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DISTRIBUTIVE LATTICES OF JACOBSON RINGS

Yong Shao, Siniša Crvenković, and Melanija Mitrović

Abstract. We characterize the distributive lattices of Jacobson rings and
prove that if a semiring is a distributive lattice of Jacobson rings, then, up
to isomorphism, it is equal to the subdirect product of a distributive lattice
and a Jacobson ring. Also, we give a general method to construct distributive
lattices of Jacobson rings.

1. Introduction and preliminaries

A semigroup S is called periodic if each element of S has a finite order, where
the order of a ∈ S is the order of the cyclic subsemigroup of S generated by a.
Periodic semigroups have been studied by many algebraists. Suppose that S is a
periodic semigroup. For any a ∈ S we all know that there exist the smallest positive
integer m and the smallest positive integer r such that am = am+r. The positive
integer m is referred to as the index and the positive integer r as the period of a. In
particular, if the index of each a ∈ S is equal to 1, then we call S a strongly periodic
semigroup. Idempotent semigroups and Burnside semigroups satisfying xn ≈ x are
special cases of strongly periodic semigroups.

A ring (R, +, ·) is a Jacobson ring if, for any a ∈ R, there exists n ∈ N, n > 2
such that a = an. That is to say, its multiplicative reduct is a strongly periodic
semigroup. It is obvious that Boolean rings are Jacobson rings. Following [6,
Theorem 11], we have

Theorem 1.1. Let R be a Jacobson ring. Then every element of R has finite
additive order and R is commutative.

We denote by JR the class of all Jacobson rings.
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Semirings are the natural generalization of rings and distributive lattices. All
semirings (S, +, ·) occurring in the literature satisfy at least the following axioms:
(S, +), the additive reduct, and (S, ·), the multiplicative reduct of a semiring S are
semigroups, and the multiplication distributes over addition from both sides, i.e.,

(SR1) x + (y + z) ≈ (x + y) + z;
(SR2) x(yz) ≈ (xy)z;
(SR3) x(y + z) ≈ xy + xz, (x + y)z ≈ xz + yz.

It is, as well, often assumed that (S, +) is commutative, i.e.,
(SR4) x + y ≈ y + x.

We consider the semiring classes considered that satisfy this identity too.

By an idempotent semiring, we mean a semiring S which satisfies the addi-
tional identities xx ≈ x + x ≈ x. An idempotent semiring (S, +, ·) is called a
bisemilattice if both the multiplicative reduct (S, ·) and the additive reduct (S, +)
are semilattices. Of course, a distributive lattice is a bisemilattice which satisfies
the absorption law x + xy ≈ x. The class of all distributive lattices is denoted by
D. The Mal’cev product of two classes V and W of semirings, denoted by V ◦ W,
we mean that the class of all semirings S on which there exists a congruence ρ such
that S/ρ ∈ W and the ρ-classes which are subsemirings of S belong to V. Thus, in
this way, some classes of semirings can be constructed by considering the Mal’cev
products of some given semirings.

For a semiring (S, +, ·) we denote Green’s H relation on the additive reduct
(S, +) by H+. Let (S, +, ·) be a semiring whose additive reduct (S, +) is a com-
pletely regular semigroup. By Theorem II.1.4 and Corollary II.1.5 in [8], (S, +) is
a commutative Clifford semigroup and H+ is the least semilattice congruence of
the additive reduct (S, +) of S, moreover, every H+-class is a maximal subgroup
of (S, +). For any a ∈ S we denote by H+

a the H+-class containing a and 0a the
identity of H+

a , respectively. It can be easily seen that aH+b if and only if 0a = 0b

for any a, b ∈ S.
Let (S, +, ·) be a semiring whose additive reduct is a Clifford semigroup. We

can define the natural partial order on (S, +) by

a 6+ b ⇔ (∃e ∈ E+(S)) a = b + e

for a, b ∈ S, where E+(S) is the set of idempotents of the additive reduct (S, +)
of S.

The Mal’cev product of the class of Jacobson rings and the class of distributive
lattices is denoted by JR ◦ D. A semiring S is called a distributive lattice of
Jacobson rings if it is in JR ◦ D. In the following we shall study the semirings
which are distributive lattices of Jacobson rings.

