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INDEPENDENCE COMPLEXES

OF COMAXIMAL GRAPHS OF

COMMUTATIVE RINGS WITH IDENTITY

Nela Milošević

Abstract. We study topology of the independence complexes of comaximal
(hyper)graphs of commutative rings with identity. We show that the indepen-
dence complex of comaximal hypergraph is contractible or homotopy equiva-
lent to a sphere, and that the independence complex of comaximal graph is
almost always contractible.

1. Introduction

To any graph or hypergraph G we can associate its independence complex,
which is the abstract simplicial complex formed from all the independent sets of G,
and then study topology of its geometric realization. In this paper we investigate
independence complexes of the comaximal graph and the comaximal hypergraph
associated with a commutative ring with identity and determine their homotopy
type. The set of vertices of the comaximal graph are the elements of the ring R,
and two distinct vertices x and y are adjacent if and only if Rx + Ry = R. This
graph is denoted by Γ(R) and was first defined by Sharma and Bhatwadekar in
[11], who proved that the chromatic number is finite if and only if the ring itself is
finite. The graph was further investigated by Maimani et al. in [6] (who actually
coined the name comaximal) and by Moconja and Petrović in [8] completing the
structure of the comaximal graph in case the number of maximal ideals in R is
finite. Similarly, we define comaximal hypergraph H(R) as a generalization of the
comaximal graph: vertices are the elements of the ring R and hyperedges (or simply
edges) are nonempty subsets of R which are generating sets for the ring, that is
{x0, x1, . . . , xn} is a hyperedge if and only if Rx0 + · · · + Rxn = R.

In general, the idea of associating a combinatorial object to a commutative
ring with identity has been of great interest to researches, so for other examples of
associating a graph to a commutative ring the reader may wish to consult [1, 2, 3,
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10, 13]. For another example of associating simplicial complexes to commutative
rings, we refer the reader to [7] where the authors associated order complex with a
general commutative ring via chains of ideals following a suggestion from Vassiliev
in [12], and determined homotopy type of that complex.

2. Preliminaries

In this section we collect some definitions mainly concerning simplicial com-
plexes and independence complexes which are needed for the discussion in Section 3
and the exposition of our main results. For more thorough background we refer the
reader to [5, 9].

Definition 2.1. An abstract simplicial complex K is a set A together with a
collection K of finite nonempty subsets of A such that if X ∈ K and Y ⊆ X , then
Y ∈ K.

The element v ∈ A such that {v} ∈ K is called a vertex and the set of all
vertices is denoted by V (K). The elements of K are called simplices and usually
denoted by σ. The dimension of a simplex σ is |σ| − 1, where |σ| is the number of
elements in the set σ. Any nonempty subset of a simplex is called a face of that
simplex; faces are simplices themselves. Those simplices that are not faces of any
other simplex in K are called maximal. For a simplex τ that is contained in only
one maximal simplex σ in the complex, we say that τ is a free face of σ.

Definition 2.2. Let K and L be two abstract simplicial complexes. A sim-
plicial map from K to L is a set map f : V (K) → V (L) such that if {x0, . . . , xn}
is a simplex of K, then {f(x0), . . . , f(xn)} is a simplex of L. We simply write
f : K → L. Furthermore, simplicial map f is an isomorphism of abstract simplicial
complexes if the induced map is a bijection and its inverse is a simplicial map as
well.

Now we turn to the definitions regarding geometric realization.

Definition 2.3. A geometric n-simplex σ is the convex hull of the set A of
n+1 affine independent points in R

N for some N > n. The standard n-simplex ∆n

is the convex hull of the set of the endpoints of the standard unit basis in R
n+1.

There is an affine bijection between any geometric n-simplex and the standard
geometric n-simplex.

