,α)ϕα,α∨βϕ−1
γ,α∨β

= fAα∨β (a1ϕα1,αϕα,α∨β , . . . , anϕαn,αϕα,α∨β)ϕ−1
γ,α∨β

= fAα∨β (a1ϕα1,α∨β, . . . , anϕαn,α∨β)ϕ−1
γ,α∨β

= fAα∨β (b1ϕβ1,α∨β, . . . , bnϕβn,α∨β)ϕ−1
γ,α∨β

= fAα∨β (b1ϕβ1,βϕβ,α∨β , . . . , bnϕβn,βϕβ,α∨β)ϕ−1
γ,α∨β

= fAβ (b1ϕβ1,β, . . . , bnϕβn,β)ϕβ,α∨βϕ−1
γ,α∨β

= (fAβ (b1ϕβ1,β , . . . , bnϕβn,β)ϕ−1
fB(β1,...,βn),β

)ϕfB(β1,...,βn),βϕβ,α∨βϕ−1
γ,α∨β
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= fA(b1, . . . , bn)ϕfB(β1,...,βn),βϕβ,α∨βϕ−1
γ,α∨β

= fA(b1, . . . , bn)ϕfB(β1,...,βn),α∨βϕ−1
γ,α∨β = fA(b1, . . . , bn)ϕfB(β1,...,βn),γ .

Thus (fA(a1, . . . , an), fA(b1, . . . , bn)) ∈ θ and so θ is a congruence on A. Notice
that ρ ∩ θ = ∆, where ∆ is the equality relation. Hence A is a subdirect product
of B and A/θ.

Let p(x1, . . . , xn) ≈ q(x1, . . . , xn) be an identity. In the following we shall show
that A satisfies p ≈ q if each Aα satisfies p ≈ q. In fact, we have

pA/θ(a1/θ, . . . , an/θ) = pA/θ(a1ϕα1,α/θ, . . . , anϕαn,α/θ)

= pA(a1ϕα1,α, . . . , anϕαn,α)/θ = pAα(a1ϕα1,α, . . . , anϕαn,α)/θ.

Similarly, qA/θ(a1/θ, . . . , an/θ) = qAα (a1ϕα1,α, . . . , anϕαn,α)/θ. Since Aα satisfies
p ≈ q, it follows that pAα(a1ϕα1,α, . . . , anϕαn,α) = qAα(a1ϕα1,α, . . . , anϕαn,α).
Thus

pA/θ(a1/θ, . . . , an/θ) = qA/θ(a1/θ, . . . , an/θ)

and so A/θ satisfies p ≈ q. �

Theorem 2.1 generalizes and enriches Lemma I.8.11 in [14], Lemma 2.6 in [20]
and Theorem 2.2 in [22], respectively. If A = [B,6; Aα, ϕα,β ], then it is easy to
verify that A/θ in which θ is defined in Theorem 2.1 is a direct limit of the family
{Aα | α ∈ B} [6]. By Theorem 2.1, we can immediately have the following result,
which generalizes and enriches Theorem 1.2 in [3], Lemma 3.2 in [19], Theorem 2.4
in [20] and Theorem 2.3 in [22], respectively.

Corollary 2.1. Let A = [B,6; Aα, ϕα,β] and p ≈ q an identity. Then the
following statements are equivalent:

(i) B and each algebra Aα satisfy p ≈ q;
(ii) B and A/θ satisfy p ≈ q;
(iii) A satisfies p ≈ q.

A variety is said to be a frame variety if every member in it can become a frame
under some upper semilattice order. The variety of semilattices and the variety of
lattices are examples of a frame variety. Every member in a variety V will be called
a V -algebra. For a variety V and an algebra A there exists the smallest congruence
ρ on A such that A/ρ is a V -algebra. This congruence will be called the least V -
congruence on A. The following theorem characterizes a sturdy frame of algebras
by subdirect product decomposition.

