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CONVERGENCE THEOREMS OF A SCHEME FOR

I-ASYMPTOTICALLY QUASI-NONEXPANSIVE

TYPE MAPPING IN BANACH SPACE

Seyit Temir

Abstract. Let X be a Banach space. Let K be a nonempty subset of X.
Let T : K → K be an I-asymptotically quasi-nonexpansive type mapping
and I : K → K be an asymptotically quasi-nonexpansive type mappings
in the Banach space. Our aim is to establish the necessary and sufficient
conditions for the convergence of the Ishikawa iterative sequences with errors of

an I-asymptotically quasi-nonexpansive type mappping in Banach spaces to a
common fixed point of T and I. Also, we study the convergence of the Ishikawa
iterative sequences to common fixed point for nonself I-asymptotically quasi-
nonexpansive type mapping in Banach spaces.

The results presented in this paper extend and generalize some recent
work of Chang and Zhou [1], Wang [19], Yao and Wang [20] and many others.

1. Introduction

Let X be a real Banach space, K be a nonempty subset of Banach space and
T, I : K → K. Let F (T ) = {x ∈ K : Tx = x} and F (I) = {x ∈ K : Ix = x} denote
the set of fixed points of mappings T and I, respectively. Recall some definitions
and notations. T is called nonexpansive if ‖Tx− Ty‖ 6 ‖x − y‖ for all x, y ∈ K.
The quasi-nonexpansive mappings defined as the following were studied by Diaz
and Metcalf [4] and Dotson [5] in Banach spaces. T is called a quasi-nonexpansive
mapping if F (T ) 6= ∅ and ‖Tx − p‖ 6 ‖x − p‖ for all x ∈ K and p ∈ F (T ). The
concept of asymptotically nonexpansiveness defined as the following was introduced
by Goebel and Kirk [7]. T is called asymptotically quasi-nonexpansive mapping if
F (T ) 6= ∅ and there exists a sequence {kn} ⊂ [1,∞) with limn→∞ kn = 1 such that
‖T nx− p‖ 6 kn‖x− p‖ for all x ∈ K and p ∈ F (T ) and n > 1. Let X be a Banach
space and K be a nonempty subset of the Banach space. Let T, I : K → K be two
mappings. T is called I-nonexpansive if ‖Tx− Ty‖ 6 ‖Ix − Iy‖ for all x, y ∈ K.
T is called I-quasi-nonexpansive if F (T ) ∩ F (I) 6= ∅ and ‖Tx− p‖ 6 ‖Ix− p‖ for
all x ∈ K and p ∈ F (T ) ∩ F (I).
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From the above definitions, it follows that if F (T ) ∩ F (I) is nonempty, an I-
nonexpansive mapping must be I quasi-nonexpansive, and linear I quasi-nonexpan-
sive mappings are I-nonexpansive mappings. But it is easily seen that there exist
nonlinear continuous I quasi-nonexpansive mappings which are not I-nonexpansive.
T is called I-asymptotically quasi-nonexpansive if there exists a sequence {kn} ⊂
[1,∞) with limn→∞ kn = 1 such that ‖T nx − p‖ 6 kn‖Inx − p‖ for all x ∈ K

and p ∈ F (T ) ∩ F (I) and n > 1. T is called I-asymptotically nonexpansive type
mapping if lim supn→∞

{sup{‖T nx− T ny‖ − ‖Inx− Iny‖}} 6 0 for all x, y ∈ K .
T is called I-asymptotically quasi-nonexpansive type if F (T ) ∩ F (I) 6= ∅ and

(1.1) lim sup
n→∞

{sup{‖T nx− p‖ − ‖Inx− p‖}} 6 0

for all x ∈ K and p ∈ F (T ) ∩ F (I).
I is called asymptotically quasi-nonexpansive type if F (I) 6= ∅ and

(1.2) lim sup
n→∞

{sup{‖Inx− p‖ − ‖x− p‖}} 6 0

for all x ∈ K and p ∈ F (I).
From the above definitions, it follows that if F (I) is nonempty, quasi-nonexpan-

sive mappings, asymptotically nonexpansive mappings, asymptotically quasi-non-
expansive mappings and asymptotically nonexpansive type mappings all are special
cases of asymptotically quasi-nonexpansive type mappings.