Let us denote by R
⊕J direct sum of |J | (where J may be infinite; |J | stands

here for the cardinality of J) copies of R (so, it is a subset of RJ consisting of those
x = (xj)j∈J ∈ R

J such that xj = 0, for all but finitely many j ∈ J). A geometric
simplicial complex K in R

⊕J is a collection of geometric simplices in R
⊕J such

that every face of a simplex in K is a simplex of K and the intersection of any two
simplices of K is a face of each of them.

For a geometric simplicial complex K, let |K| denote the union of all simplices
of K. We can define a topology on |K|: every simplex σ of K has the induced
topology, and a subset F of |K| is closed if and only if F ∩ σ is closed for every



INDEPENDENCE COMPLEXES OF COMAXIMAL GRAPHS 111

simplex σ ∈ K. Topological space |K|, called geometric realization of K, is deter-
mined up to a homeomorphism. When we refer to the topological properties of the
abstract simplicial complex K, we are always actually referring to the topological
space |K|.

Note that a simplicial map f : K → L induces a continuous map |f | : |K| → |L|
of topological spaces.

Definition 2.4. A simplicial complex K on a vertex set V (K) is a cone with
apex v ∈ V (K) if every σ ∈ K satisfies σ ∪ {v} ∈ K.

If a simplicial complex K is a cone with apex v then its geometric realization
can be contracted to a point.

We will also need the following lemma from [9].

Lemma 2.1. [9, Lemma 2.5] If K is finite, then |K| is compact. Conversely, if

a subset A of |K| is compact, then A ⊂ |K0| for some finite subcomplex K0 of K.

Note that this lemma is formulated for simplicial complex K that lies in R
N

for some N , which puts limitation on the cardinality of K and on the dimension of
the simplices of K. However, the author in [9] removes these restrictions later in
the book, and asserts that this result holds in general, which we will use.

There is a large variety of complexes whose description is purely combinatorial,
one of which are independence complexes. Given any (hyper)graph G, a set of
vertices S ⊆ V (G) is called independent if it contains no (hyper)edge (as its subset).

Definition 2.5. For an arbitrary graph (hyper)G, the independence complex
of G, called IndG, is the abstract simplicial complex whose set of vertices is V (G)
and whose simplices are all finite independent sets of G.

In [4] the authors focus on the homotopic properties of a simplicial complex
K in terms of its nonfaces, that is, the family {A ⊆ V (K) : A /∈ K}. A minimal
nonface of a simplicial complex is called a circuit.

Definition 2.6. A simplicial complex K on the vertex set V is constrictive if
the complex K is the boundary of the simplex on the vertex set V or there is a
vertex v in V belonging to at most one circuit with one of the following properties:

• v belongs to no circuit; or
• v belongs to a unique circuit B 6= V and there is a vertex u /∈ B such that

contracting the edge {u, v} yields a constrictive complex, where an edge
{u, v} is contractible if and only if no circuit contains {u, v}.

A constrictive complex K is simple-homotopic to a single vertex or to the
boundary complex of a simplex.

3. Independence complex of comaximal graph

and comaximal hypergraph

Simplices in the independence complex of the comaximal hypergraph IndH(R)

are independent sets of H(R), that is nongenerating sets in R, {x0, x1, . . . , xn} ∈
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IndH(R) if and only if Rx0 + · · · + Rxn 6= R. This naturally forms a simplicial
complex since if an (n+1)-tuple does not generate the entire ring, then any smaller
subset certainly does not generate the entire ring. Simplices in the the independence
complex of comaximal graph IndΓ(R) are the independent sets of Γ(R), that is
simplices are the sets {x0, x1, . . . , xn} such that Rxi + Rxj 6= R for all the pairs of
distinct indices 0 6 i, j 6 n.

Whenever Rx0 + · · · + Rxn 6= R, then {xi, xj} is not an edge in Γ(R) for any
0 6 i, j 6 n and i 6= j, so {x0, x1, . . . , xn} is an independent set in Γ(R) and hence a
simplex in IndΓ(R). Therefore the independence complex of comaximal hypergraph
is a subcomplex of the independence complex of comaximal graph. We will then
first look at the independence complex of comaximal hypergraph and determine
homotopy type of its geometric realization and then use these results and extend
them to the investigation of independence complex of comaximal graph.