Theorem 2.2. Let A be an algebra, let V be a variety and W a frame variety.
Assume that τ1 is the least V -congruence on A and that τ2 is the least W -congruence
on A. Then the following statements are equivalent:

(i) A is the subdirect product of A/τ1 and A/τ2;
(ii) A can be expressed as the sturdy frame [B,6; Aα, ϕα,β ] of V -algebras Aα

on frame B in W ;
(iii) A is a subdirect product of a V -algebra and a W -algebra.
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Proof. (i) ⇒ (ii). By hypothesis, it follows that A/τ2 can become a frame
under the upper semilattice order 6. We shall denote A/τ2 by B and A/τ1 by
C, respectively. For any α ∈ B, let Aα denote the algebra whose universe is
{α} × C ∩ A. It is easy to see that Aα belongs to V . Also, it is routine to verify
that A is the union of all Aα, every Aα is a subalgebra of A and that Aα ∩ Aβ = ∅
if α 6= β. Let α, β, γ ∈ B such that α 6 β 6 γ. Define a mapping ϕα,β : Aα → Aβ

by (α, c)ϕα,β = (β, c) ((α, c) ∈ Aα). It is clear that ϕα,β is injective and that
ϕα,βϕβ,γ = ϕα,γ . Moreover, for any (α, ci) ∈ Aα (1 6 i 6 n), we have

fAα((α, c1), . . . , (α, cn))ϕα,β = (fB(α, . . . , α), fC(c1, . . . , cn))ϕα,β

= (α, fC(c1, . . . , cn))ϕα,β = (β, fC(c1, . . . , cn))

= (fB(β, . . . , β), fC(c1, . . . , cn)) = fAβ ((β, c1), . . . , (β, cn))

= fAβ ((α, c1)ϕα,β , . . . , (α, cn)ϕα,β).

This shows that ϕα,β is a monomorphism.
If α1 ∨ · · · ∨ αn 6 γ, then

fAγ ((α1, c1)ϕα1,γ , . . . , (αn, cn)ϕαn,γ) = fAγ ((γ, c1), . . . , (γ, cn))

= (fB(γ, . . . , γ), fC(c1, . . . , cn)) = (γ, fC(c1, . . . , cn))

= (fB(α1, . . . , αn), fC(c1, . . . , cn))ϕfB(α1,...,αn),γ

∈ (AfB(α1,...,αn))ϕfB(α1,...,αn),γ .

Put α = α1 ∨ · · · ∨ αn. We have

fA((α1, c1), . . . , (αn, cn))ϕfB(α1,...,αn),α

= fB×C((α1, c1), . . . , (αn, cn))ϕfB(α1,...,αn),α

= (fB(α1, . . . , αn), fC(c1, . . . , cn))ϕfB(α1,...,αn),α

= (α, fC(c1, . . . , cn)) = (fB(α, . . . , α), fC(c1, . . . , cn))

= fAα((α, c1), . . . , (α, cn)) = fAα((α1, c1)ϕα1,α, . . . , (αn, cn)ϕαn,α).

Thus A can be expressed as the sturdy frame [B,6; Aα, ϕα,β ] of algebras Aα in V
on frame B in W .

(ii) ⇒ (iii). This follows from Theorem 2.1 immediately.
(iii) ⇒ (i). Assume that A is a subdirect product of a V -algebra and a W -

algebra. Then there exist congruences τ̃1 and τ̃2 on A such that A/τ̃1 ∈ V , A/τ̃2 ∈
W and τ̃1 ∩ τ̃2 = ∆. Since τ1 ⊆ τ̃1 and τ2 ⊆ τ̃2, it follows that τ1 ∩ τ2 = ∆. Thus
A is the subdirect product of A/τ1 and B/τ2. �

As a corollary, we have the following corresponding result for semigroups, which
generalizes some results obtained by Petrich and Reilly [16].

Corollary 2.2. Let S be a semigroup and V a semigroup variety. Then S is
a sturdy semilattice of semigroups in V if and only if S is a subdirect product of a
semilattice and a semigroup in V .



ON STURDY FRAME OF ABSTRACT ALGEBRAS 205

By a semiring we mean an algebra (S, +, ·) with two binary operations + and ·
such that both the additive reduct (S, +) and the multiplicative reduct (S, ·) are
semigroups and such that the following distributive laws hold:

x(y + z) ≈ xy + xz, (y + z)x ≈ yx + zx.