Some authors have studied the distributive lattices of rings(see [1, 2, 7]). In
particular, [1] and [2] characterized the subdirect product of rings and distributive
lattice, respectively. If a semiring (S, +, ·) is isomorphic to a subdirect product of
a ring and a distributive lattice, then the additive reduct (S, +) of S is a sturdy
semilattice of abelian groups, which means that (S, +) is E-unitary. The following
example shows that, in general, distributive lattices of rings are not the subdirect
product of a ring and a distributive lattice.
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Example 1.1. Consider a five element semiring A5 with operations given by

+ a b c d e
a a b a b e
b b a b a e
c a b c d e
d b a d c e
c e e e e e

. a b c d e
a a a c c a
b a a c c a
c c c c c c
d c c c c c
e a a c c e

It is easy to see that H+ is a distributive lattice congruence and H+
a = {a, b},

H+
c = {c, d} and H+

e = {e} are subrings of A5. Since e 6+ a, e 6+ b, this means
that (A5, +) is not E-unitary. In [2] and [4], it was proved that a distributive
lattice of Boolean rings is isomorphic to subdirect product of a Boolean ring and a
distributive lattice. In this paper we prove that if a semiring is distributive lattice
of Jacobson rings, then, up to isomorphism, it is equal to the subdirect product of
a distributive lattice and a Jacobson ring, which generalize and enrich some results
from [2, 4, 10]. Also, we shall give a general method to construct distributive
lattices of Jacobson rings.

2. Main results

Lemma 2.1. A semiring S is a distributive lattice of Jacobson rings, i.e., S ∈
JR◦D, if and only if H+ is the least distributive lattice congruence on S and every
H+-class is a Jacobson ring.

Proof. Let a semiring S be a distributive lattice of Jacobson rings. Then there
exists a semiring congruence ρ on S such that S/ρ is a distributive lattice and every
ρ-class is a Jacobson ring. This also implies that ρ is a semilattice congruence on
(S, +). Since the additive reduct (S, +) of S is a Clifford semigroup, H+ is the least
semilattice congruence on (S, +). This leads to H+ ⊆ ρ. On the other hand, since
ρu (the ρ-class containing u) is a Jacobson ring for any u ∈ S, the additive reduct
of ρu is an abelian subgroup of (S, +). Thus ρu ⊆ H+

u , furthermore, ρ ⊆ H+. We
have now shown that ρ = H+. That is to say that H+ is a distributive lattice
congruence of semiring S and every H+-class is a Jacobson ring.

If µ is a distributive lattice congruence on S, then µ is a semilattice congruence
on the additive reduct (S, +). Since H+ is the least semilattice congruence on
(S, +), H+ ⊆ µ, which implies that H+ is the least distributive lattice congruence
on S.

Conversely, it is clear from definition that the semiring S is a distributive
lattice of Jacobson rings since H+ is the least distributive lattice congruence on the
semiring S and every H+-class is a Jacobson ring. �

As a consequence of Lemma 2.1 we have the following result.

Corollary 2.1. Let S be a semiring in JR ◦ D. Then

(i) for any a, b ∈ S, 0a + 0b = 0a+b, a0b = 0ba = 0a0b = 0ab, a + a0b = a;
(ii) E+(S) = {0a | a ∈ S} is a distributive lattice.



90 SHAO, CRVENKOVIĆ, AND MITROVIĆ

Let S be a semiring in JR ◦ D. Define a binary relation σ+ on S by

(∀a, b ∈ S) a σ+b ⇔ (∃e ∈ E+(S)) a + e = b + e.

It follows from Proposition 5.3.2 in [5] that σ+ is the least group congruence on
the additive reduct (S, +) of S. Thus we have

Lemma 2.2. Suppose that S is a semiring in JR ◦ D. Then σ+ is the least
Jacobson ring congruence on S.

Proof. Assume that a, b ∈ S and a σ+b. Then there exists e ∈ E+(S) such
that a + e = b + e. For any c ∈ S we have that ca + ce = cb + ce. By Corollary 2.1
it follows that ce ∈ E+(S) and so ca σ+cb. Dually, we can get ac σ+bc. Thus, σ+ is
a semiring congruence on S. Since (S/σ+, +) is an abelian group, (S/σ+, +, ·) is a
ring. For any a ∈ S we denote by σ+

a the σ+-class containing a. By Lemma 2.1 it
yields that H+

a is a Jacobson ring. Thus there exists a positive integer k such that
ak = a. Therefore, (σ+

a )k = σ+
ak = σ+

a . Hence, (S/σ+, +, ·) is a Jacobson ring and

so σ+ is a Jacobson ring congruence on S.
Suppose that θ is a Jacobson ring congruence on S. If a, b ∈ S and a σ+b, then

there exists f ∈ E+(S) such that a + f = b + f . This yields θa+f = θb+f . Thus

θa = θa + θf = θb + θf = θb

since (S/θ, +) a group and and θf is the identity of (S/θ, +). This implies a θ b and
so σ+ ⊆ θ. This shows that σ+ is the least Jacobson ring congruence on S. �

Now we are able to obtain the decomposition theorem of distributive lattice of
Jacobson rings.

Theorem 2.1. Suppose that S is a semiring. Then S is a distributive lattice
of Jacobson rings if and only if S is (isomorphic to) the subdirect product of a
distributive lattice and a Jacobson ring.