Note that in both complexes units are not adjacent to any vertex and ele-
ments of J(R) are adjacent to every nonunit. Therefore, it will be more interest-
ing to exclude units and elements of Jacobson radical from the set of vertices in
these complexes; if we were to include elements of J(R), then we would always
have contractible complexes whenever J(R) 6= 0. Thus, we will be looking at
the independence complexes of the subgraph of the comaximal hypergraph H ′(R)
and the subgraph of the comaximal graph Γ′

2(R) whose vertex set is V (H ′(R)) =
V (Γ′

2(R)) = Rr(U(R)∪J(R)) (we use same notation for subgraph Γ′
2(R) as in [6]).

We denote these complexes by IndH′(R) and IndΓ′

2
(R) respectively, and determine

their homotopy type.

Remark 3.1. Studying topology of independence complexes has been of inter-
est to researchers and in [4] Ehrenborg and Hetyei studied topology of a certain
class of independence complexes called constrictive complexes. They showed that
constrictive complexes are either contractible or homotopy equivalent to a sphere.
Conclusions concerning the independence complexes of the comaximal graph and
comaximal hypergraph are similar to those regarding constrictive complexes, so
it is natural to question whether the results can be derived by proving that the
complexes we are studying are constrictive. It turns out that the independence
complexes we are studying are not always constrictive, which we show by providing
a counterexample. Let R = Z/p2

1p2Z where p1 and p2 are distinct prime numbers,
and consider the complexes IndH′(R) and IndΓ′

2
(R) which are equal for this ring.

Let a be any vertex in this complex. Since elements of J(R) are not in the vertex
set, a is divisible by either p1 or p2, but not by both. The geometric realization
of this complex consists of two disconnected cones with vertices being elements of
each maximal ideal that are not in J(R). Clearly this complex is not a bound-
ary of a simplex, and since each cone has at least two vertices, then every vertex
of the complex belongs to more than one circuit. Therefore this complex is not
constrictive.

We will determine homotopy type of the independence complex of comaximal
hypergraph IndH′(R) and the independence complex of comaximal graph IndΓ′

2
(R)
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using a direct approach by considering three cases: (1) local rings, (2) rings with
infinitely many maximal ideals, and (3) semilocal rings.

Observe that in the case when the ring R is local with the maximal ideal M ,
the resulting complexes IndH′(R) and IndΓ′

2
(R) are empty since every nonunit in R

is contained in M (we have J(R) = M). Also, note that the equivalent definition
of IndH′(R) is {x0, x1, . . . , xn} ∈ IndH′(R) if and only if there exists a maximal ideal
M in R such that x0, x1, . . . , xn ∈ M .

3.1. Independence complexes for rings with infinitely many maximal

ideals. Consider the case when the ring R has infinitely many maximal ideals. To
determine the homotopy type of the independence complex IndH′(R) in this case,
first we need the following lemma.

Lemma 3.1. Suppose that R is such that the set of maximal ideals Max(R) is

infinite. If K0 is a finite subcomplex of IndH′(R), then there is a subcomplex K1 of

IndH′(R) such that K0 is a subcomplex of K1 and |K1| is contractible.

Proof. Let σ1, . . . , σm be all the maximal simplices in K0. For every simplex
σi = {xi0, . . . , xini

} ∈ K0 there exists a maximal ideal Mi containing elements
xi0, . . . , xini

, so we have a finite set of maximal ideals {M1, . . . , Mm} (not nec-
essarily distinct) containing elements which are vertices of appropriate maximal
simplices. We will show that there exists an element y ∈ R r (U(R) ∪ J(R)) such
that {xi0, . . . , xini

, y} ∈ IndH′(R) for all 1 6 i 6 m. This will show that | IndH′(R) |
is connected.