A semiring S is said to be idempotent if both (S, +) and (S, ·) are bands. The class
of all idempotent semirings whose additive reducts are semilattices will be denoted
by Sl+. Let S ∈ Sl+. Define an upper semilattice order 6 on S by

(2.1) a 6 b ⇔ a + b = b.

By Lemma 3.3 in [22] we have that (S,6) is a frame. The class of all idempotent
semirings for which the two reducts are semilattices will be denoted by Bi. Given
S ∈ Bi. Define an upper semilattice order 6 on S by

(2.2) a 6 b ⇔ ab = b.

It follows from Lemma 4.2 in [22] that (S,6) is a frame. By Theorem 2.2 we can
immediately obtain the following result for semirings.

Corollary 2.3. Let S be a semiring and V a semiring variety. Then S is a
sturdy frame of semirings in V on a frame which is described by (2.1)/ (2.2) if and
only if S is a subdirect product of a semiring in Sl+[Bi] and a semiring in V .

It is clear that Sl+ coincides with the class of all b-lattices, which are intro-
duced in [20] and that the variety of all distributive lattices is a subvariety of Bi.
Consequently, Corollary 2.3 extends and enriches some results obtained by Bandelt
and Petrich [1], Ghosh [3], Guo, Sen, and Shum [5, 19], Sen, Maity, and Shum
[20] and Shao and Zhao [21], respectively.

3. Sturdy distributive lattice of lattice ordered groups

As an application of sturdy frame of algebras, the sturdy distributive lattice of
lattice ordered groups will be investigated in this section.

Recall [8, 9] that a partially ordered semigroup S is said to be a ∨-semilatticed
semigroup if there exists the least upper bound a ∨ b for each pair of elements
a, b ∈ S and if the multiplication distributes over the join operation ∨, that is,

(∀a, b, c ∈ S) a(b ∨ c) = ab ∨ ac and (a ∨ b)c = ac ∨ bc.

In a dual way, we may consider ∧-semilatticed semigroups. A ∨-semilatticed semi-
group or a ∧-semilatticed semigroup is simply called a semilatticed semigroup. In
particular, if a partially ordered semigroup S is both a ∨-semilatticed semigroup
and a ∧-semilatticed semigroups, then S is called an lattice ordered semigroup. We
denote by (S, ∨, ∧, ·) the lattice ordered semigroup S.

Suppose that (S, ·) is an inverse semigroup. We denote by � the natural partial
order on S. That is to say (Section II.4 in [15]),

a � b ⇔ (∃e, f ∈ E) a = be = fb

holds for any a, b ∈ S, in which E is the set of idempotents of (S, ·). It is easy
to verify that (∀a, b, c ∈ S) a � b ⇒ ac � bc, ca � cb. Suppose that (S, ∨, ·)
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is a ∨-semilatticed semigroup. We denote by L (R, D and H, respectively) de-
notes Green’s L-relation (R-relation, D-relation, H-relation, respectively) on the
multiplicative reduct (S, ·) of S.

Suppose that (B, ∨, ·) is a ∨-semilatticed semilattice. If B satisfies the absorp-
tion law x ∨ xy ≈ x, then (B, ∨, ·) is called a distributive lattice.

Suppose that (S, ∨, ·) is a ∨-semilatticed inverse semigroup under the partial
order 6. Let E(S) be the set of idempotents of the multiplicative reduct (S, ·) of
S, i.e., E(S) = {e ∈ S | e2 = e}.

Thus we have directly the following result from Theorem 2.3 in [3].

Theorem 3.1. If (S, ∨, ·) is a ∨-semilatticed inverse semigroup under the par-
tial order 6, then (E(S), ∨, ·) is a semilatticed semilattice.

When E(S) is a distributive lattice for a ∨-semilatticed inverse semigroup S,
we have

Proposition 3.1. If (S, ∨, ·) is a ∨-semilatticed inverse semigroup under the
partial order 6, then the following conditions are equivalent:

(i) 6 is an extension of � (i.e., � ⊆6);
(ii) (∀e, f ∈ E(S)) e 6 f ⇔ e � f ;
(iii) (∀a, b ∈ S) a ∨ ab−1b = a;
(iv) (E(S), ∨, ·) is a distributive lattice.