Let {xn} be of the Ishikawa iterative scheme [8] associated with T , x0 ∈ K,

yn = (1 − βn)xn + βnTxn

xn+1 = (1 − αn)xn + αnTyn

for every n ∈ N, where 0 6 αn, βn 6 1.
Let S, T : K → K be two mappings. In 2006, Lan [9] introduced the following

iterative scheme with errors. The sequence xn in K defined by

(1.3)
yn = (1 − βn)xn + βnT

nxn + ψn

xn+1 = (1 − αn)xn + αnS
nyn + ϕn

for every n ∈ N, where 0 6 {αn}, {βn} 6 1 and {ϕn}, {ψn} are two sequences
in K.

The iterative approximation problems for nonexpansive mapping, asymptoti-
cally nonexpansive mapping and asymptotically quasi-nonexpansive mapping were
studied Ghosh and Debnath [6], Goebel and Kirk [7], Liu [10, 11], Petryshyn and
Williamson [13] in the settings of Hilbert spaces and uniformly convex Banach
spaces. The strong and weak convergences of the sequence of Mann iterates to a
fixed point of quasi-nonexpansive maps were studied by Petryshyn and Williamson
[13]. Subsequently, the convergence of Ishikawa iterates of quasi-nonexpansive
mappings in Banach spaces were discussed by Ghosh and Debnath [6]. The above
results and some necessary and sufficient conditions for Ishikawa iterative sequences
obtained to converge to a fixed point for asymptotically quasi-nonexpansive map-
pings were extended by Liu [10]. In [11], the results of Liu [10] were extended
and some sufficient and necessary conditions for Ishikawa iterative sequences of
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asymptotically quasi-nonexpansive mappings with error member to converge to
fixed points were proved. Recently, Temir and Gul [17] obtained the weakly al-
most convergence theorems for I-asymptotically quasi-nonexpansive mapping in a
Hilbert space. In [20], Yao and Wang established the strong convergence of an
iterative scheme with errors involving I-asymptotically quasi-nonexpansive map-
pings in a uniformly convex Banach space. Temir [18], studied the convergence to
common fixed point of Ishikawa iterative process of generalized I-asymptotically
quasi-nonexpansive mappings to common fixed point in Banach space. In [1], the
convergence theorems for Ishikawa iterative sequences with mixed errors of asymp-
totically quasi-nonexpansive type mappings in Banach spaces were studied.

2. Preliminaries and notations

We first recall the following definitions. A Banach space X is said to satisfy
Opial’s condition [12] if, for each sequence {xn} in X , the condition xn ⇀ x implies

lim inf
n→∞

‖xn − x‖ < lim inf
n→∞

‖xn − y‖

for all y ∈ X with y 6= x. It is well known from [12] that all lr spaces for 1 < r < ∞
have this property. However, the Lr space do not have unless r = 2.

In order to prove the main results of this paper, we need the following lemmas.

Lemma 2.1. [16] Let {an}, {bn} be sequences of nonnegative real numbers

satisfying the following conditions: ∀n > 1, an+1 6 an + bn, where
∑

∞

n=1 bn < ∞.

Then limn→∞ an exists.

Lemma 2.2. [15] Let K be a nonempty closed bounded convex subset of a uni-

formly convex Banach space X and {αn} ⊆ [ǫ, 1 − ǫ] ⊂ (0, 1). Let {xn} and {yn}
be two sequences in K such that lim supn→∞

‖xn‖ 6 c, lim supn→∞
‖yn‖ 6 c, and

lim supn→∞
‖αnxn +(1−αn)yn‖ = c for some c > 0. Then limn→∞ ‖xn − yn‖ = 0.

Lemma 2.3. [2] Let X be a uniformly convex Banach space, K a nonempty

closed convex subset of X and T : K → K an asymptotically nonexpansive mapping

with a sequence {kn} ⊂ [1,∞) and limn→∞ kn = 1. Then E − T is semi-closed

(demi-closed) at zero, i.e., for each sequence {xn} in K, if {xn} converges weakly

to q ∈ K and (E − T ){xn} converges strongly to 0, then (E − T )q = 0.

3. Convergence theorems for I-asymptotically

quasi-nonexpansive type mapping

In this section, X is a Banach space and K is its nonempty subset. Let T, I :
K → K be two mappings, where T is an I-asymptotically quasi-nonexpansive type
mapping and I : K → K is an asymptotically quasi-nonexpansive type mapping.
We study the strong and weak convergences of the sequence of Ishikawa iterates
with mixed errors to a common fixed point of T and I.