Let y be an element of
⋂m

i=1 Mi, such that y /∈ J(R). Such element exists
because the intersection of finitely many maximal ideals is not equal to J(R).
Namely if we were to have

⋂m

i=1 Mi = J(R), then for some other maximal ideal
Mm+1 /∈ {M1, . . . , Mm} we would have

⋂m

i=1 Mi ⊂ Mm+1, which would mean that
Mi ⊆ Mm+1 for some i ∈ {1, . . . , m} which is a contradiction.

Consider K1 as a subcomplex of IndH′(R) spanned by all of the vertices of K0

together with the vertex y (note that y might already be a vertex of K0, in that
case K1 = K0). For every simplex σi = {xi0, . . . , xini

} ∈ K0, we have xi0, . . . , xini
,

y ∈ Mi, hence σi is a face of {xi0, . . . , xini
, y} ∈ K1 so |K1| is a cone with the apex

y, hence contractible. �

We have a similar lemma for the independence complex of comaximal graph
IndΓ′

2
(R).

Lemma 3.2. Suppose that R is such that the set of maximal ideals Max(R) is

infinite. If K0 is a finite subcomplex of IndΓ′

2
(R), then there is a subcomplex K1 of

IndΓ′

2
(R) such that K0 is a subcomplex of K1 and |K1| is contractible.

Proof. Let σ1, . . . , σm be all the maximal simplices in K0. For every simplex
σi = {xi0, . . . , xini

} ∈ K0 and every pair {xij , xik}, j 6= k, that is a face of σi,
there exists a maximal ideal M containing elements xij , xik, so we have some finite
set of maximal ideals {M1, . . . , Mt} containing pairs of elements which are ver-
tices of appropriate maximal simplices. We will show that there exists an element
y ∈ R r (U(R) ∪ J(R)) such that {xi0, . . . , xini

, y} ∈ IndΓ′

2
(R) for all 1 6 i 6 m.
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This will show that | IndΓ′

2
(R) | is connected. Let y be an element of

⋂t

i=1 Mi, such

that y /∈ J(R). As in the previous lemma, such element always exists. Consider K1

as a subcomplex of IndΓ′

2
(R) spanned by all of the vertices of K0 together with the

vertex y (note that y might already be a vertex of K0, in that case K1 = K0). For
every simplex σi = {xi0, . . . , xini

} ∈ K0, we have {xij , y} in some maximal ideal for
every 0 6 j 6 ni, hence {xij , y} is not an edge in Γ′

2(R). Therefore {xi0, . . . , xini
, y}

is an independent set and therefore a simplex in the complex IndΓ′

2
(R). We have

that each σi is a face of {xi0, . . . , xini
, y} ∈ K1 so |K1| is a cone with the apex y,

hence contractible. �

Theorem 3.1. If Max(R) is infinite, then | IndH′(R) | and | IndΓ′

2
(R) | are con-

tractible.

Proof. The proof is completely analogous to the proof in [7] which we give
here for the sake of completeness. It applies for both complexes so let Ind stand
for both IndH′(R) and IndΓ′

2
(R).

Since | Ind | has the homotopy type of a CW complex, we may use the White-
head theorem. We only need to show that all homotopy groups of | Ind | are trivial.
Suppose that n > 1 and that g : Sn → | Ind | is a continuous map. Since the im-
age g[Sn] is compact, by Lemma 2.1 there is a finite subcomplex K0 such that
g[Sn] ⊆ |K0|. By Lemma 3.1, there is a subcomplex K1 such that K0 ⊂ K1 and
|K1| is contractible. So, the map g may be factored through the contractible space
|K1| and it is homotopically trivial. We conclude that πn(| Ind |, ∗) is trivial. Since
this holds for all n, by Whitehead’s theorem we get that | Ind | is contractible. �

3.2. Independence complex of comaximal hypergraph when R is a

semilocal ring. Let R be a semilocal ring with m maximal ideals M1, M2, . . . , Mm.
We can easily observe that the maximal simplices in IndH′(R) are formed from the
set of elements in each maximal ideal. Therefore it will be useful to first look at a
related complex whose vertices are proper ideals of the ring R (naturally excluding
J(R)), namely the nongenerating ideal complex.