Proof. Suppose that (S, ∨, ·) is a ∨-semilatticed inverse semigroup under the
partial order 6.

(i) ⇒ (ii). Suppose that e, f ∈ E(S). If e � f , then it follows immediately from
(i) that e 6 f . Conversely, if e 6 f , then pre-multiplying this by e, we have e 6 ef .
On the other hand, since ef � e, it follows from (i) that ef 6 e. Thus, ef = e
holds. That is to say, e � f . This shows that e 6 f ⇔ e � f , as required.

(ii) ⇒ (i). Suppose that a, b ∈ S. If a � b, then it follows from Proposition 5.2.1
in [8] that b−1a = a−1a, aa−1 � bb−1 and a−1a � b−1b. Thus we have immediately
from (ii) that a−1a 6 b−1b, aa−1 6 bb−1. Hence,

a 6 bb−1a (post-multiplying aa−1
6 bb−1 by a)

6 ba−1a (b−1a = a−1a)

6 bb−1b (a−1a 6 b−1b)

= b.

That is to say, a 6 b. This shows that 6 is an extension of �.
(ii) ⇒ (iii). It is clear that a−1ab−1b � a−1a for any a, b ∈ S. Thus it follows

directly from (ii) that a−1ab−1b 6 a−1a. That is to say, a−1ab−1b ∨ a−1a = a−1a.
Premultiplying this by a, we have a(a−1ab−1b ∨ a−1a) = ab−1b ∨ a = a(a−1a) = a.
Hence, ab−1b ∨ a = a, as required.

(iii) ⇒ (iv). It is clear from Theorem 3.1 that (E(S), ∨, ·) is a semilatticed
semilattice. Suppose that e, f ∈ E(S). Then it follows directly from (iii) that
ef ∨ e = e since f−1 = f . That is to say, E(S) satisfies the absorption law and so
it is a distributive lattice, as required.
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(iv) ⇒ (ii). Suppose that E(S) is a distributive lattice and e, f ∈ E(S). If
e 6 f , then e ∨ f = f . Pre-multiplying this by e, we can show e ∨ ef = ef . Since
the absorption law is satisfied in E(S), it follows that e = e∨ef = ef and so e � f .
Conversely, if e � f , then ef = e. This implies that ef ∨ f = e ∨ f . By using
absorption law again, we have f = ef ∨ f = e ∨ f . That is to say, e 6 f . This
shows that e 6 f ⇔ e � f , as required. �

McAlister introduced amenable partial orders on inverse semigroups and stud-
ied amenable partially ordered inverse semigroups in [10], in which, amenable par-
tial order is an extension of the natural partial order. McAlister gave the definition
of amenable partial order on an inverse semigroup as follows.

Definition 3.1. Let (S, ·,6) be a partially ordered inverse semigroup. The
partial order 6 is said to be a left(right) amenable partial order if it coincides with
� on idempotents and for each a, b ∈ S, a 6 b implies a−1a � b−1b (aa−1 � bb−1).
If 6 is both a left amenable partial order and a right amenable partial order on S,
then 6 is called an amenable partial order and S is called an amenable partially
ordered inverse semigroup.

Suppose that S is a Clifford semigroup. It is easy to see that both the left
amenable partial order and the right amenable partial order coincide since Clifford
semigroup satisfies aa−1 = a−1a for any a ∈ S. Thus we have

Lemma 3.1. Suppose that (S, ∨, ·) a ∨-semilatticed Clifford semigroup under the
amenable partial order 6. Then (E(S), ∨, ·) is a distributive lattice and S satisfies

(∀a, b ∈ S) (a ∨ b)−1(a ∨ b) = a−1a ∨ b−1b.

Proof. Since 6 is amenable, it follows from Definition that 6 coincides with
� on idempotents. By Propositon 3.1, we have that E(S) is a distributive lattice.