Theorem 3.1. Let X be a Banach space, K its nonempty subset, and T, I :
K → K two mappings. Let T be an I-asymptotically quasi-nonexpansive type and

I be an asymptotically quasi-nonexpansive type in the Banach space satisfying

(3.1) ‖Tx− p‖ 6 L‖Ix− p‖
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for all x ∈ K and p ∈ F (T ) ∩ F (I), where L > 0 is a constant and

(3.2) ‖Ix− p‖ 6 Γ‖x− p‖

for all x ∈ K and p ∈ F (I), where Γ > 0 is a constant. Write I : K → K instead

of S : K → K in (1.3) and get

(3.3)
yn = (1 − βn)xn + βnT

nxn + ψn

xn+1 = (1 − αn)xn + αnI
nyn + ϕn

for every n ∈ N, where 0 6 {αn}, {βn} 6 1 and {ϕn}, {ψn} be two sequences in

K satisfying: (i)
∑

∞

n=1 αn < ∞; (ii) {ψn} is bounded, ϕn = ϕ′

n + ϕ
′′

n, n ∈ N and
∑

∞

n=1 ‖ϕ′

n‖ < ∞, ‖ϕ”n‖ = o(αn).
Then {xn} converges strongly to a common fixed point of T and I in K iff

(3.4) lim inf
n→∞

d(xn, F (T ) ∩ F (I)) = 0.

Lemma 3.1. Suppose all conditions in Theorem 3.1 are satisfied; then for ε > 0,

there exists a positive integer n0 and M > 0 such that

‖xn+1 − p‖ 6 ‖xn − p‖ + αnM + ‖ϕ′

n‖

for all p ∈ F (T ) ∩ F (I), n > n0 and

‖xn+m − p‖ 6 ‖xn − p‖ +M

n+m−1
∑

i=n

αi +
n+m−1

∑

i=n

‖ϕ′

i‖,

for all p ∈ F (T )∩F (I), n > n0, ∀m > 1, where M = supn>0{εn +‖ψn‖}+3ε 6 ∞,

and εn is a sequence with εn > 0 and εn → 0 such that ‖ϕ
′′

n‖ = εnαn.

Proof. For p ∈ F (T ) ∩ F (I), from (3.3), we have

‖xn+1 − p‖ = ‖(1 − αn)(xn − p) + αn(Inyn − p) + ϕn‖(3.5)

6 (1 − αn)‖xn − p‖ + αn‖Inyn − p‖ + ‖ϕn‖

= (1 − αn)‖xn − p‖ + αn{‖Inyn − p‖ − ‖yn − p‖}

+ αn‖yn − p‖ + ‖ϕn‖

Now we consider the second term 0n the right-hand side of (3.5). From (1.1)
and (1.2), for any given ε > 0, there exists a positive integer n0 such that n > n0,
so we have

sup
x∈K,p∈F (T )∩F (I)

{‖T nx− p‖ − ‖Inx− p‖} < ε,

sup
x∈K,p∈F (I)

{‖Inx− p‖ − ‖x− p‖} < ε.

Therefore, in particular, we have

(3.6) {‖T nxn − p‖ − ‖Inxn − p‖} < ε,

for all p ∈ F (T ) ∩ F (I) and ∀n > n0.

(3.7) {‖Inyn − p‖ − ‖yn − p‖} < ε,
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for all p ∈ F (I) and ∀n > n0. From (3.7), we have

(3.8) ‖xn+1 − p‖ 6 (1 − αn)‖xn − p‖ + αnε+ αn‖yn − p‖ + ‖ϕn‖

Consider the third term on the right-hand side of (3.8). From (3.6) and (3.7), we
get

‖yn − p‖ = ‖(1 − βn)(xn − p) + βn(T nxn − p) + ψn‖(3.9)