Definition 3.1. Let R be a commutative ring and let I∗(R) be the set of
all proper ideals of R properly containing J(R). The nongenerating ideal complex
C (R) is defined by:

V (C (R)) = I∗(R), and {I0, . . . , In} ∈ C (R) if and only if I0 + · · · + In 6= R

Again, we have an equivalent definition {I0, . . . , In} ∈ C (R) if and only if

I0, . . . , In ⊆ M for some maximal ideal M . Consider the subcomplex K̃ of C (R)
whose vertices are all the maximal ideals and their intersections (except the inter-
section of all of them), that is, vertices are

⋂
i∈S Mi where S is any proper nonempty

subset of the set {1, 2, . . . , m}. Geometric realization of this subcomplex for the
case m = 3 is given below in Figure 1.

Note that this complex is connected unless | Max(R)| = 2.
It will be useful to denote [m] = {1, 2, . . . , m}, while for the intersection (union)

of all maximal ideals whose indices belong to a set S ⊂ [m] we use the same notation
as in [8], that is MS =

⋂
i∈S Mi and MS =

⋃
i∈S Mi.
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M1 ∩ M2

M1 ∩ M3 M2 ∩ M3

M1 M2

M3

Figure 1.

Lemma 3.3. Let R be a semilocal ring. If | Max(R)| = m > 1, then |K̃| ≃

∆̇m−1.

Proof. Note that there are exactly m maximal simplices in K̃, namely sim-
plices whose vertices are ideals contained in Mi for each i = 1, . . . , m. For each such
maximal simplex σi, consider its face τi whose vertices are ideals M[m]r{j} for each
j = 1, . . . , m and j 6= i. Let K0 be the subcomplex with m vertices M[m]r{j} for
each j = 1, . . . , m. Then K0 has exactly m maximal simplices τ1, . . . , τm, and its
geometric realization is the boundary of an (m−1)-simplex. We define a continuous

function f : |K̃| → |K0| by mapping each vertex MS in |K̃| to the barycenter of the
simplex whose vertices are M[m]r{j} for each j = 1, . . . , m and j /∈ S (this is exactly

the simplex
⋂

i∈S τi), and any point x =
∑n

i=0 aiMSi
to f(x) =

∑n

i=0 aif(MSi
). In

this manner, each maximal simplex σi is projected onto its face τi, as any point of

|K̃| which is inside σi is projected onto appropriate point of τi along the line that

is inside the simplex σi. Then f is a strong deformation retraction, so |K̃| ≃ |K0|,

that is, |K̃| ≃ ∆̇m−1. �

For example, in case |Max(R)| = 3 (see Figure 1), there are three maximal
simplices (in the geometric realization they are represented by three full triangles),
which we are projecting onto the appropriate edge of the hollow triangle in the
center. The function f maps vertex M1 to the barycenter of the simplex {M1 ∩
M2, M1 ∩ M3}, M2 to the barycenter of the simplex {M1 ∩ M2, M2 ∩ M3}, and M3

to the barycenter of the simplex {M1 ∩ M3, M2 ∩ M3}.
Now we can finally determine the homotopy type of the independence complex

IndH′(R) when R is a semilocal ring.

Theorem 3.2. Let R be a semilocal ring with |Max(R)| = m > 1; then

| IndH′(R) | ≃ ∆̇m−1.

Proof. In order to prove this, we show that | IndH′(R) | ≃ |K̃| and use this
together with the above lemma.

For each proper nonempty subset S ⊂ [m], the set MS r MSc

is nonempty by
the Prime avoidance lemma. Choose an element aS ∈ MS r MSc

, and consider
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subcomplex IndH′(R) of the independence complex whose vertices are such elements.