Suppose that a, b ∈ S. It is clear that a, b 6 a ∨ b. Since 6 is left amenable,
it follows that a−1a, b−1b � (a ∨ b)−1(a ∨ b). Thus we have that a−1a, b−1b 6

(a ∨ b)−1(a ∨ b) and so a−1a ∨ b−1b 6 (a ∨ b)−1(a ∨ b). On the other hand, it is
obvious that ab−1b � a, ba−1a � b. It follows that ab−1b 6 a, ba−1a 6 b, since 6

extends the natural partial order �. Thus we have that (a ∨ b)(a−1a ∨ b−1b) =
a ∨ ab−1b ∨ ba−1a ∨ b = a ∨ b. This implies that (a ∨ b)−1(a ∨ b)(a−1a ∨ b−1b) =
(a∨b)−1(a∨b) and so (a∨b)−1(a∨b) � a−1a∨b−1b. By Proposition 3.1, we have that
(a ∨ b)−1(a ∨ b) 6 a−1a ∨ b−1b. This shows that (a ∨ b)−1(a ∨ b) = a−1a ∨ b−1b. �

Suppose that (S, ∨, ·) a ∨-semilatticed Clifford semigroup under the amenable
partial order 6. Since the multiplicative reduct of S is a Clifford semigroup, it
follows that aa−1 = a−1a for any a ∈ S. By Theorem II.1.4 in [15], we have that H
is the least semilattice congruence of the Clifford semigroup (S, ·) and every H-class
is a maximal subgroup of (S, ·). For any a ∈ S, Ha denotes the H-class containing
a, and a0 denotes the identity of subgroup Ha. It can be easily seen that a H b if
and only if a0 = b0 for any a, b ∈ S. Thus we have that E(S) = {a0 | a ∈ S}. By
Lemma 3.1 we have

Corollary 3.1. Suppose that (S, ∨, ·) a ∨-semilatticed Clifford semigroup un-
der the partial order 6. If 6 is amenable then (∀a, b ∈ S) (a ∨ b)0 = a0 ∨ b0.
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By [4], we have

Lemma 3.2. Suppose that (G, ·,6) is a partially ordered group and a, b ∈ G.
Then the following statements are equivalent:

(i) there exists the least upper bound a ∨ b of a and b;
(ii) there exists the greatest lower bound a ∧ b of a and b;
(iii) there exists the least upper bound of a−1 and b−1;
(iv) there exists the greatest lower bound of a−1 and b−1.

In particular, if there exists a ∨ b, then for any c, d ∈ G we have

ca ∨ cb = c(a ∨ b), ad ∨ bd = (a ∨ b)d

a ∧ b = (a−1 ∨ b−1)−1, a ∧ b = a(a ∨ b)−1b.

Thus, (G, ∨, ∧, ·) is a lattice ordered group.

Suppose that (S, ∨, ∧, ·) is a lattice ordered Clifford semigroup under the partial
order 6. If 6 is amenable then (S, ∨, ∧, ·) is called an amenably lattice ordered
Clifford semigroup. Thus we have

Theorem 3.2. Suppose that (S, ∨, ·) a ∨-semilatticed Clifford semigroup un-
der the amenable partial order 6. Then (S, ∨, ∧, ·) is an amenably lattice ordered
Clifford semigroup.

Proof. Suppose that a, b ∈ S. It is easy to see that (ab0, ba0) ∈ H. That is
to say ab0, ba0 ∈ Ha0b0 . By Corollary 3.1, we have that Ha0b0 is a ∨-semilatticed
group, it follows from Lemma 3.2 that Ha0b0 is lattice ordered group. For any
x, y ∈ Ha0b0 we denote by x ∧ y the great lower bound of x and y. Thus, there
exists an element c ∈ Ha0b0 is the great lower bound of ab0 and ba0, i.e., c = b0∧ba0.
Hence we have from 6 is amenable that c 6 ab0 6 a and c 6 b.

Suppose that d ∈ S such that d 6 a, b. Then d0 � a0, d0 � b0. Thus we have
that d = db0 6 ab0, d = da0 6 ba0 and so d 6 ab0 ∧ ba0, that is to say d 6 c. This
shows that ab0 ∧ ba0 is the greatest lower bound of a and b. We denote by a ∧ b the
greatest lower bound of a and b. Thus we have that a∧b = ab0 ∧ba0. Furthermore,
we have that

a ∧ b = ab0 ∧ ba0 = ((ab0)−1 ∨ (ba0)−1)−1 = (a−1 ∨ b−1)−1a0b0.