6 (1 − βn)‖xn − p‖ + βn{‖T nxn − p‖ − ‖Inxn − p‖}

+ βn{‖Inxn − p‖ − ‖xn − p‖} + βn‖xn − p‖ + ‖ψn‖

6 (1 − βn)‖xn − p‖ + 2βnε+ βn‖xn − p‖ + ‖ψn‖

= ‖xn − p‖ + 2βnε+ ‖ψn‖

Now consider the fourth term on the right side of (3.5); we have ‖ϕn‖ 6 ‖ϕ′

n‖ +
‖ϕ′′

n‖, ∀n > 0. Substituting (3.9) into (3.8), we have

‖xn+1 − p‖ 6 (1 − αn)‖xn − p‖ + αnε+ αn{‖xn − p‖ + 2βnε+ ‖ψn‖} + ‖ϕn‖

6 (1 − αn)‖xn − p‖ + αnε+ αn‖xn − p‖

+ 2αnβnε+ αn‖ψn‖ + ‖ϕ′

n‖ + ‖ϕ
′′

n‖

= ‖xn − p‖ + αnε(1 + 2βn) + αnεn + αn‖ψn‖ + ‖ϕ′

n‖

Taking M = supn>0{εn + ‖ψn‖} + 3ε we obtain

(3.10) ‖xn+1 − p‖ 6 ‖xn − p‖ + αnM + ‖ϕ′

n‖

for all p ∈ F (T )∩F (I), n > n0. Writing n+m−1 instead of n in inequality (3.10),
for m > 1, we get

‖xn+m − p‖ 6 ‖xn+m−1 − p‖ + αn+m−1M + ‖ϕ′

n+m−1‖

6 ‖xn+m−2 − p‖ + (αn+m−1 + αn+m−2)M + ‖ϕ′

n+m−2‖ + ‖ϕ′

n+m−1‖
...

6 ‖xn − p‖ +M

n+m−1
∑

i=n

αi +

n+m−1
∑

i=n

‖ϕ′

i‖

for all p ∈ F (T ) ∩ F (I), n > n0. Thus Lemma 3.1 is proved. �

Since {ψn} is bounded, ϕn = ϕ′

n + ϕ
′′

n, n ∈ N and
∑

∞

n=0 ‖ϕ′

n‖ < ∞, ‖ϕ
′′

n‖ =
o(αn), then we have

∑

∞

n=0(Mαn + ‖ϕ′

n‖) < ∞. From Lemma 2.1, we take {an} =
{xn − p} and {bn} = Mαn + ‖ϕ′

n‖. This implies that limn→∞ ‖xn − p‖ exists.

Proof of Theorem 3.1. We only prove the sufficiency of Theorem 3.1. Sup-
pose that (3.4) is satisfied; then limn→∞ d(xn, F (T ) ∩ F (I)) = 0.

First we show that {xn} is a Cauchy sequence in K. For ε > 0 and n > n1 there
exists n1 > n0 such that d(xn, F (T )∩F (I)) < ε,

∑

∞

n=n1
αn <

ε
M

,
∑

∞

n=n1
‖ϕ′

n‖ < ε.

By the definition of infimum and d(xn, F (T ) ∩ F (I)) < ε there exists p0 ∈ F (T ) ∩
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F (I) such that d(xn1
, p) < 2ε. Furthermore, for n > n1 > n0 and ∀m > 1

‖xn+m − xn‖ 6 ‖xn+m − p0‖ + ‖xn − p0‖

6 ‖xn1
− p0‖ +M

n+m−1
∑

i=n1

αi +

n+m−1
∑

i=n1

‖ϕ′

i‖

+ ‖xn1
− p0‖ +M

n−1
∑

i=n1

αi +

n−1
∑

i=n1

‖ϕ′

i‖.

Then for n > n1 > n0 and ∀m > 1 we have ‖xn+m −xn‖ 6 8ε. Since ε is arbitrary,
then {xn} is a Cauchy sequence in K. Since X is a Banach space, let {xn} → p∗

as n → ∞. We prove that p∗ ∈ F (T ) ∩ F (I). We have {xn} → p∗ as n → ∞
and limn→∞ d(xn, F (T ) ∩ F (I)) = 0, for ε > 0, there exists a positive integer
n2 > n1 > n0 and n > n2 we have ‖xn − p∗‖ < ε, d(xn, F (T ) ∩ F (I)) < ε. Then
there exists q ∈ F (T ) ∩ F (I) such that d(xn2

, q) < 2ε. Furthermore, for n > n2

‖T np∗ − p∗‖ 6 {‖T np∗ − q‖ − ‖p∗ − q‖} + 2‖p∗ − q‖

6 {‖T np∗ − q‖ − ‖Inp∗ − q‖} + {‖Inp∗ − q‖ − ‖p∗ − q‖} + 3‖p∗ − q‖

< 2ε+ 3{3ε} = 11ε

Since T is I-asymptotically quasi nonexpansive type and I is asymptotically quasi
nonexpansive type, this implies that {T np∗} → p∗ as n → ∞. Furthermore,

‖T np∗ − Tp∗‖ 6 {‖T np∗ − q‖ − ‖p∗ − q‖} + ‖p∗ − q‖ + ‖Tp∗ − q‖.