Consider a simplicial map between IndH′(R) and the complex K̃ discussed above,
given by the vertex map f : aS 7→ MS. This map is well defined and a bijection,
since aS = aT if and only if S = T , that is, if and only if MS = MT . Furthermore
this is an isomorphism because {aS0

, . . . , aSn
} ∈ IndH′(R) if and only if there exists

i ∈ S0 ∩ · · · ∩Sn if and only if MS0
, . . . , MSn

⊆ Mi if and only if {MS0
, . . . , MSn

} ∈

K̃. Therefore the complexes IndH′(R) and K̃ are isomorphic, hence |IndH′(R)| ≃

|K̃|.
Let g : | IndH′(R) | → |IndH′(R)| be the simplicial map such that a vertex x is

mapped to aS where S is the set of indices of all maximal ideals containing x, that
is, we are mapping each element of Rr(U(R)∪J(R)) to appropriate representative
of the intersection of the maximal ideals containing that element. For any simplex
{x0, . . . , xn} in IndH′(R) there is a maximal ideal containing elements x0, . . . , xn,
which then also contains g(x0), . . . , g(xn). Hence, simplex {g(x0), . . . , g(xn)} in
IndH′(R) is just a face of the simplex {x0, . . . , xn, g(x0), . . . , g(xn)} and our map
is the projection of that larger simplex onto its face. This is clearly a strong
deformation retraction since every point in |IndH′(R)| is mapped onto its image

along a line inside the appropriate simplex. Therefore |IndΓ′

2
(R)| ≃ |IndH′(R)| ≃

|K̃|, so |IndH′(R)| ≃ ∆̇m−1. �

3.3. Independence complex of comaximal graph when R is a semilo-

cal ring. Unlike the independence complex of comaximal hypergraph, we will show
that the independence complex of comaximal graph is contractible for semilocal
rings with more than two maximal ideals. To show this we use a similar idea as
before.

Theorem 3.3. Let R be a semilocal ring with m maximal ideals M1, . . . , Mm.

If m = 2, then | IndΓ′

2
(R) | is homotopy equivalent to a pair of points with the discrete

topology, and if m > 2 the complex | IndΓ′

2
(R) | is contractible.

Proof. Elements of maximal ideals form simplices in the complex (because
no pair of elements generates entire ring), so again for each proper nonempty
subset S ⊂ [m] we choose an element aS ∈ MS r MSc

, and consider subcom-
plex IndΓ′

2
(R) of the independence complex whose vertices are such elements. Let

g : | IndΓ′

2
(R) | → |IndΓ′

2
(R)| be the simplicial map such that a vertex x is mapped

to aS where S is the set of indices of all maximal ideals containing x. Then for
any simplex {x0, . . . , xn} in IndΓ′

2
(R) we also have {x0, . . . , xn, g(x0), . . . , g(xn)} in

IndΓ′

2
(R) because every pair is in some maximal ideal hence not generating entire

ring; namely {xi, g(xj)} (i and j need not be distinct) is in the same maximal ideal
as is {xi, xj}, and {g(xi), g(xj)} is in the same maximal ideal as {xi, xj}. Now, same
as in the proof of Theorem 3.2, we conclude that g is a strong deformation retrac-
tion, so | IndΓ′

2
(R) | ≃ |IndΓ′

2
(R)|. Now consider the map f : |IndΓ′

2
(R)| → |IndΓ′

2
(R)|

that sends aS to the barycenter of the simplex whose vertices are a[m]r{j} for each
j = 1, . . . , m and j /∈ S. Every point of each simplex σ is projected onto appropriate
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point of its face along the line that is inside σ so this is a strong deformation re-
traction. Therefore the complex |IndΓ′

2
(R)| is reduced to its subcomplex consisting

of the vertices a[m]r{1}, . . . , a[m]r{m}, and for m > 2 these vertices form a simplex
because every pair of elements is in some maximal ideal. Therefore for m > 2
the independence complex IndΓ′

2
(R) is contractible while for m = 2 it is homotopy

equivalent to two disjoint points. �
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