In the following we will prove that (S, ∨, ∧, ·) is a lattice ordered Clifford semigroup.
For any c ∈ S we have that

ac ∧ bc = [(ac)−1 ∨ (bc)−1]−1(ac)0(bc)0 = [c−1(a−1 ∨ b−1)]−1a0b0c0

= (a−1 ∨ b−1)−1ca0b0c0 = (a−1 ∨ b−1)−1a0b0c = (a ∧ b)c,

Dually, we have that

ca ∧ cb = [(ca)−1 ∨ (cb)−1]−1(ca)0(cb)0 = [(a−1 ∨ b−1)c−1]−1a0b0c0

= c(a−1 ∨ b−1)−1a0b0c0 = cc0(a−1 ∨ b−1)−1a0b0 = c(a ∧ b).

This shows that (S, ∧, ·) is a ∧-semiltticed semigroup.
Since (S, ∨, ·) a ∨-semilatticed Clifford semigroup, it follows that (S, ∨, ∧, ·) is

a lattice ordered Clifford semigroup. �
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Suppose that (S, ∨, ∧, ·) is an amenably lattice ordered Clifford semigroup. It
follows from Theorem 3.2 that (a ∧ b)0 = a0b0 = a0 ∧ b0 since a ∧ b = ab0 ∧ ba0 and
Ha0b0 is a lattice ordered group. Assume that a, b ∈ S such that (a, b) ∈ H. For
any c ∈ S, we have that (a ∨ c)0 = a0 ∨ c0 = b0 ∨ c0 = (b ∨ c)0. This implies that
(a ∨ c, b ∨ c) ∈ H and so H is a congruence on (S, ∨). Similarly, we can obtain that
H is a congruence on (S, ∧). This shows that H is a congruence on S. It follows
that S/H is a distributive lattice. Also, we can define a binary relation σ on S as
follows:

(∀a, b ∈ S) (a, b) ∈ σ ⇔ (∃e ∈ E(S)) ae = be.

It follows from Proposition 5.3.2 in [8] that σ is the least group congruence on the
multiplicative reduct of S. Assume that a, b ∈ S and that (a, b) ∈ σ. Then there
exists e ∈ E(S) such that ae = be. For any c ∈ S, we have that ae ∨ ce = be ∨ ce.
That is to say, (a∨c)e = (b∨c)e. This implies that (a∨c, b∨c) ∈ σ. Since (S, ∨) is
a semilattice, we also have that (c∨a, c∨b) ∈ σ. This shows that σ is a congruence
on (S, ∨). Similarly, we can obtain that σ is a congruence on (S, ∧). This shows
that σ is a congruence on S. Thus we have that σ is a congruence on S. It follows
that S/σ is a lattice ordered group.

Suppose that (S, ∨, ∧, ·) is an amenably lattice ordered Clifford semigroup. If
the multiplicative reduct of S is E-unitary, then it follows from Corollary 4.3.6 in
[15] that H ∩ σ = ∆. By Theorem 2.2, Corollary 4.3.6 in [15] and Theorem 3.5 in
[21] we have

Theorem 3.3. Let (S, ∨, ∧, ·) be an amenably lattice ordered Clifford semi-
group. Then the following statements are equivalent:

(i) S is a sturdy distributive lattice of lattice ordered groups;
(ii) S is a subdirect product of a distributive lattice and a lattice ordered group;
(iii) the multiplicative reduct of S is E-unitary;
(iv) the multiplicative reduct of S is a sturdy semilattice of groups;
(v) the multiplicative reduct of S is a subdirect product of a semilattice and a

group.

Remark 3.1. It is clear that both a lattice ordered Clifford semigroup and
a lattice ordered group are algebras of type (2, 2, 2). Also, a distributive lattice
can be considered as an algebra of type (2, 2, 2) whose multiplication and meet
coincide. Thus Theorem 3.3 characterizes the amenably lattice ordered Clifford
semigroup which can be expressed as a sturdy distributive lattice (as an algebra of
type (2, 2, 2)) of lattice ordered groups.
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