Then for n > n2 by (3.1), (3.2), (3.6) and (3.7) we have

‖T np∗ − Tp∗‖ 6 {‖T np∗ − q‖ − ‖Inp∗ − q‖} + {‖Inp∗ − q‖ − ‖p∗ − q‖}

+ 2‖p∗ − q‖ + L‖Ip∗ − q‖

6 2ε+ 2‖p∗ − q‖ + LΓ‖p∗ − q‖

6 2ε+ (2 + LΓ){‖xn2
− p∗‖ + ‖xn2

− q‖}

< 2ε+ (2 + LΓ)3ε < ε(8 + 3LΓ)

Since ε is arbitrary, {T np∗} → Tp∗ as n → ∞, implying Tp∗ = p∗ ∈ F (T ) ∩ F (I).
Further we apply for I : K → K asymptotically quasi nonexpansive type

mapping. Then for n > n2 we have

‖Inp∗ − p∗‖ 6 {‖Inp∗ − q‖ − ‖q − p∗‖} + 2‖p∗ − q‖

6 ε+ 2{‖xn2
− p∗‖ + ‖xn2

− q‖} < ε+ 2{ε+ 2ε} = 7ε

This implies that {Inp∗} → p∗ as n → ∞. Furthermore,

‖Inp∗ − Ip∗‖ 6 {‖Inp∗ − q‖ − ‖p∗ − q‖} + ‖p∗ − q‖ + ‖Ip∗ − q‖.
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Then for n > n2 by (3.2) and (3.7) we have

‖Inp∗ − Ip∗‖ 6 {‖Inp∗ − q‖ − ‖p∗ − q‖} + ‖p∗ − q‖ + Γ‖Ip∗ − q‖

6 ε+ ‖p∗ − q‖ + Γ‖p∗ − q‖

6 ε+ (1 + Γ){‖xn2
− p∗‖ + ‖xn2

− q‖}

< ε+ (1 + Γ)3ε < ε(4 + 3Γ).

Since ε is arbitrary, {Inp∗} → p∗ as n → ∞. Also

‖Inp∗ − Ip∗‖ 6 ‖Inp∗ − q‖ + ‖Ip∗ − q‖ < 2ε

Since ε is arbitrary, {Inp∗} → Ip∗ as n → ∞. This shows that Ip∗ = p∗ ∈ F (I).
From this we obtain p∗ ∈ F (T ) ∩ F (I).

Thus {xn} converges strongly to a common fixed point of T and I in K, subset
of X Banach space. �

Now we establish the weak convergence theorem for Ishikawa iterates of I-
asymptotically quasi-nonexpansive type mappings in Banach spaces. First, we
prove the following lemma.

Lemma 3.2. Let X be a uniformly convex Banach space and K be a nonempty

closed convex subset of X. Let T , I and {xn} be the same as in Lemma 3.1. If

F = F (T ) ∩ F (I) 6= ∅, then limn→∞ ‖Txn − xn‖ = limn→∞ ‖Ixn − xn‖ = 0.

Proof. By Lemma 3.1, for any p ∈ F (T ) ∩F (I), limn→∞ ‖xn −p‖ exists. Let
limn→∞ ‖xn − p‖ = c. If c = 0, then the proof is completed.

Now suppose c > 0. From (3.9), we have ‖yn − p‖ 6 ‖xn − p‖ + 2βnε+ ‖ψn‖.
Taking lim sup on both sides in the above inequality,

(3.11) lim sup
n→∞

‖yn − p‖ 6 c.

Since I is asymptotically nonexpansive type self-mappings on K, from (3.7), which
is on taking lim supn→∞

and using (3.11), then we get lim supn→∞
‖Inyn − p‖ 6 c.

Further, limn→∞ ‖xn+1 − p‖ = c means that

lim
n→∞

‖αnI
nyn + (1 − αn)xn − p‖ = c

lim
n→∞

(1 − αn)‖xn − p‖ + αn‖Inyn − p‖ = c.

It follows from Lemma 2.2

(3.12) lim
n→∞

‖Inyn − xn‖ = 0.

Further,

lim
n→∞

‖αn(T nxn − p) + (1 − αn)(xn − p)‖ = lim
n→∞

‖yn − p‖ = c.

By Lemma 2.2, we have

(3.13) lim
n→∞

‖T nxn − xn‖ = 0.