Proof. Suppose that a ∈ S, e ∈ E+(S) and a + e ∈ E+(S). Thus there is
f ∈ E+(S) such that a+e = f . This yields a+e+f = e+f , and (left-)multiplying
it by a, we have a2 + a(e + f) = a(e + f), which implies

(1) a2 + a + a(e + f) = a + a(e + f).

Since the H+-class containing a(e + f) is a Jacobson ring, by Theorem 1.1, there
exists a positive integer k such that k ·(a(e+f)) = 0a(e+f). Adding (k −1) ·a(e+f)

to the both sides of (1), we get a2 + a + k · a(e + f) = a + k · a(e + f). This implies
a2 + a + 0a(e+f) = a + 0a(e+f). By Corollary 2.1(i), it follows that a2 + a = a, and,

multiplying it by a, we have a3 + a2 = a2, which implies a + a3 + a2 = a + a2. Thus
a3 + a = a. By induction, it can be easily shown that am + a = a for any positive
integer m > 2. Since the H+-class containing a is also a Jacobson ring, there exists
a positive integer l > 2 such that al = a. Thus, a = al + a = a + a, i.e., a ∈ E+(S).
Therefore the additive reduct (S, +) is E-unitary. By Proposition 5.9.1 in [5] we
have σ+ ∩ H+ = 1S, which, by Lemma I.4.18 in [8], implies that S is the subdirect
product of S/H+ and S/σ+.

The converse is trivial. �
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Let F1, . . . , Fk be a fixed list of finite fields with different characteristics p1, ..., pk

and respective sizes q1 = p1
n1 , . . . , qk = pk

nk , for some positive integers n1, . . . , nk.
Let c = p1 · · · pk, and let n be a positive integer such that n − 1 is the least com-
mon multiple of q1 − 1, . . . , qk − 1. It was proved in [10] that the semiring variety
V = HSP{B2, F1, . . . , Fk} generated by two-element distributive lattice B2 and
finite fields F1, . . . , Fk is determined by (SR1-4) and the following identities:

(DFSR1) (c + 1) · x ≈ x; (DFSR4) x + c · xy ≈ x;

(DFSR2) xn ≈ x; (DFSR5) xy ≈ yx;

(DFSR3) c · x2 ≈ c · x; (DFSR6)
c

pi

· xqi ≈
c

pi

· x (1 6 i 6 k).

Suppose that S is a semiring in V. From (SR4) and (DFSR1) we have that
the additive reduct (S, +) is a commutative Clifford semigroup. It follows by The-
orem 2.1 in [10] that S is isomorphic to the subdirect product of the distributive
lattice S/H+ and Jacobson ring S/σ+. Thus, by Theorem 2.1, S belongs to JR◦D

and so V ⊆ JR ◦ D. This shows that the above theorem generalizes Theorem 2.1
in [10].

In the rest of this section we give a method to construct distributive lattices
of Jacobson rings. Assume that (D, +, ·) is a distributive lattice. Define a binary
relation 6 on D by

(∀α, β ∈ D) α 6 β ⇔ α = α + β.

It is easy to check that 6 is a partial order on D. For any α, β ∈ D it is easy to
see that α + β 6 α. Similarly, we have α + β 6 β. It is well known that α 6 αβ,
β 6 αβ and α + β 6 αβ.

In order to discuss the structure of S, we have to recall the following concept
from [9] and [11].

Let {(Sα, +, ·) | α ∈ D} be a family of disjoint semirings (Sα, +, ·) which
are indexed by a distributive lattice D together with a family of monomorphisms
ϕα,β : Sα → Sβ(β 6 α) satisfying the following conditions: for any α, β, γ ∈ D,

(i) ϕα,α = 1Sα
;

(ii) If γ 6 β 6 α, then ϕα,βϕβ,γ = ϕα,γ ;
(iii) If γ 6 α + β then

Sαϕα,γ + Sβϕβ,γ ⊆ Sα+βϕα+β,γ .
Sαϕα,γ · Sβϕβ,γ ⊆ Sαβϕαβ,γ .

On the set S =
⋃

α∈DSα define addition and multiplication by

a + b = aϕα,α+β + bϕβ,α+β,

a · b = (aϕα,α+βbϕβ,α+β)ϕ−1
αβ,α+β ,

for any a ∈ Sα, b ∈ Sβ . Then we can check that (S, +, ·) is a semiring, denoted by
S = [D; Sα, ϕα,β ]. We call the constructed semiring S = [D; Sα, ϕα,β] the sturdy
distributive lattice of semirings Sα.