From (3.12) and (3.13), we have

(3.14) lim
n→∞

‖Inxn − xn‖ = 0.
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Using (3.1), (3.2), (3.3), (3.13) and (3.14), it is easy to show that

lim
n→∞

‖Txn − xn‖ = 0(3.15)

lim
n→∞

‖Ixn − xn‖ = 0.(3.16)

Then the proof is completed. �

Theorem 3.2. Let X be a uniformly convex Banach space which satisfies

Opial’s condition, K be a nonempty closed convex subset of X. Let T, I and {xn}
be the same as in Lemma 3.1. If F (T ) ∩F (I) 6= ∅, the mappings E − T and E − I

are semi-closed at zero, then {xn} converges weakly to a common fixed point of T

and I.

Proof. By assumption, F (T ) ∩ F (I) is nonempty. Take p ∈ F (T ) ∩ F (I). It
follows from Lemma 3.1 that the limit limn→∞ ‖xn −p‖ exists. Therefore, {xn −p}
is a bounded sequence in X . Since X is a uniformly convex Banach space and K

is a nonempty closed convex subset of X , then K is weakly compact. This implies
that there exists a subsequence {xnk

} of {xn} such that {xnk
} converges to a point

p ∈ w({xn}), where w({xn}) denotes the weak limit set of {xn}, which shows that
w({xn}) is nonempty. For any p ∈ w({xn}), there exists a subsequence {xnk

} of
{xn} such that {xnk

} → p weakly. Hence, it follows from (3.15) and (3.16) in
Lemma 3.2 that Tp = p and Ip = p. By Opial’s condition, {xn} has only one weak
limit point, i.e., {xn} converges weakly to a common fixed point of T and I. �

4. Convergence for nonself I-asymptotically

quasi-nonexpansive type mappings

In this section, the convergence of the Ishikawa iterative sequences to com-
mon fixed point for nonself I-asymptotically quasi-nonexpansive type mapppings
is obtained in Banach spaces.

A subset K of X is called a retract of X if there exists a continuous map
P : X → K such that Px = x for all x ∈ K. A map P : X → K is called a
retraction if P 2 = P . In particular, a subset K is called a nonexpansive retract of
X if there exists a nonexpansive retraction P : X → K such that Px = x for all
x ∈ K.

Next, we introduce the following concepts for nonself mappings. Let X be a
real Banach space. A subset K of X be nonempty nonexpansive retraction of X
and P be nonexpansive retraction from X onto K. A nonself mapping T : K → X

is called asymptotically nonexpansive if there exists a sequence {υn} ⊂ [1,∞) with
limn→∞ υn = 1 such that

‖T (PT )n−1x− T (PT )n−1y‖ 6 υn‖x− y‖

for all x, y ∈ K and n > 1. T is called uniformly L-Lipschitzian if there exists a
constant L > 0 such that

‖T (PT )n−1x− T (PT )n−1y‖ 6 L‖x− y‖

for all x, y ∈ K and n > 1. From the above definition, it is obvious that nonself
asymptotically nonexpansive mappings is uniformly L-Lipschitzian.
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Let I : K → X be a nonself asymptotically quasi-nonexpansive type mappings
and T : K → X be a nonself I-asymptotically quasi-nonexpansive type mappings
with F (T ) ∩ F (I) = {x ∈ K : Tx = x = Ix} 6= ∅. A mapping T : K → X is called
Λ-Lipschitzian if there exists constant Λ > 0 such that

‖T (PT )n−1x− T (PT )n−1y‖ 6 Λ‖I(PI)n−1x− I(PI)n−1y‖

for all x, y ∈ K and n > 1.
Iterative techniques for converging fixed points of nonexpansive non-self map-

pings have been studied by many authors (see, for example, [3, 19, 14]). The
concept of nonself asymptotically nonexpansive mappings was introduced in [3]
as a generalization of asymptotically nonexpansive self-mappings and some strong
and weak convergence theorems for such mappings were obtained. The sequence
{xn}n>1 generated as follows: x1 ∈ K,

yn = P (αnT (PT )n−1xn + βnxn),

xn+1 = P (α′

nT (PT )n−1yn + β′

nxn), ∀n > 1,

where {αn}, {βn}, {α′

n}, {β′

n} ∈ (0, 1).
Let T : K → X be a nonself I-asymptotically quasi-nonexpansive type mapping

and I : K → X be a nonself asymptotically quasi-nonexpansive type mapping.
Now we define an {xn}n>1 sequence as follows:

(4.1)
yn = P (αnT (PT )n−1xn + βnxn + γnψn),

xn+1 = P (α′

nI(PI)n−1yn + β′

nxn + γ′

nϕn), ∀n > 1,

where {αn}, {βn}, {γn}, {α′

n}, {β′

n}, {γ′

n} are sequences in (0, 1) with αn+βn+γn =
1 = α′

n + β′

n + γ′

n and {ψn}, {ϕn} are bounded sequences in K.

lim sup
n→∞

(

sup
x∈X,p∈F (T )∩F (I)

{‖T (PT )n−1x− p‖ − ‖I(PI)n−1x− p‖}
)

6 0.

Observe that

lim sup
n→∞

(

sup
x∈X,p∈F (T )∩F (I)

{‖T (PT )n−1x− p‖ − ‖I(PI)n−1x− p‖}
)

× lim sup
n→∞

(

sup
x∈X,p∈F (T )∩F (I)

{‖T (PT )n−1x− p‖ + ‖I(PI)n−1x− p‖}
)

= lim sup
n→∞

(

sup
x∈X,p∈F (T )∩F (I)

{‖T (PT )n−1x− p‖2 − ‖I(PI)n−1x− p‖2}
)

6 0.

Therefore we have

lim sup
n→∞

(

sup
x∈X,p∈F (T )∩F (I)

{‖T (PT )n−1x− p‖ − ‖I(PI)n−1x− p‖}
)

6 0.

This implies that for any given ε > 0, there exists a positive integer n0 such that
for n > n0 we have

(

sup
x∈X,p∈F (T )∩F (I)

{‖T (PT )n−1x− p‖ − ‖I(PI)n−1x− p‖}
)

6 0.
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Theorem 4.1. Let X be a Banach space and K be a nonempty subset of the

Banach space. Let T, I : K → X be two nonself mappings. Let T be a nonself

I-asymptotically quasi-nonexpansive type and I be a nonself asymptotically quasi-

nonexpansive type in Banach space with F (T ) ∩ F (I) 6= ∅. Let the sequence {xn}
be defined by (4.1) and for every n ∈ N, where {αn}, {βn}, {γn}{α′

n}, {β′

n}, {γ′

n}
are sequences in (0, 1) with αn + βn + γn = 1 = α′

n + β′

n + γ′

n,
∑

∞

i=1 γn < ∞,
∑

∞

i=1 γ
′

n < ∞, and {ψn}, {ϕn} are bounded sequences in K.

Then {xn} converges strongly to a common fixed point of T and I in K iff

(4.2) lim inf
n→∞

d(xn, F (T ) ∩ F (I)) = 0.

Proof. The necessity of condition (4.2) is obvious. Next we prove the suf-
ficiency of condition (4.2). Let the sequence {xn} be defined by (4.1). Let p ∈
F (T ) ∩ F (I), by boundedness of the sequences {ψn}, {ϕn}, so we can put

M = max{sup
n>1

‖ψn − p‖, sup
n>1

‖ϕn − p‖}.

For any given ε > 0, there exists a positive integer n0 such that n > n0

sup
x∈K,p∈F (T )∩F (I)

{‖T (PT )n−1x− p‖ − ‖I(PI)n−1x− p‖} < ε.

sup
x∈K,p∈F (I)

{‖I(PI)n−1x− p‖ − ‖x− p‖} < ε.

Therefore, in particular, we have

(4.3) {‖T (PT )n−1xn − p‖ − ‖I(PI)n−1xn − p‖} < ε,

for all p ∈ F (T ) ∩ F (I) and ∀n > n0.

(4.4) {‖I(PI)n−1yn − p‖ − ‖yn − p‖} < ε,

for all p ∈ F (I) and ∀n > n0. Thus for each n > 1 and for any p ∈ F (T ) ∩ F (I),
using (4.1), (4.3) and (4.4), we have

‖xn+1 − p‖ = ‖P (α′

nxn + β′

nI(PI)n−1yn + γ′

nϕn − p)‖(4.5)

6 α′

n‖xn − p‖ + β′

n‖I(PI)n−1yn − p‖ + γ′

n‖ϕn − p‖

= α′

n‖xn − p‖ + β′

n{‖I(PI)n−1yn − p‖ − ‖yn − p‖}

+ β′

n‖yn − p‖ + γ′

n‖ϕn − p‖

6 α′

n‖xn − p‖ + β′

n{ε} + β′

n‖yn − p‖ + γ′

nM
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and

‖yn − p‖ = ‖P (αnxn + βnT (PT )n−1xn + γnψn − p)‖(4.6)

6 αn‖xn − p‖ + βn‖T (PT )n−1xn − p‖ + γn‖ψn − p‖

6 αn‖xn − p‖ + βn{‖T (PT )n−1xn − p‖ − ‖I(PI)n−1xn − p‖}

+ βn{‖I(PI)n−1xn − p‖ − ‖xn − p‖} + βn‖xn − p‖ + γnM

6 αn‖xn − p‖ + 2βn{ε} + βn‖xn − p‖ + γnM

6 (αn + βn)‖xn − p‖ + 2βnε+ γnM

6 (1 − γn)‖xn − p‖ + 2βnε+ γnM

6 ‖xn − p‖ +Dn

where Dn = 2βnε+ γnM . Then
∑

∞

n=1 Dn < ∞ since
∑

∞

n=1 γn < ∞.
Substituting (4.6) into (4.5), we have

‖xn+1 − p‖ 6 α′

n‖xn − p‖ + β′

nε+ β′

n(‖xn − p‖ +Dn) + γ′

nM(4.7)

6 (α′

n + β′

n)‖xn − p‖ + β′

n(ε+Dn) + γ′

nM

6 (1 − γ′

n)‖xn − p‖ +Gn

6 ‖xn − p‖ +Gn

where Gn = β′

n(ε + Dn) + γ′

nM . Then
∑

∞

n=1 Gn < ∞ since
∑

∞

n=1 γ
′

n < ∞ and
∑

∞

n=1 Dn < ∞ .
It follows from (4.7) that d(xn+1, F (T ) ∩ F (I)) 6 d(xn, F (T ) ∩ F (I)) +Gn.
By Lemma 2.1, we can get that limn→∞ d(xn, F (T )∩F (I)) exists. By condition

lim infn→∞ d(xn, F (T ) ∩ F (I)) = 0, we have

(4.8) lim
n→∞

d(xn, F (T ) ∩ F (I)) = 0.

Next we prove that {xn} is a Cauchy sequence in X . In fact, for any n > n0,

any m > n1 and any p ∈ F (T ) ∩ F (I) we have

‖xn+m − p‖ 6 ‖xn+m−1 − p‖ +Gn+m−1(4.9)

6 ‖xn+m−2 − p‖ +Gn+m−1 +Gn+m−2

6 . . . 6 ‖xn − p‖ +

∞
∑

k=n

Gk.

So by (4.9), we have

(4.10) ‖xn+m − xn‖ 6 ‖xn+m − p‖ + ‖xn − p‖ 6 2‖xn − p‖ +
∞

∑

k=n

Gk.

By the arbitrariness of p ∈ F (T ) ∩ F (I) and (4.10), we have

‖xn+m − p‖ 6 2d(xn, F (T ) ∩ F (I)) +

∞
∑

k=n

Gk ∀n > n0.
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For any given ε > 0, there exists a positive integer n1 > n0, such that for any
n > n1, d(xn, F (T ) ∩F (I)) < ε

4 and
∑

∞

k=n Gk <
ε
2 , we have ‖xn+m −xn‖ < ε, and

so for any m > 1
lim

n→∞

‖xn+m − xn‖ = 0.

This shows that {xn} is a Cauchy sequence in X . Since X is complete, there exists
a p∗ ∈ X such that xn → p∗ as n → ∞.

Finally, by the routine method, we have to prove that p∗ ∈ F (T ) ∩ F (I). By
contradiction, we assume that p∗ is not in F (T ) ∩ F (I). Since F (T ) ∩ F (I) is a
closed set, d(p∗, F (T ) ∩ F (I)) > 0. Hence for all p ∈ F (T ) ∩ F (I), we have

‖p∗ − p‖ 6 ‖xn − p∗‖ + ‖xn − p‖.

This implies that

(4.11) d(p∗, F (T ) ∩ F (I)) 6 ‖xn − p∗‖ + d(xn, F (T ) ∩ F (I)).

Letting n → ∞ in (4.11) and noting (4.8), we have d(p∗, F (T ) ∩ F (I)) 6 0. This
is a contradiction. Hence p∗ ∈ F (T ) ∩ F (I). This completes the proof of Theorem
4.1. �
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