If all semirings Sα are in a class of semirings C, we call S = [D; Sα, ϕα,β ] the
sturdy distributive lattice of C-semirings.
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Theorem 2.2. Suppose that S is a semiring. Then S is a distributive lattice
of Jacobson rings if and only if S is a sturdy distributive lattice of Jacobson rings.

Proof. Let a semiring S belong to JR ◦ D. By Lemma 2.1, we can assume
that S is a distributive lattice D of Jacobson rings Rα’s, where D ∼= S/H+ and each
Rα is an H+-class of S. For convenience, for any α ∈ D we denote by 0α the unique
idempotent of abelian group (Rα, +). Thus, E+(S) = {0α | α ∈ D}. From Lemma
2.2 we have that σ+ is the least Jacobson ring congruence on S, which means that
(S/σ+, +, ·) is a Jacobson ring. By Theorem 2.1 it follows that S is isomorphic to
the subdirect product of the distributive lattice S/H+ and Jacobson ring S/σ+.
This implies that the additive reduct (S, +) of S is isomorphic to the subdirect
product of the semilattice (S/H+, +) and abelian group (S/σ+, +). Thus, (S, +) is
a sturdy semilattice (D, +) of abelian groups (Rα, +)(α ∈ D). Then, by Theorems
IV.1.3, IV.1.6 and IV.1.7 in [8], we can express (S, +) = [(D, +); (Rα, +); ϕα,β] as
a sturdy semilattice of additive abelian groups Rα(α ∈ D), where (D, +)[(Rα, +)]
denotes the additive semigroup of distributive lattice D [of Jacobson rings Rα] and
ϕα,β is defined by

(∀a ∈ Rα) aϕα,β = a + 0β.

From (S, +) = [(D, +); (Rα, +); ϕα,β ] we have that ϕα,β(β 6 α) is a group
monomorphism from (Rα, +) to (Rβ , +). In the following, we are going to show
that ϕα,β(β 6 α) is a semiring homomorphism.

For a, b ∈ Rα, we have aϕα,β = a + 0β and bϕα,β = b + 0β. Then, by Corol-
lary 2.1, we have

(ab)ϕα,β = ab + 0β = a + a0β + b0β + 0β = (a + 0β)(b + 0β) = (aϕα,β)(bϕα,β).

This shows that ϕα,β is a semigroup homomorphism from (Rα, ·) to (Rβ , ·) and so
ϕα,β is a semiring monomorphism.

For any α, β ∈ D, since Rα and Rβ are H+-classes and H+ is a distributive
lattice congruence, Rα · Rβ ⊆ Rαβ . Thus, for any a ∈ Sα, b ∈ Sβ , we have

aϕα,α+β = a + 0α+β, bϕβ,α+β = b + 0α+β, (ab)ϕαβ,α+β = ab + 0α+β.

By Corollary 2.1 we have

ab + 0α+β = a + a0α+β + b0α+β + 0α+β

= (a + 0α+β)(b + 0α+β) = (aϕα,α+β)(bϕβ,α+β).

Thus, (ab)ϕαβ,α+β = (aϕα,α+β)(bϕβ,α+β).
Let γ ∈ D and γ 6 α + β. Since ϕα+β,γ is a semiring homomorphism, we have

aϕα,γbϕβ,γ = aϕα,α+βϕα+β,γbϕβ,α+βϕα+β,γ

= (aϕα,α+βbϕβ,α+β)ϕα+β,γ = (ab)ϕαβ,α+βϕα+β,γ = (ab)ϕαβ,γ .

This shows Rαϕα,γ · Rβϕβ,γ ⊆ Rαβϕαβ,γ . Hence,

ab = ((ab)ϕαβ,α+β)ϕ−1
αβ,α+β = (aϕα,α+βbϕβ,α+β)ϕ−1

αβ,α+β .

Since a + b = aϕα,α+β + bϕβ,α+β is evident, by the above definition, S is a sturdy
distributive lattice D of Jacobson rings Rα’s, where D ∼= S/H+ and each Rα is a
H+-class of semiring S.
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Conversely, if the semiring S is a sturdy distributive lattice D of Jacobson rings
Rα (α ∈ D), then S = [D; Rα, ϕα,β ]. Define a binary relation η on S by

(a, b ∈ S) a η b ⇔ (∃α ∈ D) a, b ∈ Rα.

It is a routine matter to verify that η is a distributive lattice congruence and that
every η-class is a Jacobson ring. That is to say, S ∈ JR ◦ D. �

By Theorems 2.1 and 2.2 the following corollary is directly obtained.

Corollary 2.2. Let S be a semiring. Then the following statements are equiv-
alent:

(i) S is a distributive lattice of Jacobson rings;
(ii) S is the subdirect product of a distributive lattice and a Jacobson ring;
(iii) S is a sturdy distributive lattice of Jacobson rings.
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